
Conditional PSDDs: Modeling and
Learning with Modular Knowledge

Yujia Shen, Arthur Choi, Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{yujias,aychoi,darwiche}@cs.ucla.edu

Abstract

Probabilistic Sentential Decision Diagrams (PSDDs) have
been proposed for learning tractable probability distributions
from a combination of data and background knowledge (in
the form of Boolean constraints). In this paper, we propose a
variant on PSDDs, called conditional PSDDs, for represent-
ing a family of distributions that are conditioned on the same
set of variables. Conditional PSDDs can also be learned from
a combination of data and (modular) background knowledge.
We use conditional PSDDs to define a more structured ver-
sion of Bayesian networks, in which nodes can have an ex-
ponential number of states, hence expanding the scope of do-
mains where Bayesian networks can be applied. Compared
to classical PSDDs, the new representation exploits the inde-
pendencies captured by a Bayesian network to decompose the
learning process into localized learning tasks, which enables
the learning of better models while using less computation.
We illustrate the promise of conditional PSDDs and struc-
tured Bayesian networks empirically, and by providing a case
study to the modeling of distributions over routes on a map.

Introduction
The Probabilistic Sentential Decision Diagram (PSDD) is
a recently proposed tractable representation for probability
distributions (Kisa et al. 2014). The PSDD was motivated
by the need to learn distributions in the presence of abun-
dant background knowledge, expressed using Boolean con-
straints. For example, PSDDs have previously been lever-
aged to learn distributions in domains that can give rise
to massive Boolean constraints, such as user preference
rankings (Choi, Van den Broeck, and Darwiche 2015) as
well as modeling routes and games (Choi, Tavabi, and Dar-
wiche 2016; Choi, Shen, and Darwiche 2017). The typi-
cal approach for constructing a PSDD is to first compile
Boolean constraints into a tractable logical representation
called the Sentential Decision Diagram (SDD). A PSDD is
then learned from the compiled SDD and a given dataset.

While PSDDs can be quite effective in the presence of
massive Boolean constraints, they do not allow users to ex-
plicitly represent background knowledge in the form of con-
ditional independence constraints. In contrast, probabilis-
tic graphical models use graphs to represent such knowl-
edge (Darwiche 2009; Koller and Friedman 2009; Murphy

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2012; Barber 2012). Moreover, Bayesian networks represent
such knowledge while remaining modular in a sense that we
shall explain next and exploit later.

A Bayesian network has two components. The first is a di-
rected acyclic graph (DAG) with its nodes representing vari-
ables of interest, and its topology encoding conditional in-
dependence constraints. The second component consists of
a set of conditional probability tables (CPTs), one for each
variable in the network. The CPT for a variable defines a set
of distributions for that variable, conditioned on the states of
its parents in the network. A key property of Bayesian net-
works is their modularity, which allows the parameter esti-
mation problem under complete data to be decomposed into
local CPT estimation problems, with closed-form solutions.
However, in the presence of Boolean constraints, Bayesian
networks may have very connected topologies, in addition
to variables with many states and parents, potentially mak-
ing them unusable practically.

Bayesian networks and PSDDs can then be viewed as
two extremes on a spectrum. On the one hand, Bayesian
networks can exploit background knowledge in the form of
conditional independencies, but they cannot handle Boolean
constraints as effectively as PSDDs. On the other hand, PS-
DDs can effectively incorporate background knowledge in
the form of Boolean constraints, but cannot directly exploit
known conditional independencies as do Bayesian networks.

In this paper, we propose a representation that inherits ad-
vantages from both representations. First, we propose the
conditional PSDD, which is a tractable representation of
probability distributions that are conditioned on the same set
of variables. We then use these PSDDs to represent the con-
ditional probability tables (CPTs) of a Bayesian network.
This allows us to inherit the modularity of Bayesian net-
works and their ability to explicitly encode independence,
while also inheriting from PSDDs their ability to effectively
incorporate Boolean domain constraints. We refer to the re-
sulting representation as a structured Bayesian network, as
it also allows nodes with (exponentially) many states. This
increases the reach of both PSDDs and Bayesian networks,
on the modeling, learning and computational fronts.

This paper is organized as follows. We first review back-
ground knowledge as exploited by PSDDs, followed by a re-
view of this representation. We next consider modular forms
of background knowledge, which are required and exploited

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6433

L K P A Students
0 0 1 0 6
0 0 1 1 54
0 1 1 1 10
1 0 0 0 5
1 0 1 0 1
1 0 1 1 0
1 1 0 0 13
1 1 1 0 8
1 1 1 1 3

Table 1: Student enrollment data. Each column (variable)
corresponds to a course, and each row (variable assignment)
corresponds to an example. The counts represent the num-
ber of times that the example appeared in the dataset. For
example, the second row represents those students who took
Probability (P) and AI (A), but did not take Logic (L) or KR
(K). There were 54 such examples (students) in this case.

by conditional PSDDs. We subsequently introduce the syn-
tax and semantics of conditional PSDDs, while proposing a
simple and efficient algorithm for learning their parameters
from complete data. We then provide some empirical results
to highlight the statistical advantages of conditional PSDDs
and structured Bayesian networks, followed by a case study
that highlights their representational advantages (modeling
distributions over routes on a map). We finally close with
some concluding remarks.

Learning with Background Knowledge

A common form of background knowledge is Boolean con-
straints, which we illustrate next with several examples. The
first example we discuss is due to (Kisa et al. 2014), and
concerns a computer science department that organizes four
courses: Logic (L), Knowledge Representation (K), Prob-
ability (P), and Artificial Intelligence (A). The department
has data on student enrollments, as in Table 1, and wishes
to learn a probabilistic model of student preferences. For ex-
ample, the department may use the model to infer whether
students who take KR are more likely to take Logic than
AI. This is a classical machine learning problem, except that
we also have background knowledge in the form of program
requirements and prerequisites:
– A student must take at least one of Probability or Logic.
– Probability is a prerequisite for AI.
– The prerequisite for KR is either AI or Logic.
Our goal is then to learn a model using both the data in Ta-
ble 1 and the above knowledge. Effectively, what this knowl-
edge tells us is that some examples will never appear in the
dataset because they violate domain constraints — in con-
trast, for example, to being unlikely or missing for some id-
iosyncratic reason. This is valuable information and ignor-
ing it can lead to learning a suboptimal model at best, as
discussed in (Kisa et al. 2014). More precisely, the domain
constraints of this example can be expressed as follows:

P ∨ L
A ⇒ P

K ⇒ A ∨ L

s

t

s

t

Figure 1: Routes on a 4× 4 grid.

Even though there are 16 combinations of courses, this
knowledge tells us that only 9 of them are valid choices.
Hence, an approach that observes this information must
learn a probability distribution that assigns a zero proba-
bility to every combination that violates these constraints;
otherwise, it will be suboptimal.

Consider now another example, where the goal is to learn
a distribution over routes on a map. Figure 1 depicts two ex-
ample routes on a map that has the form of a grid (Choi,
Tavabi, and Darwiche 2016) — more generally, a map is
modeled using an undirected graph. We can represent each
edge i in the map by a Boolean variable Ei, and each route as
a variable assignment that sets only its corresponding edge
variables to true. In this case, each example in the dataset
will be a truth assignment to edge variables Ei. Again, some
examples will never appear in the dataset as they do not
correspond to valid routes. For example, a route that con-
tains disconnected edges is invalid, but other types of in-
valid routes may also be mandated by the domain. That is,
we may already know that only simple routes are possible
(i.e., no cycles), or that routes which include edge i will
never include some other edge j, and so on. Again, the goal
here is to be able to learn from both the dataset and the
domain constraints; see (Choi, Tavabi, and Darwiche 2016;
Nishino et al. 2017) for how connected-routes and simple-
routes can be encoded using Boolean constraints.

We now consider our last illustrative example in which we
want to learn a distribution to reason about user preferences.
We have n items in this case and a corresponding number
of ranks: 1, . . . , n. Users are asked to specify the rank j of
each item i, which can be represented by a Boolean vari-
able Aij . That is, this variable is true if and only if item i
has rank j. Each example in this case is also a variable as-
signment, which declares the ranks of some items. As is, an
example could leave some item i unassigned to a rank, i.e.,
when variables Aij are false for all ranks j. Moreover, an
example could assign the same rank to multiple items, i.e.,
when both Aij and Akj are true for items i �= k and rank j.

All kinds of constraints may arise in this domain of pref-
erence learning (Lu and Boutilier 2011; Huang, Kapoor, and
Guestrin 2012). For example, one may know up front that
all examples must correspond to total rankings, in which
each item is assigned precisely one rank, and each rank is
assumed by exactly one item. These constraints were consid-
ered in (Choi, Van den Broeck, and Darwiche 2015), which
showed how to encode them using Boolean constraints. For

6434

A B C Pr
0 0 0 0.2
0 0 1 0.2
0 1 0 0.0
0 1 1 0.1
1 0 0 0.0
1 0 1 0.3
1 1 0 0.1
1 1 1 0.1

(a) Distribution
A B ¬A¬B A ¬B¬A B

1 14

C ¬C

C

3

(b) SDD

A B ¬A¬B A ¬B¬A B

1

.33 .67

1

.75 .25

4

C ¬C
.5 .5

C

3

.6 .4

(c) PSDD
A B

C

3

1

0 2

4

(d) Vtree

Figure 2: A probability distribution and its SDD/PSDD rep-
resentation. The numbers annotating or-gates in (b) & (c)
correspond to vtree node IDs in (d). Moreover, while the cir-
cuit appears to be a tree, the input variables are shared and
hence the circuit is not a tree.

example, when n = 3, the constraints are as follows:
– Each item i is assigned exactly one rank, leading to three

constraints for i ∈ {1, 2, 3}: (Ai1 ∧ ¬Ai2 ∧ ¬Ai3) ∨
(¬Ai1 ∧Ai2 ∧ ¬Ai3) ∨ (¬Ai1 ∧ ¬Ai2 ∧Ai3).

– Each rank j is assumed by exactly one item, leading to
three constraints for j ∈ {1, 2, 3}: (A1j∧¬A2j∧¬A3j)∨
(¬A1j ∧A2j ∧ ¬A3j) ∨ (¬A1j ∧ ¬A2j ∧A3j).

More generally, one needs a total of 2n constraints when
considering n items and ranks.

As discussed in (Kisa et al. 2014), learning from both data
and domain constraints is challenging for classical learning
approaches. For example, when using a probabilistic graphi-
cal model, the resulting graph will almost be fully connected
which makes both learning and inference very difficult. We
next review the framework of Probabilistic Sentential Deci-
sion Diagrams (PSDDs), which was particularly introduced
to address this challenge.

Probabilistic Sentential Decision Diagrams

PSDDs were motivated by the need to represent probabil-
ity distributions Pr(X) with many instantiations x attaining
zero probability, Pr(x) = 0 (Kisa et al. 2014). Consider the
distribution Pr(X) in Figure 2(a) for an example. The first
step in constructing a PSDD for this distribution is to con-
struct a special Boolean circuit that captures its zero entries;
see Figure 2(b). The Boolean circuit captures zero entries
in the following sense. For each instantiation x, the circuit

p1 s1 p2 s2

· · ·

pn sn

· · ·α1

α2

αn

Figure 3: An SDD fragment.

evaluates to 0 at instantiation x iff Pr(x) = 0. The second
and final step of constructing a PSDD amounts to param-
eterizing this Boolean circuit (e.g., by learning from data),
which amounts to including a local distribution on the in-
puts of each or-gate; see Figure 2(c).

The Boolean circuit underlying a PSDD is known as a
Sentential Decision Diagram (SDD) (Darwiche 2011). Un-
derstanding SDD circuits is key to understanding PSDDs so
we review these circuits next.

First, an SDD circuit is constructed from the fragment
shown in Figure 3, where the or-gate can have an arbitrary
number of inputs, and the and-gates have precisely two in-
puts each. Here, each pi is called a prime and each si is
called a sub. For example, the SDD circuit in Figure 2(b) is
made up of three of these fragments and terminal SDDs (the
Appendix defines terminal SDDs).

Next, each SDD circuit conforms to a tree of variables
(called a vtree), which is just a binary tree whose leaves
are the circuit variables; see Figure 2(d). The conformity is
roughly as follows. For each SDD fragment with primes pi
and subs si, there must exist a vtree node v where the vari-
ables of SDD pi are those of the left child of v and the vari-
ables of SDD si are those of the right child of v. For the
SDD in Figure 2(b), each or-gate has been labeled with the
ID of the vtree node it conforms to. For example, the top
fragment conforms to the vtree root (ID=3), with its primes
having variables {A,B} and its subs having variables {C}.1
The final key property of an SDD circuit is this. When the
circuit is evaluated under any input, precisely one prime pi
of each fragment will be 1. Hence, the fragment output will
simply be the value of the corresponding sub si.2

A PSDD can now be obtained by annotating a distribution
α1, . . . , αn on the inputs of each or-gate, where

∑
i αi = 1;

see again Figure 3. The distribution specified by a PSDD is
as follows. Let x be an instantiation of the PSDD variables
and suppose that we evaluate the underlying SDD circuit at
input x. If the SDD evaluates to 0, then Pr(x) = 0. Other-

1The Appendix provides a formal definition of conformity.
SDDs that conform to a vtree were called normalized in (Darwiche
2011), which also defined compressed SDDs. These are SDDs in
which the subs of a fragment are distinct. We are assuming that
SDDs are compressed in this paper.

2This implies that an or-gate will never have more than one 1-
input. Also note that an SDD circuit may produce a 1-output for
every possible input. These circuits arise when representing strictly
positive distributions (with no zero entries).

6435

wise, Pr(x) is the product of all parameters encountered by
starting at the output or-gate, and then descending down to
every gate and circuit input that evaluates to 1. This PSDD
distribution must be normalized as long as the local distribu-
tions on or-gates are normalized (Kisa et al. 2014).

The PSDD is a complete and canonical representation
of probability distributions. That is, PSDDs can represent
any distribution, and there is a unique PSDD for that dis-
tribution (under some conditions). A variety of probabilis-
tic queries are tractable on PSDDs, including that of com-
puting the probability of a partial variable instantiation and
the most likely instantiation. Moreover, the maximum like-
lihood parameter estimates of a PSDD are unique given
complete data, and these parameters can be computed effi-
ciently using closed-form estimates; see (Kisa et al. 2014)
for details. Finally, PSDDs have been used to learn dis-
tributions from data and domain constraints by first com-
piling the constraints into an SDD circuit and then learn-
ing its parameters from data. These applications included
the learning of distributions over rankings and permuta-
tions (Choi, Van den Broeck, and Darwiche 2015), as well
as routes and games (Choi, Tavabi, and Darwiche 2016;
Choi, Shen, and Darwiche 2017).

Modular Background Knowledge

The PSDD framework can work with background knowl-
edge in the form of arbitrary Boolean constraints since SDD
circuits can be compiled from such constraints (Darwiche
2011). In some cases, however, Boolean constraints may
be modular in a sense that we shall define precisely in this
section. Modular Boolean constraints are important because
they can be easily integrated with background knowledge in
the form of independence constraints. Moreover, they can fa-
cilitate the compilation process into SDDs and the learning
process itself, leading to improved scalability and to more
accurate models. We define modular Boolean constraints
next, starting with a motivation from Bayesian networks.

As mentioned earlier, the first component of a Bayesian
network is a directed acyclic graph (DAG) over variables
X1, . . . , Xn, which encodes conditional independence state-
ments. In particular, for each variable Xi with parents Pi

and non-descendants Ni, the DAG asserts that Xi is in-
dependent of Ni given Pi. The second component of a
Bayesian network contains conditional probability distribu-
tions for each variable Xi, Pr(Xi | Pi), also known as
the CPT for variable Xi. The independencies encoded by
the DAG, together with these conditional distributions, de-
fine a unique distribution Pr(X1, . . . , Xn) (Darwiche 2009;
Koller and Friedman 2009; Murphy 2012; Barber 2012).

Consider now the following key observation. Any set of
Boolean constraints Δ implied by the network distribution
Pr(X1, . . . , Xn) must be modular in the following sense.
The constraints Δ can be decomposed into sets Δ1, . . . ,Δn

such that:3

• Δi mentions only variable Xi and its parents Pi.
3If such a decomposition is not possible, we can establish a con-

tradiction with some of the probabilistic independence constraints
encoded by the DAG of the Bayesian network.

• Δi does not constrain the states of parents Pi.

A set of constraints that satisfies the above properties will
be called constraints for Xi | Pi, or simply conditional con-
straints when Xi and Pi are clear from the context.

Here is now the key implication of the above observation.

If the domain under consideration admits a DAG that
captures probabilistic independence, then one can en-
code any underlying Boolean constraints modularly,
i.e., using only conditional constraints.

The catch however is that exploiting this implication fully
requires a new class of DAGs for representing independence
constraints, compared to what is used in Bayesian networks.
We will come back to this point later, after dwelling more on
conditional constraints. In particular, we will state two prop-
erties of these constraints and provide a concrete example.

The first property of conditional constraints is this: for ev-
ery parent instantiation pi, there is at least one state xi that
is compatible with pi given Δi. That is, while Δi may elimi-
nate some states of variable Xi under instantiation pi, it will
never eliminate them all. We will use this property later.

The second property is that conditional constraints can al-
ways be expressed as follows. Let α1, . . . , αm be a partition
of the states for parents Pi, and let βj be a non-empty set of
states for Xi, j = 1, . . . ,m. Any conditional constraints for
Xi | Pi can be expressed in the form “if the state of parents
Pi is in αj , then the state of Xi is in βj .” The converse is
also true: any set of constraints of the previous form must be
conditional (i.e., cannot eliminate any parent state, or elimi-
nate all states of Xi under a given parent instantiation) .

We will now consider a concrete example of modular con-
straints, which are extracted from the zero parameters of a
Bayesian network over three variables A,B and C. Here,
variable C is a child of A and B and has the following CPT:

A B C Pr(C | A,B)
a0 b0 c0 0.3
a0 b0 c1 0.1
a0 b0 c2 0.6
a0 b0 c3 0.0
a0 b1 c0 0.0
a0 b1 c1 0.7
a0 b1 c2 0.1
a0 b1 c3 0.2
a1 b0 c0 0.0
a1 b0 c1 0.7
a1 b0 c2 0.1
a1 b0 c3 0.2
a1 b1 c0 0.0
a1 b1 c1 0.7
a1 b1 c2 0.1
a1 b1 c3 0.2

Variables A and B are binary in this case, with variable C
having four states. Moreover, this CPT encodes the follow-
ing conditional constraints on variable C given A and B:

– if the parents satisfy a1 ∨ b1, then C satisfies c1 ∨ c2 ∨ c3.

– if the parents satisfy a0 ∧ b0, then C satisfies c0 ∨ c1 ∨ c2.

6436

A B

U,VX,Y

R,S,T

Figure 4: A cluster DAG.

We will next discuss why the integration of conditional
Boolean constraints with independence constraints will gen-
erally requires a new class of DAGs for representing inde-
pendence constraints.

As discussed earlier, a Bayesian network over variables
X1, . . . , Xn requires one to construct a DAG in which nodes
correspond to variables X1, . . . , Xn. When the Boolean
constraints are massive, the resulting DAG may end up be-
ing almost fully connected, making the Bayesian network
unusable practically. To address this issue, we will work
with DAGs in which nodes correspond to clusters of vari-
ables; see Figure 4. The independence semantics are similar
to classical Bayesian networks, except that cluster DAGs can
be less committing than classical DAGs. For example, the
cluster DAG in Figure 4 says that variables {X,Y } are in-
dependent of {R,S, T} (and {U, V }) given {A,B}. Cluster
DAGs, however, are silent on the independence relationships
between variables in the same cluster. As we shall see in the
following section, the relationships among variables in the
same cluster, and between a cluster and its parent clusters,
will be handled by the newly introduced conditional PSDDs.

We close this section by pointing out that in this paper,
variables in a cluster DAG are assumed to be binary. Con-
sider again the CPT above in which variable C has four
states. By replacing this variable with two binary variables,
X and Y , we get the following CPT:

A B X Y Pr(X,Y | A,B)
a0 b0 x0 y0 0.3
a0 b0 x0 y1 0.1
a0 b0 x1 y0 0.6
a0 b0 x1 y1 0.0
...

...
...

...

Here, state c0 is encoded by state x0, y0, state c1 is encoded
by x0, y1 and so on, leading to the conditional constraints:
– if a1 ∨ b1, then x1 ∨ y1.
– if a0 ∧ b0, then x0 ∨ y0.
We will refer to this example in the following section.

Conditional PSDDs

We will now introduce the conditional PSDD for represent-
ing a family of distributions that are conditioned on the same
set of variables. That is, a conditional PSDD will play the

a1

b1

x1

θ1 1-θ1

θ2 1-θ2 θ4 1-θ4

θ3 1-θ3

��

a0

b0

b1 b0

x0 y1

y0y1

x1 y0 x0

y0y1

Figure 5: A conditional PSDD (vtree on left of Figure 7).

role of a CPT in a Bayesian network. More precisely, a con-
ditional PSDD will quantify the relationship between a clus-
ter and its parents in a cluster DAG, leading to what we shall
call a structured Bayesian network. Not only will this allow
us to integrate Boolean and independence constraints into
the learning process, but it will sometimes allow us to scale
to networks whose nodes have exponentially many states
(we will show how conditional PSDDs can be learned ef-
ficiently from complete data in the following section).

The first step in obtaining a conditional PSDD is to com-
pile conditional constraints into an SDD. Compiling the con-
straints from the previous section leads to the SDD in Fig-
ure 5. We will next discuss two key properties of this SDD.

The first property concerns the SDDs labeled α and β.
SDD α represents the Boolean expression x1 ∨ y1, which
captures the states of X,Y under a1 ∨ b1. SDD β repre-
sents the Boolean expression x0 ∨ y0, which captures the
states of X,Y under a0 ∧ b0. Each of these SDDs can be
parameterized into a PSDD to yield a distribution over the
corresponding states of variables X,Y ; see Figure 5.

The second property of the SDD in Figure 5 is that the
output of the circuit under any input that satisfies a1 ∨ b1
will be the state of α; see Figure 6. Similarly, the output of
the circuit under any input that satisfies a0 ∧ b0 will be the
state of β. That is, depending on the values of parents A and
B, the circuit selects either PSDD α or PSDD β. This is why
the circuit in Figure 5 is called a conditional PSDD: it rep-
resents a set of PSDDs for variables X,Y , each conditioned
on some state of parents A and B.4

4According to this conditional PSDD, the distribution over vari-

6437

a1

b1

x1

θ1 1-θ1

θ2 1-θ2 θ4 1-θ4

θ3 1-θ3

��

a0

b0

b1 b0

x0 y1

y0y1

x1 y0 x0

y0y1

Figure 6: A partial evaluation of the conditional PSDD of
Figure 5, under the input A=a1, B=b1. Wires are colored
red if they are fixed to high, and colored blue if they are
fixed to low. The states of uncolored wires depend on the
states (values) of the inputs X and Y . In this example, the
output of the circuit is the same as the value of α.

The above properties are due to choosing a specific vtree
when constructing an SDD and because the SDD was com-
piled from modular constraints. We formalize these next.
Definition 1 (Conditional Vtrees) Let v be a vtree for vari-
ables X ∪ P which has a node u that contains precisely
the variables X. If node u can be reached from node v by
only following right children, then v is said to be a vtree for
X | P and u is said to be itsX-node.
Conditional vtrees were introduced in (Oztok, Choi, and
Darwiche 2016) for a different purpose, under the name of
P-constrained vtrees. Figure 7 depicts some examples of
conditional vtrees for X = {X,Y } and P = {A,B}. The
figure also marks the X-nodes of these vtrees.

ables X,Y is independent of the specific state of parents A and
B, once we know that these parents satisfy a1 ∨ b1. This corre-
sponds to context-specific independence (Boutilier et al. 1996), as
it says that X,Y is independent of A given b1, and independent
of B given a1. That is, the independence is conditioned on a vari-
able taking a specific value (X,Y are neither independent of A
given B nor independent of B given A). Decision trees have also
been used in a similar context by (Friedman and Goldszmidt 1998),
but these trees are representationally less compact than conditional
PSDDs. The latter are based on SDDs, which are decision graphs
(not trees) that branch on sentences instead of variables, leading to
exponentially smaller representations (Meinel and Theobald 1998;
Xue, Choi, and Darwiche 2012; Bova 2016).

.

A .

B *

X Y

.

. *

A B X Y

.

. .

A X B Y

Figure 7: Two vtrees for X | P with X = {X,Y } and P =
{A,B} (left and center) and a vtree that is not for X | P
(right). The X-nodes of the first two vtrees are starred.

We are now ready to formally define conditional PSDDs
and their underlying SDDs.

Definition 2 (Conditional and Modular SDDs) An SDD
circuit for X | P is one that conforms to a vtree for X | P.
The circuit is also modular for X | P if it evaluates to 1
under each instantiation p and some instantiation x.

Modularity can be described in two equivalent ways: (1) the
SDD does not constrain the states of parents P, or (2) vari-
ables X have at least one possible state given any instantia-
tion of parents P. If modularity is violated by some parent
instantiation p, then we cannot represent the conditional dis-
tribution Pr(X | p) for that instantiation.

Definition 3 (Conditional PSDDs) An or-gate that feeds
only from variables in X will be called an X-gate. A PSDD
for X | P is a modular SDD for X | P in which every
X-gate is parameterized.

With X = {X,Y } and P = {A,B}, we have four X-gates
in Figure 5. The following theorem shows that a conditional
PSDD is guaranteed to contain a PSDD for each conditional
distribution Pr(X | p).
Theorem 1 Consider a modular SDD γ for X | P and let
u be the X-node of its vtree. For each parent instantiation
p, there is a uniqueX-gate g that (1) conforms to u and (2)
has the same value as SDD γ under every circuit input p,x.

The or-gate g will then be the root of an SDD that captures
the possible states of variables X under parent instantia-
tion p. Moreover, the parameterization of this SDD leads
to a PSDD for the conditional distribution Pr(X | p). It
is critical to observe here that multiple parent instantiations
p may map to the same or-gate g. That is, the number of
PSDDs in a conditional PSDD is not necessarily exponen-
tial in the number of parents P. More generally, the size
of a conditional PSDD is neither necessarily exponential in
the number of variables X nor their parents P. This is the
reason why structured Bayesian networks—which are clus-
ter DAGs that are quantified by conditional PSDDs—can be
viewed as Bayesian networks in which nodes can have an ex-
ponential number of states. We will later discuss a real-world
application of structured Bayesian networks at length.5

5In a normalized and compressed SDD, two nodes cannot rep-
resent the same Boolean function if they conform to the same vtree

6438

a1

b1

x1

θ1 1-θ1

θ2 1-θ2 θ4 1-θ4

θ3 1-θ3

a0

b0

b1 b0

x0 y1

y0y1

x1 y0 x0

y0y1

Figure 8: Evaluating the SDD of a conditional PSDD under
the circuit input A=a1, B=b1, X=x1, Y =y0 (which can
be viewed as an example in the dataset). Each wire is colored
by its state (red for high and blue for low). The wires in
bold are visited when descending from the root gate down
to every gate and circuit input that evaluates to 1.

Learning Conditional PSDDs

Learning a conditional PSDD is akin to learning the CPT of
a Bayesian network in that we are learning a set of distri-
butions for variables X given their parents P. As we shall
see next, this turns out to be easy under complete data as it
amounts to a process of counting examples in the dataset,
which can be described using closed-form equations.

The one difference with learning CPTs is that we are now
learning from constraints as well, which requires compiling
the given constraints into an SDD circuit that conforms to a
vtree for X | P. There are usually many such vtrees for a
given X and P so the learning process tries to choose one
that minimizes the SDD size (there is a unique SDD once the
vtree is fixed). A method that searches for conditional vtrees
has already been proposed in (Oztok, Choi, and Darwiche
2016), which we adapted in our experiments that we present
in the next section.

Once the vtree and the SDD are fixed, the parameters
of the PSDDs (embedded in our conditional PSDD) can
be learned in closed form when the data is complete. This

node (Darwiche 2011). Hence, in the given definition of condi-
tional PSDDs, each PSDD node conforming to the X-node of the
vtree will have a unique space over the variables X, and hence a
unique distribution for that space. This can be relaxed if one uses
auxiliary variables, to distinguish distributions over the same space.

6 8 10 12 14

data set size (2x)

−210

−205

−200

−195

−190

te
st

lo
g
lik
el
ih
oo

d

random

cpt (min)

joint (min)

Figure 9: Conditional vs. joint PSDDs on random networks.

can be done using a method similar to the one proposed
in (Kisa et al. 2014) for learning the parameters of a clas-
sical PSDD. In particular, each parameter is simply esti-
mated by counting the number of examples in the dataset
that “touches” that parameter in the PSDD. We can visual-
ize this process using the conditional PSDD of Figure 8, for
which the underlying SDD was evaluated under the exam-
ple A=a1, B=b1, X=x1, Y =y0. The parameters touched
by this example are the ones encountered by starting at the
output or-gate, and then descending down to every gate and
circuit input that evaluates to 1. According to this definition,
parameters θ1 and 1− θ2 are touched in Figure 8.

Suppose now that D#(θi) and D#(1 − θi) denote the
number of examples in dataset D that touch each corre-
sponding parameter. The (maximum-likelihood) parameters
are then given by6

θml
i =

D#(θi)

D#(θi) +D#(1− θi)
.

Again, this parameter estimation algorithm is analogous to
the one given by (Kisa et al. 2014) for classical PSDDs, ex-
cept that we do not estimate parameters for gates that are not
X-gates. Moreover, the above parameter estimates are the
maximum likelihood estimates for the structured Bayesian
network that is quantified using conditional PSDDs.

Experimental Results

We now empirically evaluate our proposed approach using
conditional PSDDs by contrasting it to the classical way in
which PSDDs are used. In particular, given data and a clus-
ter DAG with corresponding modular constraints, we learn
a model in two ways. First, we compile the constraints into
an SDD that we then parameterize using the data. This is the
classical method which we shall refer to as “joint PSDD.”
Second, we compile each set of conditional constraints into

6This equation is based on or-gates with two inputs. However,
it can be generalized easily to or-gates with an arbitrary number of
inputs, since all underlying concepts still apply to the general case.

6439

a conditional PSDD and learn its parameters from the data.
This is the proposed method which we refer to as “condi-
tional PSDD.” We finally compare the quality of the two
models learned. In each case, we also try to minimize the
size of compiled SDD as is classically done.

The used data and constraints are obtained by randomly
generating Bayesian network structures over 100 variables
X1, . . . , X100. In particular, the structure of the network
is obtained by randomly selecting k parents for each vari-
able Xi from the last s variables that precede Xi, i.e., from
Xi−s, . . . , Xi−1 (if they are available). For our experiments,
we assumed k = s = 4. Each variable Xi was assumed to
have 24 = 16 states (hence, we used 4 SDD variables to rep-
resent that space, leading to clusters of size 4). The modular
constraints were generated as follows. For each variableXi,
we divide the space of parent instantiations by asserting a
random parity constraint of length k

2 where k is the number
of SDD variables used to represent the parents. We then di-
vide the space recursively, until we have a partition of size
8. For each member of the partition, we constrain variable
Xi using a parity constraint of length k

2 where k is now the
number of SDD variables used to represent the child (i.e.,
k = 4). Note that a parity constraints eliminates half the
values of variable Xi.
We simulate datasets from this Bayesian network using

forward sampling. That is, we traverse the network in topo-
logical order and draw a sample from each node given the
sample of the parents. Each dataset is used to learn the con-
ditional PSDDs of the cluster DAG, as well as the corre-
sponding joint PSDD.

Figure 9 highlights the results. On the x-axis, we increase
the size of the training set used. On the y-axis, we evaluate
the test-set log likelihood (larger is better). We simulated 10
random networks, and for each network we simulated 7 dif-
ferent train/test pairs; hence, each point represents an aver-
age over 70 learning problems. For each learning problem,
we increased the size of training sets from 26 to 214, and
used an independent test set of size 212. We observe, in Fig-
ure 9, that the conditional PSDD obtains much better likeli-
hoods than the joint PSDD, especially with smaller datasets.
On average, the joint PSDDs had 45,618 free parameters,
while the conditional PSDDs had on average 648 free pa-
rameters in total. Hence, with smaller datasets, we expect
the conditional PSDDs to be more robust to overfitting.

Modeling Route Distributions
We now discuss a real-world application that is too complex
to approach using a Bayesian network alone, or a PSDD
alone, but where Bayesian networks and PSDDs can be
mixed together to capitalize on the benefits of each. This will
be made possible by utilizing structured Bayesian networks:
cluster DAGs that are quantified with conditional PSDDs.

The application we consider is that of learning a distribu-
tion over routes on a map. Route distributions are of great
practical importance as they can be used to estimate traffic
jams, predict specific routes, and even project the impact of
interventions, such as closing certain routes on a map.

As discussed previously, routes correspond to paths on a
graph where each edge of the graph represents a street or

������

���	
�����	��������

���������	�

e1

e2

e3 e4

e5
e6

����

w1

v1
v2

v3

v4

u7

u1

u2
u3

u4

u5

u6

���	
���
�������

(a) map

Venice
n1,...,n6

Santa
Monica
s1,...,s8

Culver
City
c1,...,c6

UCLA
u1,...,u7

Westside
e1,...,e6

Westwood
Village

v1,...,v4

Westwood
w1

(b) cluster DAG

Figure 10: A hierarchical map of neighborhoods in the Los
Angeles Westside, and the corresponding cluster DAG. Each
neighborhood and the roads within are depicted using col-
ors, while roads connecting regions are depicted in black.
The roads of Santa Monica, Venice and Culver City are un-
labeled in the map, for clarity.

highway, and each node represents an intersection. PSDDs
were first proposed as a representation for route distributions
in (Choi, Tavabi, and Darwiche 2016), but more as a proof of
concept since these PSDDs did not scale to real-world maps.
Subsequently, (Choi, Shen, and Darwiche 2017) was able to
handle route distributions over real-world maps learned from
GPS data by using the notion of a hierarchical map.We next

6440

show how these hierarchical maps can be generalized and
represented using cluster DAGs, while making more explicit
the independence assumptions that underlie them.

In particular, (Choi, Shen, and Darwiche 2017) proposed
decomposing a given graph (map) into regions as shown
in Figure 10(a). This example contains a simplified graph
representing the Los Angeles Westside, where nodes (inter-
sections) of the graph have been partitioned into regions.
The Los Angeles Westside is first partitioned into four
sub-regions: Santa Monica, Westwood, Venice and Culver
City. Westwood is further partitioned into two smaller sub-
regions: UCLA and Westwood Village.

Using this hierarchical decomposition, we can plan a
route between two nodes, recursively. Suppose we want a
route from Santa Monica to Culver City. First, we plan
a route at the top level through the regions Santa Mon-
ica, Westwood, Venice and Culver City, using the edges
e1, . . . , e6 that cross between different regions. We next de-
cide, recursively, three sub-routes: (1) in the Santa Monica
region, we plan a route from our source node to the edge e1,
(2) in the Westwood Region, we plan a route from edge e1
to edge e6, and (3) in the Culver City region, we plan a route
from edge e6 to the destination. Continuing with this recur-
sive process, for the route in the Westwood region, we plan
sub-routes through UCLA and Westwood Village from edge
e1 to edge w1 to edge e6.7

A hierarchical decomposition of a map can be modeled
using a cluster DAG as follows; see Figure 10. Each internal
cluster represents a region, with its variables being the set of
edges that cross between its sub-regions. In Figure 10(b), the
root cluster represents the Los Angeles Westside region and
its variables represent edges e1, . . . , e6 that are used to cross
between its four sub-regions. Each leaf cluster represents the
set of edges that are strictly contained in that sub-region.
The parent-child relationship in the cluster DAG is based on
whether an edge in the parent region can be used to enter
the sub-region represented by the child cluster. For example,
the UCLA region has Westside as a parent since edge e1
can be used to enter the UCLA region directly from Santa
Monica. The main point here is that a cluster DAG can be
automatically generated from a hierarchical map.8

The use of hierarchical maps implies key independence
assumptions that are made explicit by the corresponding
cluster DAG. In particular, a hierarchical map implies the
following. Once we know how we are entering a sub-region
R, the route we take inside that sub-region is independent of
the route we may take in any other sub-region that is not a
descendant of R. For example, the route we take inside the
UCLA region (edges u1, . . . , u7) is independent of the route
used in any other region, once we know how we plan to enter
or exit the UCLA region (edges w1 and e1, . . . , e6).9 Such

7(Choi, Shen, and Darwiche 2017) assumed simple routes (no
cycles) at each level of the hierarchy by excluding routes that enter
or leave the same region more than once. Whether this constitutes
a good approximation depends on the hierarchical decomposition
used and corresponding queries (Choi, Shen, and Darwiche 2017).

8The proposal of (Choi, Shen, and Darwiche 2017) corresponds
to a two-layer cluster DAG.

9In this particular case, only w1 and e1 are relevant to how we

independencies can be easily read off the cluster DAG using
the Markovian assumption of Bayesian networks.

We now get to the final part of using structured Bayesian
networks for representing and learning route distributions.
To induce a distribution over routes in a hierarchical map,
one needs to quantify the corresponding cluster DAG using
conditional PSDDs. That is, for each cluster with variables
X, and whose parent clusters have variables P, one needs
to provide a conditional PSDD forX | P. As discussed ear-
lier, this conditional PSDDwill be based on conditional con-
straints for X | P which define the underlying conditional
SDD. The conditional PSDD is then obtained from this SDD
by learning parameters from data.

The conditional constraints of a cluster can also be gen-
erated automatically from a hierarchical map and are of two
types. The first type of conditional constraints rules out dis-
connected routes in cluster X (does not depend on the state
of parent cluster). The second type rules out routes in region
X which are no longer possible given how we enter or exit
that region (depends on the state of parent cluster). Clearly,
the root cluster only has constraints of the first type.

Conclusion

We proposed conditional PSDDs and cluster DAGs, show-
ing how they lead to a new probabilistic graphical model:
The structured Bayesian network. The new model was mo-
tivated by two needs. The first is to learn probability dis-
tributions from both data and background knowledge in the
form of Boolean constraints. The second is to model and
exploit background knowledge that takes the form of in-
dependence constraints. The first need has been addressed
previously by PSDDs, while the second has been addressed
classically using probabilistic graphical models, including
Bayesian networks. Structured Bayesian networks inherits
the advantages of both of these representations, including
closed-form parameter estimates under complete data. We
presented empirical results to show the promise of struc-
tured Bayesian networks in learning better models than PS-
DDs, when independence information is available. We also
presented a case study on route distributions, showing the
promise of structured Bayesian networks as a modeling and
learning tool in complex domains.

Acknowledgments

This work has been partially supported by NSF grant #IIS-
1514253, ONR grant #N00014-15-1-2339 and DARPA XAI
grant #N66001-17-2-4032. We thank Isha Verma for com-
ments and discussions relating to this paper.

Proof of Theorem 1

The proof requires a few formal definitions. Let f be a
Boolean function and x be an instantiation of some of its
variables. Then f |x denotes the subfunction obtained from
f by fixing the values of variables X to x. In the following
proofs, we use Boolean functions and SDDs exchangeably.

enter or exit the UCLA region. However, this independence is only
visible in the conditional PSDD for the UCLA region as it is im-
plied by the conditional constraints not the cluster DAG.

6441

A terminal SDD is either a variable (X), its negation
(¬X), false (⊥), or true (an or-gate with inputsX and ¬X).
Finally, we need to formally state the definition of confor-
mity, which we discussed in connection to SDDs and vtrees.

Definition 4 (Conformity) An SDD circuit n is said to con-
form to a vtree v iff
– v is a leaf with variableX , and α is a terminal SDD over

variable X .
– v is internal, and n is an SDD fragment (see Figure 3),

where the primes p1, ..., pn are SDDs that conform to the
left vtree vl, and the subs s1, ..., sn are SDDs that conform
to the right vtree vr.

The proof of Theorem 1 follows directly from two lem-
mas that we state and prove next.

Lemma 1 Consider a modular SDD γ for X | P that con-
forms to vtree v, and let u be theX-node of vtree v. For each
parent instantiation p, there is an X-gate g that represents
the subfunction γ|p.
Proof The proof is by induction on the level of node u in
the vtree.
• Base Case: u = v. Then P = ∅ and there is a unique
(empty) instantiation p, where γ|p = γ.

• Inductive Step u �= v: Then SDD γ is a fragment; see
Figure 3. Since SDD γ conforms to v, each prime pi con-
forms to vl and each sub si conforms to vr. Since u is
the X-node, it can be reached from the root v by itera-
tively following right children. Hence, X ⊆ vars(vr) and
vars(vl) ⊆ P. Let Pl = vars(vl) (parent variables to the
left of v) and Pr = P \ vars(vl) (parent variables on the
right of v). Further, let pl and pr denote the correspond-
ing sub-instantiations of p. In an SDD, the primes pi are
mutually-exclusive and exhaustive, hence γ|pl = si for
some unique i. Moreover, since γ is modular for X | P,
then γ|pl must be modular for X | Pr. Since γ|pl = si
further conforms to vr, then by induction there is an X-
gate g representing si|pr . Gate g is also the one represent-
ing γ|p since: γ|p = (γ|pl)|pr = si|pr = g. �

Lemma 2 Consider a modular SDD γ for X | P that con-
forms to vtree v, and let u be theX-node of vtree v. For each
parent instantiation p, if there is anX-gate g that represents
γ|p, then gate g (1) conforms to u, (2) evaluates to 1 on x iff
γ evaluates to 1 on p,x, and (3) is unique.

The proof uses a property of normalized and compressed
SDDs that underlie conditional PSDDs. That is, in such
SDDs, we cannot have two distinct or-gates that conform
to the same vtree node yet represent the same Boolean func-
tion (Darwiche 2011).

Proof We prove each part in turn.
1. By Lemma 1, there is anX-gate g representing γ|p. From

the proof of Lemma 1, this X-gate g is obtained by fol-
lowing a path in the circuit γ through the subs. By con-
formity, each of these subs comform to the corresponding
right child of a vtree node. Hence, g must conform to u.

2. For a given instantiation p, we have γ(p,x) = γ|p(x),
which is equivalent to g(x) from the proof of Lemma 1.

3. Suppose that there exists a gate h that conforms to u and
which evaluates to 1 on x iff γ evaluates to 1 on p,x.
It follows that h(x) = g(x) for all x. Since the SDD is
normalized and compressed, we must have h = g. �

References

Barber, D. 2012. Bayesian Reasoning and Machine Learn-
ing. Cambridge University Press.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific independence in Bayesian networks.
In UAI, 115–123.
Bova, S. 2016. SDDs are exponentially more succinct than
OBDDs. In AAAI, 929–935.
Choi, A.; Shen, Y.; and Darwiche, A. 2017. Tractability in
structured probability spaces. In NIPS.
Choi, A.; Tavabi, N.; and Darwiche, A. 2016. Structured
features in naive Bayes classification. In AAAI.
Choi, A.; Van den Broeck, G.; and Darwiche, A. 2015.
Tractable learning for structured probability spaces: A case
study in learning preference distributions. In IJCAI.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Darwiche, A. 2011. SDD: A new canonical representation
of propositional knowledge bases. In Proceedings of IJCAI,
819–826.
Friedman, N., and Goldszmidt, M. 1998. Learning bayesian
networks with local structure. In Learning in graphical mod-
els. Springer. 421–459.
Huang, J.; Kapoor, A.; and Guestrin, C. 2012. Riffled in-
dependence for efficient inference with partial rankings. J.
Artif. Intell. Res. (JAIR) 44:491–532.
Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams. In KR.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Lu, T., and Boutilier, C. 2011. Learning Mallows models
with pairwise preferences. In ICML, 145–152.
Meinel, C., and Theobald, T. 1998. Algorithms and Data
Structures in VLSI Design: OBDD — Foundations and Ap-
plications. Springer.
Murphy, K. P. 2012. Machine Learning: A Probabilistic
Perspective. MIT Press.
Nishino, M.; Yasuda, N.; Minato, S.; and Nagata, M. 2017.
Compiling graph substructures into sentential decision dia-
grams. In AAAI, 1213–1221.
Oztok, U.; Choi, A.; and Darwiche, A. 2016. Solving
PPPP -complete problems using knowledge compilation.
In KR, 94–103.
Xue, Y.; Choi, A.; and Darwiche, A. 2012. Basing decisions
on sentences in decision diagrams. In AAAI, 842–849.

6442

