
Learning Robust Options

Daniel J. Mankowitz,1 Timothy A. Mann,2 Pierre-Luc Bacon,3 Doina Precup,3 Shie Mannor1
1 Technion Israel Institute of Technology, Haifa, Israel

2 Google Deepmind, London, UK
3 McGill University, Montreal, Canada

danielm@campus.technion.ac.il, timothymann@google.com, pbacon,
dprecup {@cs.mcgill.ca}, shie@ee.technion.ac.il

Abstract

Robust reinforcement learning aims to produce policies
that have strong guarantees even in the face of environ-
ments/transition models whose parameters have strong un-
certainty. Existing work uses value-based methods and the
usual primitive action setting. In this paper, we propose ro-
bust methods for learning temporally abstract actions, in the
framework of options. We present a Robust Options Pol-
icy Iteration (ROPI) algorithm with convergence guarantees,
which learns options that are robust to model uncertainty. We
utilize ROPI to learn robust options with the Robust Options
Deep Q Network (RO-DQN) that solves multiple tasks and
mitigates model misspecification due to model uncertainty.
We present experimental results which suggest that policy it-
eration with linear features may have an inherent form of ro-
bustness when using coarse feature representations. In addi-
tion, we present experimental results which demonstrate that
robustness helps policy iteration implemented on top of deep
neural networks to generalize over a much broader range of
dynamics than non-robust policy iteration.

1 Introduction

In this paper, we focus on developing methods for learn-
ing temporally extended actions (Sutton, Precup, and Singh
1999) which are robust to model uncertainty. Temporally
Extended Actions, also known as options (Sutton, Precup,
and Singh 1999), skills (da Silva, Konidaris, and Barto 2012;
Mankowitz, Mann, and Mannor 2016b; 2016a) or macro-
actions (Hauskrecht et al. 1998) have been shown both the-
oretically (Precup, Sutton, and Singh 1998) and experimen-
tally (Mann and Mannor 2014) to result in faster conver-
gence rates in RL planning algorithms. We refer to a Tem-
porally Extended Action as an option from here on in. While
much research has been dedicated to automatically learning
options, e.g. (Şimşek and Barto 2005; da Silva, Konidaris,
and Barto 2012; Mankowitz, Mann, and Mannor 2016b;
2016a; Bacon, Harb, and Precup 2017), no work has, to the
best of our knowledge, focused on learning options that are
robust to model uncertainty.

To understand model uncertainty, consider a two-link
robotic arm that is trying to lift a box (Figure 1a). The

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

arm with length l1 can be modelled by a dynamical sys-
tem Pdynamics1, also referred to as the state-transition func-
tion or transition model. These terms will be used inter-
changeably throughout the paper. The transition model gov-
erns the dynamics of this arm. Different models Pdynamics2

and Pdynamics3 are generated for arms with lengths l2 and
l3 respectively. All of these arms are attempting to perform
the same task. An RL agent trained using model Pdynamics1

may not adequately perform the task using Pdynamics2 or
Pdynamics3. However, ideally the agent should be agnostic
to the uncertainty in the model parameters and still be able
to solve the task (i.e., lift the box).

Practical applications of RL rely on the following two-
step blueprint: Step one - Build a Model: Models are at-
tained in one of three ways - (1) A finite, noisy batch of
data is acquired and a model is built based on this data; (2)
A simplified, approximate model of the environment may
be provided directly (e.g., power generation 1, mining etc);
(3) A model of the environment is derived (e.g., dynami-
cal systems). Step two - Learn a policy: RL methods are
then applied to find a good policy based on this model. In
cases (1) and (2), the parameters of the model are uncertain
due to the noisy, finite data and the simplified model respec-
tively. In case (3), model uncertainty occurs when the pa-
rameters of the physical agent are uncertain as discussed in
the above-mentioned example. This is especially important
for industrial robots that are periodically replaced with new
robots that might not share the exact same physical spec-
ifications (and therefore have slightly different dynamical
models). Learning a policy that is agnostic to the parameters
of the model is crucial to being robust to model uncertainty.

We focus on (3): Learning policies in dynamical systems,
using the robust MDP framework (Bagnell, Ng, and Schnei-
der 2001; Nilim and El Ghaoui 2005; Iyenger 2005), that are
robust to model uncertainty (e.g., robots with different arm
lengths). 2

Why learn robust options? Previous works (Mankowitz,
Mann, and Mannor 2016b; 2016a; Bacon, Harb, and Precup
2017; Mankowitz, Tamar, and Mannor 2017) have shown
that options mitigate Feature-based Model Misspecification

1http://www.gridlabd.org/
2Note that our theoretical framework can also deal with model

uncertainty in cases (1) and (2).

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6409

(FMM). In the linear setting, FMM occurs when a learning
agent is provided with a limited policy feature representation
that is not rich enough to solve the task. In the non-linear
(deep) setting, FMM occurs when a deep network learns a
sub-optimal set of features, resulting in sub-optimal perfor-
mance. We show in our work that options are indeed neces-
sary to mitigate FMM. However, as discussed in the above
example (Figure 1a) model uncertainty also results in sub-
optimal performance. We show in our experiments that this
is especially problematic in deep networks. Therefore, we
learn robust options that mitigate both FMM and model un-
certainty which we collectively term model misspecifica-
tion 3.

Policy Iteration (PI) (Sutton and Barto 1998) is a powerful
technique that is present in different variations (Lagoudakis
and Parr 2003; Konda and Tsitsiklis 2000) in many RL algo-
rithms. The Deep Q Network (Mnih 2015) is one example of
a powerful non-linear function approximator that employs a
form of PI. Actor-Critic Policy Gradient (AC-PG) (Konda
and Tsitsiklis 1999; Sutton et al. 2000) algorithms perform
an online form of PI. As a result, we decided to perform op-
tion learning in a policy iteration framework.

We introduce the Robust Options Policy Iteration (ROPI)
algorithm that learns robust options to mitigate model mis-
specification, with convergence guarantees. Our novel ROPI
algorithm consists of two steps, illustrated in Figure 1b,
which include a Policy Evaluation (PE) step and a Policy Im-
provement (PI) step. For PE, we utilize RPVI (Tamar, Man-
nor, and Xu 2014) to perform policy evaluation and learn
the value function parameters w; We then perform PI using
the robust policy gradient (discussed in Section 4). This pro-
cess is repeated until convergence. ROPI learns robust op-
tions and a robust inter-option policy πθ, and has theoretical
convergence guarantees. We showcase the algorithm in both
linear and non-linear (deep) feature settings.

In the linear setting we show that the non-robust ver-
sion of a linear option learning algorithm called ASAP
(Mankowitz, Mann, and Mannor 2016a), learns an inher-
ently robust set of options. This, we claim, is due to the
coarseness of the chosen feature representation. This pro-
vides evidence that, in some cases, linear approximate dy-
namic programming algorithms may get robustness ‘for
free’.

However, in the non-linear (deep) setting, explicitly in-
corporating robustness into the learning algorithm is crucial
to being robust to model uncertainty. We incorporate ROPI
into the Deep Q Network to form a Robust Options Deep Q
Network (RO-DQN). Using the RO-DQN, the agent learns a
robust set of options to solve multiple tasks (two dynamical
systems) and mitigates model misspecification.

Main contributions: (1) Learning robust options us-
ing our novel ROPI algorithm with convergence guarantees;
This includes developing a Robust Policy Gradient (R-PG)
framework, which includes a robust compatibility condi-
tion; (2) A linear version of ROPI that is able to mitigate

3We do acknowledge that other forms of model misspecifica-
tion exist. However, for this work we focus on FMM and model
uncertainty.

model misspecification in Cartpole; (3) Experiments which
suggest that linear approximate dynamic programming al-
gorithms may get robustness ‘for free’ by utilizing a coarse
feature representation. (4) The RO-DQN, which solves mul-
tiple tasks by learning robust options, using ROPI, to miti-
gate model misspecification.

2 Background

In this section, we relate the background material to the rel-
evant module in the ROPI algorithm (PE or PI as shown in
Figure 1b).

Robust Markov Decision Process (PE): A Robust
Markov Decision Process (RMDP) (Bagnell, Ng, and
Schneider 2001; Iyenger 2005; Nilim and El Ghaoui 2005)
is represented by 〈X,A,R, γ, P 〉 where X is a finite set
of states; A is a finite set of actions, R : X × A → R is
the immediate reward, which is bounded and deterministic,
γ ∈ [0, 1] is the discount factor. Let P : X×A → M(X) be
the transition function, mapping from a given state and ac-
tion to a measure over next states. Given x ∈ X and a ∈ A,
nature is allowed to choose a transition to a new state from
a family of transition probability functions p ∈ P(x, a).
This family is called the uncertainty set (Iyenger 2005). Un-
certainty in the state transitions is therefore represented by
P(x, a).

The goal in a Robust MDP is to learn a robust
policy π : X → A (Iyenger 2005)4, which is a
function mapping states to actions, that maximizes the
worst case performance of the robust value function
V π(x) = r(x, π(x)) + γinfp∈PEp[V π(x′)|x, π(x)] where
P is the uncertainty set over state transitions; r(x, ·) is the
bounded immediate reward and infp∈PEp[V π(x′)|x, a] is
the worst-case expected return from state x′ ∈ X (Iyenger
2005; Nilim and El Ghaoui 2005). In order to solve this
value function using policy evaluation, we define the ro-
bust operator σP(x,a) : R

|X| → R for a given state x and
action a where σP(x,a)v

.
= inf{pT v : p ∈ P(x, a)} and

v ∈ R
|X| (Iyenger 2005). They also defined the operator

σπ : R|X| → R
|X| for a fixed policy π such that σπv(x) =

σP(x,π(x))v. Using this operator, the robust value function is
given by the following matrix equation V π = r+γσπV

π . It
has been previously shown that the robust Bellman operator
for a fixed policy Tπv

.
= rπ + γσπv is a contraction in the

sup-norm (Iyenger 2005) and the robust Bellman operator
Tv(x)

.
= supπT

πv(x) is also a contraction with V ∗ (the op-
timal value function for policy π) as its fixed point (Iyenger
2005).

Robust Projected Value Iteration (PE): Most of the
Robust MDP literature has focused on small to medium-
sized MDPs. (Tamar, Mannor, and Xu 2014) provide an
approach capable of solving larger or continuous MDPs
using function approximation. Suppose the value function
is represented using linear function approximation (Sut-
ton and Barto 1998): V (x) = φ(x)Tw, where φ(x) ∈

4In robust MDP literature the policy is often deterministic for
notational convenience. A stochastic policy can be trivially derived
by incorporating the uncertainty into the transitions

6410

Figure 1: (a) Parameter uncertainty in dynamical systems, also referred to as model uncertainty. An RL agent needs to be
able to solve a given task for different parameter settings. (b) A high-level overview of the ROPI framework. (c) The option
hyperplanes and option partitions for the ASAP option learning algorithm.

R
d is a d-dimensional feature vector and w ∈ R

d is a
set of parameters. Robust Projected Value Iteration (RPVI)
(Tamar, Mannor, and Xu 2014) involves solving the equa-
tion φwk+1 = ΠTπ(φwk), where Π is a projection opera-
tor onto the subspace spanned by φ. Tamar et. al. show that
ΠTπ is a contraction with respect to the sup-norm5. This re-
sults in the update equation wk+1 = (ΦTDΦ)−1(ΦTDr +
γΦTDσπ{Φwk}) which can be sampled from data and
solved efficiently for parameterized uncertainty sets that are
convex in the parameters (Tamar, Mannor, and Xu 2014).
Here, Φ ∈ R

|X|×d is a matrix with linearly independent fea-
ture vectors in its rows and D = diag(d) where d is the state
distribution for a policy π. RPVI utilizes a deterministic pol-
icy for notational convenience, but we assume a stochastic
policy for the remainder of this paper. Note that this equa-
tion can be written as a robust critic update in Actor Critic
Policy Gradient (AC-PG) algorithms, with a robust TD er-
ror δk, where the robust TD error is defined in Equation 1.
The projection has been omitted since it can be viewed as a
dynamic learning rate (see the Appendix for more details).

δk = r + γ inf
p∈P(x,a)

∑

x′
p(x′|x, a)φ(x′)Twk − φ(x)Twk . (1)

Policy Gradient (PI): Policy gradient is a standard tech-
nique in Reinforcement Learning that is used to estimate
the parameters θ ∈ R

d that maximize a performance ob-
jective J(πθ) via stochastic gradient descent (Sutton, Pre-
cup, and Singh 1999). A typical performance objective is the
discounted expected return J(πθ) = E[

∑∞
t=1 γ

t−1rt|x0, π]
where rt is the reward at time t, γ ∈ [0, 1] is the discount
factor and x0 ∈ X is a given start state. The gradient has
been previously shown to be:

∂J(πθ)

∂θ
=

∑
s

dπ(x)
∑
a

∂π(x, a)

∂θ
fw(x, a) , (2)

where dπ(x) is the discounted state distribution and
fw(x, a) = φ(x, a)Tw is an approximation of the action
value function Qπ(x, a). This gradient is then used to up-
date the parameters θt+1 = θt + αt∇θJ(πθ) for a stepsize
αt.

5A variation of this has also been shown for the average reward
case (Tewari and Bartlett 2007).

Options (PI): A Reinforcement Learning option (Sutton,
Precup, and Singh 1999; Konidaris and Barto 2009) con-
sists of a three-tuple ζi = 〈I, ξχi , β(x)〉, where I is the set
of initiation states from which the option can be executed;
ξχi : X → ΔA is the intra-option policy, parameterized by
χ ∈ R

d and is a mapping from states to a probability dis-
tribution over actions; β(x) indicates the probability of the
option terminating when in state x ∈ X .

Option Learning (PI): There are some recent approaches
to option learning but the approach we will focus on is
the Adaptive Skills, Adaptive Partitions (ASAP) framework
(Mankowitz, Mann, and Mannor 2016a), which enables an
agent to automatically learn both a hierarchical policy and
a corresponding option set. The hierarchical policy learns
where to execute options based on learning intersections of
hyperplane half-spaces that divide up the state space. Figure
1c contains an example of two option hyperplanes, h1 and
h2, whose intersection divides the state space into four op-
tion partitions. Each option partition i contains an option ζi.
The options and option partitions are learned using a policy
gradient approach and are represented within the ASAP pol-
icy. The ASAP policy π : X → ΔA is a function mapping a
state to a probability distribution over actions and is defined
as follows:

Definition 1. (ASAP Policy). Given K option hyperplanes,
a set of 2K options Σ = {ζi|i = 1, · · · 2K}, and an MDP
m from a space of possible MDPs, the ASAP policy is de-
fined as πχ,β(a|x,m) =

∑2K

i=1 pβ(i|x,m)ξχi(a|x) where
pβ(i|x,m) is the probability of executing option ζi given
that the agent is in state x ∈ X and MDP m ∈ M ; ξχi(a|x)
represents the probability that, given option i is executing,
option i will choose action a ∈ Aζi,x.

Deep Q Networks (PE+PI): The DQN algorithm (Mnih
2015) is a powerful Deep RL algorithm that has been able to
solve numerous tasks from Atari video games to Minecraft
(Tessler et al. 2017). The DQN stores its experiences in an
experience replay buffer (Mnih 2015) to remove data cor-
relation issues. It learns by minimizing the Temporal Dif-
ference (TD) loss. Typically, a separate DQN is trained to
solve each task. Other works have combined learning mul-
tiple tasks into a single network (Rusu 2015) but require
pre-trained experts to train an agent in a supervised man-
ner. Recently, robustness has been incorporated into a DQN

6411

(Shashua and Mannor 2017). However, no work has, to the
best of our knowledge, incorporated robust options into a
DQN algorithm to solve multiple tasks in an online manner.

3 Preliminaries
Throughout this paper we make the following assumptions
which are standard in Policy Gradient (PG) literature (Bhat-
nagar et al. 2009): Assumption (A1): Under any policy π, the
Markov chain resulting from the Robust MDP is irreducible
and aperiodic. Assumption (A2): A policy πθ(x, a) for any
x ∈ X , a ∈ A pair is continuously differentiable with re-
spect to the parameter θ. In addition, we make Assumption
(A3): The optimal value function V ∗ is found within the hy-
pothesis space of function approximators that are being uti-
lized. We use these assumptions to define the robust transi-
tion probability function and the robust steady-state distribu-
tion for the discounted setting. We then use these definitions
to derive the robust policy gradient version of Equation 2.

3.1 Robust Transition Probability Distribution

The robust value function is defined for a policy π : X → A
as V π(x) = r(x, π(x)) + γ infp∈P E

p[V π(x′)|x, π]
and the robust action value function is given by
Qπ(x, a) = r(x, a) + γ infp∈P E

p[V π(x′)|x, a, π] where
p̂min(x

′|x, a) = arg infp∈P E
p[V π(x′)|x, a, π]. Here,

p̂min(x
′|x, a) is the transition probability distribution that

minimizes the expected return E
p[V π(x′)|x, a, π] for a

given state x and action a and belongs to the pre-defined
uncertainty set P . Since p̂min(x

′|x, a) is selected indepen-
dently for each state we can construct a stochastic matrix
P̂min where each row is defined by π�p̂min(x

′|x, ·).
3.2 Robust State Distribution

The matrix P̂min can be interpreted as an adversarial distri-
bution in a zero-sum game if the adversary fixes its worst
case strategy (Filar and Vrieze 2012).
Definition 2. Given the initial state distribu-
tion μ, the robust discounted state distribution is:
d̂π(x) =

∫
μ(x0)

∑∞
t=0 γ

tP̂ t
min(x|x0)dx0.

The robust discounted state distribution is the same as the
state distribution used by (Sutton et al. 2000) for the dis-
counted setting. However, the transition kernel is selected
robustly rather than assumed to be the transition kernel of
the target MDP. The robust discounted state distribution
d̂π(x) intuitively represents executing the transition prob-
ability model that leads the agent to the worst (i.e., lowest
value) areas of the state space.

4 Robust Policy Gradient
Using the above definitions, we can now derive the Robust
Policy Gradient (R-PG) for the discounted setting, which is
used for policy improvement in ROPI6. To derive the R-PG,
we (1) define the robust performance objective and (2) derive
the corresponding robust compatibility conditions which en-
ables us to incorporate a function approximator into the pol-
icy gradient.

6Similar results are obtained for the average reward setting.

4.1 Robust Performance Objective

R-PG optimizes the discounted expected reward ob-
jective J(π) = infp∈P E

p[
∑∞

t=1 γ
t−1rt|x0, π,P] where P

is a given uncertainty set; γ ∈ [0, 1] is a dis-
count factor and rt is a bounded reward at time
t. Next we define the robust action value function
as Qπ(x, a) = infp∈P E

p[
∑∞

t=1 γ
t−1rt|x0 = x, a0 = a, π]

and we denote the robust state value function as
V π(x) =

∑
a∈A π(x, a)Qπ(x, a). The robust policy πθ :

X → ΔA is parameterized by the parameters θ ∈ R
d. We

wish to maximize J(πθ) to obtain the optimal set of policy
parameters θ∗ = argmaxθ J(πθ)

4.2 Robust Policy Gradient

Given the robust performance objective with respect to the
robust discounted state distribution, we can now derive the
robust policy gradient with respect to the robust policy πθ. π
is parameterized by θ unless otherwise stated. As in (Sutton
et al. 2000), we derive the gradient using the robust formu-
lation for the discounted scenario. The discounted expected
reward case is presented as Lemma 1. The main differences
between this Lemma and that of (Sutton et al. 2000) is that
we incorporate the robust state distribution d̂π and emit a
transition distribution p̂min leading the agent to the areas of
lowest value at each timestep.

Lemma 1. Suppose that we are maximizing the robust per-
formance objective J(π) = infp∈P E

p[
∑∞

t=1 γ
t−1rt|x0, π]

from a given start state x0 ∈ X with respect
to a policy πθ : X → ΔA parameterized by θ ∈
R

d and the robust action value function is defined
as Qπ(x, a) = infp∈P E

p[
∑∞

t=1 γ
t−1rt|xt = x, at = a, π].

Then the gradient with respect to the performance objective
is:

∂J(π)

∂θ
=

∑
x

d̂π(x)
∑
a

∂π(x, a)

∂θ
Qπ(x, a) . (3)

The vectorized robust gradient update is therefore
∇θJ(πθ) =

∑
y d̂

π(x)
∑

a ∇θπθ(x, a)Q
π(x, a). It is triv-

ial to incorporate a baseline into the lemma that does not
bias the gradient leading to the gradient update equation:
∇θJ(πθ) =

∑
x d̂

π(x)
∑

a ∇θπθ(x, a)[Q
π(x, a)± b(x)].

4.3 Robust Compatibility Conditions

The above robust gradient update does not as yet possess
the ability to incorporate function approximation. However,
by deriving robust compatibility conditions, we can replace
Qπ(x, a) with a linear function approximator fw(x, a) =
wTψx,a. Here w ∈ R

d represents the approximator’s param-
eters and ψx,a = ∇ log π(x, a) which represent the compat-
ibility features. The robust compatibility features are pre-
sented as Lemma 2. Note that this compatibility condition is
with respect to the robust state distribution d̂π .

Lemma 2. Let fw : X × A → R be an approximation to
Qπ(x, a). If fw minimizes the mean squared error eπ(w) =

6412

Algorithm 1 ROPI
Require:

1: w ∈ R
d - The approximate value function parameters,

φ ∈ R
m - A set of features, πθ - An arbitrary parameter-

ized option policy with parameters θ, γ - The discount
factor, pμ - An uncertainty set, p̂μ - A nominal model

2: repeat
3: τ ∼ (πθ, p̂μ) � Generate trajectories
4: PE: wt = (ΦTDΦ)−1(ΦTDr + γΦTDσπθ{Φwt−1})

� Perform RPVI
5: PI: θt+1 = θt + αt∇θJθ,wt(πθ) � Update policy

parameters
6: until Convergence
7: return: πθ � The robust option policy

∑
x d̂

π(x)
∑

a∈A π(x, a)[Qπ(x, a)−fw(x, a)]
2 and is com-

patible such that it satisifes ∂fw(x,a)
∂w = ∂π(x,a)

∂θ
1

π(x,a) , then

∂J(θ)

∂θ
=

∑
x

d̂π(x)
∑
a

∂π(x, a)

∂θ
fw(x, a) . (4)

5 Robust Options Policy Iteration (ROPI)

Given the robust policy gradient, we now present ROPI de-
fined as Algorithm 1. A parameterized uncertainty set pμ
with parameters μ and a nominal model without uncertainty
p̂μ are provided as input to ROPI. In practice, the uncer-
tainty set, for example, can be confidence intervals speci-
fying plausible values for the mean of a normal distribu-
tion. The nominal model can be the same normal distribution
without the confidence intervals. At each iteration, trajecto-
ries are generated (Line 3) using the nominal model p̂μ and
the current option policy πθ. These trajectories are utilized
to learn the critic parameters w in line 4 using RPVI (Tamar,
Mannor, and Xu 2014). As stated in the background section,
RPVI converges to a fixed point. Once it has converged to
this fixed point, we then use this critic to learn the option
policy parameters θ (Line 5) using the R-PG update. This is
the policy improvement step. This process is repeated until
convergence. The convergence theorem is presented as The-
orem 1.

Theorem 1. Let π and fw be any differentiable func-
tion approximators for the option policy and value func-
tion respectively that satisfy the compatibility condition de-
rived above and for which the option policy is differen-
tiable up to the second derivative with respect to θ. That
is, maxθ,x,a,i,j |∂

2π(x,a)
∂θi∂θj

| < B < ∞. Define {αk}∞k=0

be any step-size sequence satisfying limk→∞ αk = 0 and∑
k αk = ∞. Then the sequence {J(πk)}∞k=0 defined by

any θ0, πk(·, ·, θk) and

wk = w s.t.
∑
x

d̂πk(x)
∑
a∈A

∂πk(x, a)

∂θ[
Qπk(x, a)− fw(x, a)

]
∂fw(x, a)

∂w
= 0

θk+1 = θk + αk

∑
x

d̂πk(x)
∑
a

∂πk(x, a)

∂θ
fwk

(x, a) ,

converges such that limk→∞
∂J(πk)

∂θ = 0.

6 Experiments

We performed the experiments in two, well-known contin-
uous domains called CartPole and Acrobot 7. The transi-
tion dynamics (models) of both Cartpole and Acrobot can
be modelled as dynamical systems. For each experiment,
the agent is faced with model misspecification. That is,
Feature-based Model Misspecification (FMM) and model
uncertainty. In each experiment, the agent mitigates FMM
by utilizing options (Mankowitz, Mann, and Mannor 2016b;
2016a; 2014) and model uncertainty by learning robust op-
tions using ROPI. We analyze the performance of ROPI in
the linear and non-linear feature settings. In the linear set-
ting, we apply ROPI to the Adaptive Skills, Adaptive Par-
titions (ASAP) (Mankowitz, Mann, and Mannor 2016a) op-
tion learning framework. In the non-linear (deep) setting, we
apply ROPI to our Robust Options DQN (RO-DQN) Net-
work.

The experiments are divided into two parts. In Section
6.4, we show that ROPI is not necessary as the learned lin-
ear ‘non-robust’ options for solving CartPole provide a nat-
ural form of robustness and mitigate model misspecifica-
tion. This provides some evidence that linear approximate
dynamic programming algorithms which use coarse feature
representations may, in some cases, get robustness ‘for free’.
The question we then ask is whether this natural form of ro-
bustness is present in the deep setting? We show that this
is not the case in our experiments in Section 6.5. Here, ro-
bust options, learned using ROPI, are necessary to mitigate
model misspecification. In each experiment, we compare (1)
the misspecified agent (i.e., a policy that solves the task
sub-optimally due to FMM and model uncertainty); (2) The
‘non-robust’ option learning algorithm that mitigates FMM
and (3) The robust option learning ROPI algorithm that mit-
igates FMM and model uncertainty (i.e., model misspecifi-
cation).

6.1 Domains

Acrobot: Acrobot is a planar two-link robotic arm in a
vertical plane (working against gravity). The robotic arm
contains an actuator at the elbow, but no actuator at the
shoulder as shown in Figure 2a.1. We focus on the swing-up
task whereby the agent needs to actuate the elbow actuator
to generate a motion that causes the arm to swing up and
reach the goal height shown in the figure. The state space

7https://gym.openai.com/

6413

is the 4-tuple 〈θ1, θ̇1, θ2, θ̇2〉 which consists of the shoul-
der angle, shoulder angular velocity, elbow angle and elbow
angular velocity respectively. The action space consists of
torques applied to the elbow of −1 or +1. Rewards of −1
are received while the agent has not reached the goal, and 0
received upon reaching the goal. The episode length is 500
timesteps.

CartPole: The CartPole system involves balancing a pole
on a cart in a vertical position as shown in Figure 2a.2. This
domain is modelled as a continuous state MDP. The con-
tinuous state space consists of the 4-tuple 〈x, ẋ, θ, θ̇〉 which
represent the cart location, cart horizontal speed, pole angle
with respect to the vertical and the pole speed respectively.
The available set of actions are constant forces applied to the
cart in either the left or right direction. The agent receives a
reward of +1 for each timestep that the cart balances the pole
within the goal region (in our case, ±12 degrees from the
central vertical line) as shown in the figure. If the agent ter-
minates early, a reward of 0 is received. The length of each
episode is 200 timesteps and therefore the maximum reward
an agent receives is 200 over the course of an episode.

6.2 Uncertainty Sets

For each domain, we generated an uncertainty set P . In Cart-
pole, the uncertainty set Pcartpole is generated by fixing a
normal distribution over the length of the pole lpole, and
sampling 5 lengths from this distribution in the range 0.5−5
meters prior to training. Each sampled length is then substi-
tuted into the cartpole dynamics equations generating 5 dif-
ferent transition functions. A robust update is performed by
choosing the transition function from the uncertainty set that
generates the worst case value. In Acrobot, the uncertainty
set Pacrobot is generated by fixing a normal distribution over
the mass of the arm link marm between the shoulder and the
elbow. Five masses are sampled from this distribution from
1 − 5 Kgs and generated the corresponding transition func-
tions.

6.3 Nominal Model

During training, in both Cartpole and Acrobot, the agent
transitions according to the nominal transition model. In
Cartpole, the nominal model corresponds to a pole length
of 0.5 meters. In Acrobot, the nominal model corresponds
to an arm mass of 1 Kg. During evaluation, the agent exe-
cutes its learned policy on transition models with different
parameter settings (i.e., systems with different arm lengths
in Cartpole and different masses in Acrobot).

6.4 Linear ROPI: ASAP

We first tested an online variation of ROPI on the Cartpole
domain using linear features. To do so, we implemented a ro-
bust version of Actor Critic Policy Gradient (AC-PG) where
the critic is updated using the robust TD error as shown in
Equation 1. We used a constant learning rate which worked
well in practice. The critic utilizes coarse binary features
which contain [1, 1, 8, 5] bins for each dimension respec-
tively. We provide the actor with a limited policy representa-

Figure 2: (a).1 The Cartpole and (a).2 Acrobot domains. (b)
Analysis of the option partitions in Cartpole.

tion, which is a probability distribution over the actions (left
and right), independent of the state.

We then trained the agent on the nominal pole length of
0.5 meters. For evaluation, we averaged the performance of
each learned policy over 100 episodes per parameter set-
ting, where the parameters were pole-lengths in the range
0.5 − 5.0 meters. As seen in Figure 3a, the agent cannot
solve the task using the limited policy representation, for any
pole length, resulting in FMM. To mitigate the misspecifica-
tion, we learn non-robust options using the ASAP algorithm
(Mankowitz, Mann, and Mannor 2016a). Using a single op-
tion hyperplane K = 1 (see Section 2), ASAP learns two
options where each option’s intra-option policy contains the
same limited policy representation as before. It is expected
that the ASAP options mitigate the FMM and solve for pole
lengths around the nominal pole length of 0.5 meters on
which it is trained. It should however struggle to solve the
task for significantly different pole lengths (i.e., model un-
certainty).

To our surprise, the ASAP option learning algorithm was
able to solve for all pole lengths over 0.5 meters as shown
in Figure 3a, even though it was only trained on the nominal
pole length of 0.5 meters. Even after grid searches over all of
the learning parameters, the agent still solved the task across
these pole lengths. This is compared to a robust version of
ASAP (Figure 3a) that mitigated the misspecification and
solved the task across multiple pole lengths as was expected.

We decided to analyze the learned ‘non-robust’ options
from the ASAP algorithm. Figure 2b shows the learned op-
tion hyperplane that separates the domain into two differ-
ent options. The x axis represents θ and the y axis θ̇. The
red region indicates a learned option that always executes
a force in the right direction. The blue region indicates a
learned option that executes a force in the left direction. The
learned option execution regions cover approximately half
of the state space for each option. Therefore, if the agent is
at point X in Figure 2b, and the pole length varies (e.g., l1, l2
and l3 in the figure), the transition dynamics will propagate
the agent to slightly different regions in state space in each
case. However, these transitions generally keep the agent in
the correct option execution region, due to the coarseness of
the option partitions, providing a natural form of robustness.
This is an interesting observation since it provides evidence
that linear approximate dynamic programming algorithms

6414

(a) (b)

Option 1: Cartpole Option 2: Acrobot

Pole length (m) Arm Mass (Kg)
0.5 5.0

(1) (2)

0

100

200

Non-robust ASAP
Robust ASAP
Misspecified

Pole length (m)

A
vg

. R
ew

ar
d

1.0 3.0 5.5

500

200

100

0

DQN
O-DQN
RO-DQN

0.5 2.5 5.0
0

200

A
vg

. R
ew

ar
d

A
vg

. R
ew

ar
d

DQN
O-DQN
RO-DQN

Figure 3: (a) The learned options and option hyperplanes in the non-robust version of ASAP. (b) The average reward perfor-
mance of the Robust Options DQN which learns options to solve (b).1 CartPole and (b).2 Acrobot. This is compared to the
Option DQN and the misspecified agent (i.e., the regular DQN).

with coarse feature representations may, in some cases, get
robustness ‘for free’. The question now is whether this nat-
ural form of robustness can be translated to the non-linear
(deep) setting?

6.5 Non-linear ROPI: RO-DQN

In the non-linear (deep) setting, we train an agent to learn ro-
bust options that mitigate model misspecification in a multi-
task scenario8. Here, the learning agent needs to learn an
option to solve Cartpole and an option to solve Acrobot
using a common shared representation (i.e., a single net-
work). The single network we use for each experiment is
a DQN variant consisting of 3 fully-connected hidden lay-
ers with 128 weights per layer and ReLu activations. The
hyper-parameter values can be found in the Appendix. We
optimize the DQN loss function using the ADAM optimizer
for a maximum of 3000 episodes (unless the tasks are solved
earlier). For evaluation, each learned network is averaged
over 100 episodes per parameter setting (i.e., parameter set-
tings include pole lengths from 0.5−5.0 meters for Cartpole
and masses from 1.0− 5.5 Kgs for Acrobot).

In this setting, the DQN network struggles to learn good
features to solve both tasks simultaneously using a common
shared representation. It typically oscillates between sub-
optimally solving each task, resulting in model misspecifi-
cation9. The average performance of the trained DQN on
CartPole and Acrobot across different parameter settings is
shown in Figures 3b.1 and 3b.2 respectively.

We therefore add options to mitigate the model misspec-
ification. The Option DQN (O-DQN) network utilizes two
‘option’ heads by duplicating the last hidden layer. The

8In our setup, multi-task learning better illustrates the use-case
of robust options mitigating model misspecification, compared to
the single task setup where the use-case is less clear.

9While different modifications can potentially be added to the
DQN to improve performance (Anschel, Baram, and Shimkin
2017; Van Hasselt, Guez, and Silver 2016; Wang et al. 2015;
Ioffe and Szegedy 2015), the goal of this work is to show that with-
out these modifications, options can be used to mitigate the model
misspecification.

training of these heads is performed in an alternating opti-
mization fashion in an online manner (as opposed to policy
distillation which uses experts to learn the heads with su-
pervised learning (Rusu 2015)). That is, when executing an
episode in Cartpole or Acrobot, the last hidden layer cor-
responding to Cartpole or Acrobot is activated respectively
and backpropagation occurs with respect to the relevant op-
tion head. This network is able to learn options that solve
both tasks as seen in Figures 3b.1 and 3b.2 for CartPole
and Acrobot respectively. However, as the parameters of the
tasks change (and therefore the transition dynamics), the op-
tion performance of the O-DQN in both domains degrades.
This is especially severe in Cartpole as seen in the figure.
Here, robustness is crucial to mitigating model misspecifi-
cation due to uncertainty in the transition dynamics.

We incorporated robustness into the O-DQN to form the
Robust Option DQN (RO-DQN) network. This network
performs an online version of ROPI and is able to learn ro-
bust options to solve multiple tasks in an online manner. The
main difference is that the DQN loss function now incor-
porates the robust TD update discussed in Section 2. More
specifically, the robust TD error is calculated as

δ = Q(x, a)− r + γ inf
p∈P(x,a)

∑
x′

p(x′|x, a)max
a′

Q(x′, a′)

(Shashua and Mannor 2017). The RO-DQN was able to
learn options to solve both CartPole and Acrobot across the
range of parameter settings as seen in Figures 3b.1 and 3b.2
respectively (see the Appendix for a combined average re-
ward graph).

7 Discussion

We have presented the ROPI framework that is able to learn
options that are robust to uncertainty in the transition model
dynamics. ROPI has convergence guarantees and requires
deriving a Robust Policy Gradient and the corresponding ro-
bust compatibility conditions. This is the first work of its
kind that has attempted to learn robust options. In our ex-
periments, we have shown that the linear options learned us-
ing the ‘non-robust’ ASAP algorithm have a natural form

6415

of robustness when solving CartPole, due to the coarse-
ness of the option execution regions. However, this does not
translate to the deep setting. Here, robust options are cru-
cial to mitigating model uncertainty and therefore model
misspecification. We utilized ROPI to learn our Robust Op-
tions DQN (RO-DQN). RO-DQN learned robust options to
solve Acrobot and Cartpole for different parameter settings
respectively. Robust options can be used to bridge the gap
in sim-to-real robotic learning applications between robotic
policies learned in simulations and the performance of the
same policy when applied to the real robot. This framework
also provides the building blocks for incorporating robust-
ness into continual learning applications (Tessler et al. 2017;
Ammar, Tutunov, and Eaton 2015) which include robotics
and autonomous driving.

8 Acknowledgements

This research was supported in part by the European Com-
munitys Seventh Framework Programme (FP7/2007-2013)
under grant agreement 306638 (SUPREL).

References

Ammar, H. B.; Tutunov, R.; and Eaton, E. 2015. Safe pol-
icy search for lifelong reinforcement learning with sublinear
regret. ICML.
Anschel, O.; Baram, N.; and Shimkin, N. 2017. Deep rein-
forcement learning with averaged target dqn. ICML.
Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-
critic architecture. AAAI.
Bagnell, J.; Ng, A. Y.; and Schneider, J. 2001. Solving
uncertain markov decision problems. Robotics Institute,
Carnegie Mellon University.
Bhatnagar, S.; Sutton, R. S.; Ghavamzadeh, M.; and Lee,
M. 2009. Natural actor–critic algorithms. Automatica
45(11):2471–2482.
da Silva, B.; Konidaris, G.; and Barto, A. 2012. Learning
parameterized skills. In ICML.
Filar, J., and Vrieze, K. 2012. Competitive Markov decision
processes. Springer Science & Business Media.
Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.; and
Boutilier, C. 1998. Hierarchical solution of markov decision
processes using macro-actions. In Proceedings of the 14th
Conference on Uncertainty in AI, 220–229.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.
Iyenger, G. 2005. Robust dynamic programming. Mathe-
matics of Operations Research (2).
Konda, V. R., and Tsitsiklis, J. N. 1999. Actor-critic algo-
rithms. In NIPS, volume 13, 1008–1014.
Konda, V. R., and Tsitsiklis, J. N. 2000. Actor-critic algo-
rithms. In Advances in neural information processing sys-
tems, 1008–1014.
Konidaris, G., and Barto, A. G. 2009. Skill discovery in con-
tinuous reinforcement learning domains using skill chain-
ing. In NIPS 22, 1015–1023.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares
policy iteration. Journal of machine learning research
4(Dec):1107–1149.
Mankowitz, D. J.; Mann, T. A.; and Mannor, S. 2014. Time
regularized interrupting options. ICML.
Mankowitz, D. J.; Mann, T. A.; and Mannor, S. 2016a.
Adaptive Skills, Adaptive Partitions (ASAP). NIPS.
Mankowitz, D. J.; Mann, T. A.; and Mannor, S. 2016b. Iter-
ative Hierarchical Optimization for Misspecified Problems
(IHOMP). EWRL.
Mankowitz, D. J.; Tamar, A.; and Mannor, S. 2017. Situa-
tionally aware options. arXiv.
Mann, T. A., and Mannor, S. 2014. Scaling up approxi-
mate value iteration with options: Better policies with fewer
iterations. In Proceedings of the 31 st ICML.
Mnih, V. e. a. 2015. Human-level control through deep
reinforcement learning. Nature 518(7540):529–533.
Nilim, A., and El Ghaoui, L. 2005. Robust control of markov
decision processes with uncertain transition matrices. Oper-
ations Research 53(5):780–798.
Precup, D.; Sutton, R. S.; and Singh, S. 1998. Theoretical
results on reinforcement learning with temporally abstract
options. In ECML-98. Springer. 382–393.
Rusu, A. A. e. a. 2015. Policy Distillation. arXiv 1–12.
Shashua, S. D.-C., and Mannor, S. 2017. Deep robust
kalman filter. arXiv preprint arXiv:1703.02310.
Şimşek, Ö., and Barto, A. G. 2005. Learning skills in re-
inforcement learning using relative novelty. In Abstraction,
Reformulation and Approximation. Springer. 367–374.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An
Introduction. MIT Press.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. In NIPS, 1057–1063.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. AI 112(1):181–211.
Tamar, A.; Mannor, S.; and Xu, H. 2014. Scaling up robust
MDPs using function approximation. ICML 2:1401–1415.
Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D. J.; and
Mannor, S. 2017. A deep hierarchical approach to lifelong
learning in minecraft. AAAI.
Tewari, A., and Bartlett, P. L. 2007. Bounded parameter
markov decision processes with average reward criterion. In
International Conference on Computational Learning The-
ory, 263–277. Springer.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In AAAI, 2094–
2100.
Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanc-
tot, M.; and de Freitas, N. 2015. Dueling network archi-
tectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.

6416

