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Abstract

Weight learning is a challenging problem in Markov Logic
Networks (MLNs) due to the large size of the ground propo-
sitional probabilistic graphical model that underlies the first-
order representation of MLNs. Though more sophisticated
weight learning methods that use lifted inference have been
proposed, such methods can typically scale up only in the ab-
sence of evidence, namely in generative weight learning. In
discriminative learning, where the evidence typically destroys
symmetries, existing approaches are lacking in scalability. In
this paper, we propose a novel, intuitive approach for learn-
ing MLNs discriminatively by utilizing approximate symme-
tries. Specifically, we reduce the size of the training database
by clustering approximately symmetric atoms together and
selecting a representative atom from each cluster. However,
each choice made from the clusters induces a different dis-
tribution, increasing the uncertainty in our learned model. To
reduce this uncertainty, we learn a finite mixture model by
stacking the different distributions, where the parameters of
the model are learned using an EM approach. Our results on
several benchmarks show that our approach is much more
scalable and accurate as compared to existing state-of-the-art
MLN learning methods.

Introduction
Markov Logic Networks (MLNs) (Domingos and Lowd
2009) are templates that can represent large probabilistic
graphical models compactly using first-order logic formu-
las. Specifically, MLNs represent uncertain knowledge as
weighted first-order logic formulas, where the weight sig-
nifies uncertainty associated with that formula. In a typical
use-case for MLNs, application designers encode domain
knowledge manually through first-order logic formulas, and
then use automated tools such as Alchemy (Kok et al. 2006)
and Tuffy (Niu et al. 2011) to learn the weights of the for-
mulas from data. Unfortunately, both weight learning and
inference (which is a sub-step in weight learning) in MLNs
are highly challenging problems. Typical learning and infer-
ence methods developed for probabilistic graphical models,
cannot be directly applied to MLNs. Specifically, MLNs rep-
resent extremely large probabilistic graphical models typi-
cally containing millions of variables and factors, and run-
ning even approximate inference methods or approximate
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gradient-based methods for learning such as voted percep-
tron (Collins 2002) or contrastive divergence (Hinton 2002)
is often infeasible in MLNs designed for practical applica-
tions. To circumvent the non-scalability of learning algo-
rithms, application designers typically use domain-specific
‘tricks’ to utilize MLNs for practical problems. For exam-
ple, in their entity resolution application, Singla and Domin-
gos (Singla and Domingos 2006) remove some evidence
from the training data that are likely to be false based
on heuristics. Similarly, Venugopal et al. (Venugopal et al.
2014) use SVM-learned weights for MLNs. However, such
domain-specific heuristics are problematic since they re-
quire a deep understanding of the domain, and are typically
not transferable across different MLN applications.

Over the last several years, lifted inference has become the
predominant method to scale up inference, and several algo-
rithms have been developed using this strategy (Poole 2003;
Gogate and Domingos 2011; Van den Broeck et al. 2011).
The main idea in these algorithms is to use symmetries in the
MLN to scale up inference. More recently, lifted inference
algorithms have been used in generative weight learning al-
gorithms (Haaren et al. 2016). Unfortunately, the same tech-
niques do not work well for discriminative learning meth-
ods. Specifically, when learning discriminatively, we need to
perform inference on MLNs that are conditioned on certain
pre-specified query atoms (Domingos and Lowd 2009), and
most lifted inference methods, even the approximate ones,
fail to scale up when the MLN is conditioned on arbitrary
evidence that breaks symmetries (van den Broeck and Dar-
wiche 2013). This is highly problematic because discrimina-
tive learning is quite often preferred since it converges faster
than generative learning (Singla and Domingos 2005), for
many applications. Therefore, we need advanced methods to
perform discriminative weight learning in MLNs. Recently
Sarkhel et al. (Sarkhel et al. 2016) proposed an approach that
scales up specific learning algorithms that use Gibbs sam-
pling or MaxWalkSAT as a substep, by utilizing fast meth-
ods to solve a counting problem that repeatedly occurs with
Gibbs sampling and MaxWalkSAT. However, a generic ap-
proach for scalable discriminative learning is still elusive,
which is our main contribution in this paper.

Specifically, in this paper, we propose a discriminative
learning method which leverages recent advancements in
‘approximate’ lifted inference techniques. These techniques
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utilize approximate symmetries (Venugopal and Gogate
2014; van den Broeck and Darwiche 2013) in the MLN in
the absence of exact symmetries, to improve the scalabil-
ity of inference procedures in the presence of arbitrary ev-
idence. The main idea behind these approaches is to cre-
ate a smaller, compressed database, where inference can be
performed efficiently. Our approach in this paper is to learn
the weights from such a compressed database. Specifically,
we cluster atoms in the given training database and sample
a representative atom from each cluster. However, this ap-
proximation increases the uncertainty in our learned model,
since, depending on which representative atoms were sam-
pled from a cluster, the underlying distributions could be en-
tirely different. To reduce this uncertainty, we learn multiple
models from the same training database and combine them
into a mixture model. However, learning such a mixture
model turns out to be a complex task since algorithms such
as EM are computationally expensive for MLNs (Domin-
gos and Lowd 2009). To scale up the learning procedure, we
learn the model based on stacked density estimation (Smyth
and Wolpert 1999), where we fix the parameters of the mix-
ture components and then use EM to estimate the component
coefficients.

Our experiments on several benchmarks taken from
Alchemy (Kok et al. 2006) show that our approach is more
scalable and accurate than Tuffy (Niu et al. 2011) and other
state-of-the-art systems for MLNs.

Background

Markov Logic Networks (MLNs). An issue with first-order
logic is that it cannot represent uncertainty: all worlds that
violate even one ground formula are considered inconsis-
tent. MLNs soften the constraint expressed by each formula,
by attaching a weight to it. Higher the weight, higher the
probability of the clause being satisfied, all other things be-
ing equal. MLNs can also be seen as a first-order template
for generating large Markov networks. Formally, an MLN
is a set of pairs (fi, θi) where fi is a formula in first-order
logic and θi is a real number. Given a set of constants, an
MLN represents a ground Markov network which has one
random variable for each grounding of each predicate and
one propositional feature for each grounding of each for-
mula. The weight associated with the feature is the weight
attached to the corresponding formula. The ground Markov
network represents the following probability distribution:

PΘ(ω) =
1

ZΘ
exp

(∑
i

θiNi(ω)

)
(1)

where Ni(ω) is the number of groundings of fi that evalu-
ate to TRUE given ω and ZΘ is the normalization constant
known as the partition function.

Important inference queries in MLNs are computing the
partition function, finding the marginal probability of an
atom given evidence (an assignment to a subset of variables)
and finding the most probable assignment to all atoms given
evidence (MAP inference). All these problems are computa-
tionally hard. Weight-learning, which is computing the opti-
mal weights for a given MLN structure, and observed data, is

Formulas:
R(x) ∨ S(x, y), w
Original Domains:
Δx = {A1, B1, C1, D1}
Δy = {A2, B2, C2, D2}
Domain Approximation:
Δ′

x = {μ1, μ2}
Δ′

y = {μ3, μ}
(a)

Meta-Objects:
μ1 = {A1, B1};
μ2 = {C1, D1}
μ3 = {A2, B2}; and
μ4 = {C2, D2}

(b)

Meta-Atoms:
R1(μ1) = {R(A1),R(B1)}
R2(μ2) = {R(C1),R(D1)}
S1(μ1, μ2) =
{S(A1, C1),S(A1, D1),
S(B1, C1),S(B1, D1)}
. . .

(c)

Figure 1: (a) an example MLN M and a possible do-
main approximation for the original domain of M. M′ con-
tains meta-objects and meta-atoms, i.e., objects that repre-
sent multiple objects in the original domain and atoms that
represent multiple atoms in M as shown in (b) and (c)

typically done through Max-likelihood estimation. Weight-
learning is also computationally challenging since inference
procedures are used as a substep within each iteration of
weight-learning.
Evidence-based Clustering. Inference in MLNs is in gen-
eral intractable. One recent technique for scaling up infer-
ence in MLNs is lifted inference. At a very high level, lifted
inference techniques exploit symmetries present in the first-
order MLN to scale up inference. However, in most prac-
tical MLNs, either the complexity of the MLN structure or
the presence of evidence destroys symmetries and lifted in-
ference algorithms that only try to exploit exact symme-
tries are as scalable as ground inference (van den Broeck
and Darwiche 2013). To alleviate this problem, among oth-
ers, Broeck and Darwiche (van den Broeck and Darwiche
2013) and Venugopal and Gogate (Venugopal and Gogate
2014) proposed approximate lifted inference algorithms that
use clustering methods to group together approximately
symmetrical objects. That is, given a set of domains D =
{D1, . . . DM}, where each Dj is a set of real-world ob-
jects that can be instantiated in MLN M, and evidence E,
we cluster each domain in D independently and replace
the set of objects with meta-objects, i.e., the set of cluster-
centers, to generate a new domain D′ = {D′

1, . . . D
′
k},

where each |D′
j | << |Dj |. Replacing the domain in M

with D′ yields a new MLN M′ which we refer to as the
domain-approximated version of M. In M′, each ground
atom is now a meta-atom since it implicitly represents a set
of ground atoms in M. An example MLN and its domain
approximation is shown in Fig. 1. Therefore, a threshold
can be used to determine whether this meta-atom is to be
considered observed or not, depending upon how many of
the original atoms that it represents were observed evidence
atoms. Thus, the original evidence is in a way represented in
a “compressed” form by the new evidence.
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Learning a Mixture Model for MLNs

We consider the discriminative weight learning task in
MLNs with no hidden variables. Here, we pre-specify the
structure of the MLN and the query atoms, and compute
the weights of the MLN that maximizes the conditional log-
likelihood (CLL) of a training relational database. Specifi-
cally, given a training relational database or world, ω (as-
signment to all ground atoms), and query atoms Q, the opti-
mization problem is given by,

max
Θ

PΘ(ω|Q) (2)

It is important to note that typically, for MLN learning,
we only have a single instance to learn from unlike tradi-
tional machine learning algorithms, where we have multi-
ple i.i.d instances. Further, to solve Eq. (2) using gradient
ascent, it turns out that we need to run an inference algo-
rithm to compute the gradient. Specifically, we need to com-
pute EΘ[Ni(ω)], which is the expected number of satisfied
groundings of the i-th formula in the MLN (See proof in
(Domingos and Lowd 2009)). Computing the gradient ex-
actly is typically infeasible. Therefore, approximate infer-
ence methods are used to estimate this expectation, yield-
ing approximate learning algorithms such as contrastive di-
vergence (Lowd and Domingos 2007) and voted percep-
tron (Singla and Domingos 2005). However, it turns out
that even these algorithms fail to scale up in practical cases,
where the ground Markov network induced by ω is very
large. An alternative approach is to use lifted inference such
as lifted MCMC (Venugopal and Gogate 2012) or lifted
MAP (Sarkhel et al. 2014) within learning which takes ad-
vantage of symmetries in the MLN. Unfortunately, most
lifted inference methods fail when we present evidence to
the MLN which destroys symmetries (van den Broeck and
Darwiche 2013). In the case of discriminative learning, since
we need to perform inference on the MLN conditioned on
the query variables, this is problematic for lifted inference
methods. Next, we describe our approach, where we reduce
ω by exploiting approximate symmetries, and then learn a
mixture model over multiple such reduced datasets.

Generating Reduced Datasets

We first generate a new training database ω′ from ω, such
that each domain in the MLN has a bounded number of ob-
jects, thus making learning from ω′ scalable with any ex-
isting ground/lifted inference technique. Ideally, we would
want the CLL function corresponding to ω′ to be quite
close to that corresponding ω. This will ensure that we
learn weights from ω′ that are similar to those we would
have learned from ω. The naive approach is to randomly
sample a subset of ω. However, this is problematic since
the training database is relational, i.e., an atom is related
to the other atoms in the training data. Therefore, random
sampling is unlikely to preserve the relational structure in
the database, and would therefore yield poor learning re-
sults. For example, Fig. 2 shows the ground network for
an MLN with a single formula, Strong(x) ⇒ Wins(x, y).
Here, there are 6 atoms specified in the training database
(shown as gray nodes in the figure). As seen in Fig. 2, there
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Figure 2: Example to illustrate sampling of approxi-
mately symmetric evidences for the MLN Strong(x) ⇒
Wins(x, y) (abbreviated as S and W ). Observed evidence
variables are shown in gray, the black nodes are assumed
to be false. Dashed curves show approximately symmetric
evidences.

are approximately 2 distinct sub-structures in the MLN. Sup-
pose we add a constraint that we can only choose 2 atoms
corresponding to the Strong predicate and 1 atom cor-
responding to Wins predicate, we would want to choose
atoms from varied sub-structures in order to better repre-
sent a distribution that is close to the original distribution.
That is, suppose we choose Strong(X1), Strong(X3) and
Wins(X1, Y1), we completely loose the sub-structure that
corresponds to Strong(X2), Strong(X4). A better choice
is to pick Strong(X1), Strong(X2) and Wins(X1, Y1) to
represent both sub-structures that are present in the model.

In order to choose a subset of atoms from ω that best rep-
resent the relational dependencies in the MLN, we base our
approach on the clustering method proposed by Venugopal
and Gogate (Venugopal and Gogate 2014) (see the prelim-
inary section). Specifically, we cluster each domain in the
MLN using features that encode the approximate number of
ground formulas that are true/false/unknown. Let μi,j rep-
resent the j-th cluster for the i-th domain of the MLN. Sup-
pose we have a relation that joins the i1-th . . . ip-th domains,
we sample from each of the sets {μi1,1 × μi2,1 . . . μip,1} ∩
ω, {μi1,1 × μi2,1 . . . μip,2} ∩ ω, . . . {μi1,n1 × μi2,n2 . . .
μip,np} ∩ ω, where n1 . . . np are the number of clusters in
the i1-th . . . ip-th domain respectively. We generate a sam-
pling distribution over the atoms in a set as follows.

P̂ (X) =

⎧⎨
⎩
1/
∑p

k=1 nk, if(Nk + nk) ≤ α, ∀i
1, if(

∑p
k=1 nk = 0)

0, Otherwise
(3)

where X is an atom, P̂ (X) is its un-normalized proba-
bility of being sampled, p is the arity of the relation, nk is
the number of objects that would be added to the k-th do-
main of the MLN if X were to be sampled, and Nk is the
total number of objects that have already been added to the
k-th domain. Intuitively, if sampling an atom does not incre-
ment the domains in the MLN (since it refers to objects that
were already added to the domain from a previously sampled
atom), we would sample it with high probability. However, if



any of the domains that would be incremented by sampling
X have already reached their limit, α, then we do not sample
X . Note that depending on the order in which we sample the
sets, the sampling distributions for each set can change, and
thus, we can generate different reduced databases ω′ from
the same training database ω.

Mixture Model

Note that each different sampled training database gener-
ated from ω using Eq. (3) will induce a different underlying
graphical model structure. Thus, if we use Eq. (2) to learn
the weights from each database, we will learn different sets
of weights for the same MLN. We now argue why learning
using a single (or even best) reduced training database in
this context may not be the best approach. Consider a sim-
ple MLN, R(x) ∧ S(x). Recall that the weights learned for
this MLN depend upon the true groundings for this MLN
in the training dataset. Specifically, the learning algorithms
try to match the expected number of true groundings (us-
ing the weights) to the observed number of true groundings
(in the data). Fig 3 illustrates the situation where for a given
dataset corresponding to the example MLN, we sample the
dataset and measure the number of true groundings in the
dataset. Specifically, we sample 25%, 50% and 75% of the
dataset 25 times each, and construct a histogram of the re-
sults obtained. As we can see, there are several peaks in the
distribution. If we only take a single sample, we would prob-
ably end up sampling a single peak, and the weights may be
quite biased. Using a mixture model, we propose to hit sev-
eral points in the distribution and average the results, leading
to a better-learned model.

More formally, we can make arguments from a Bayesian
perspective. This argument is similar to the arguments made
by Draper (Draper 1995) and Smyth and Wolpert (Smyth
and Wolpert 1999), where they argue that from a Bayesian
sense, combining different learned distributions is beneficial
when there is uncertainty in the learned model. For this, let
us assume that we can, in fact, represent the original dis-
tribution using a model learned from the reduced training
datasets ((Wolpert 1996) discusses such assumptions). Note
that during learning, there is uncertainty over both the struc-
ture of the MLN as well as the weights learned for that MLN.
Thus, we would integrate over all possible structures that can
be generated from ω, as well as all the weights that can be
learned for a specific structure, to obtain the posterior dis-
tribution of the model. Specifically, the probability that the
model (M; ΘM) generated the database ω is given by,

P ((M; ΘM)|ω) =
∑
M

∫
ΘM

P ((M; ΘM)|ω)dΘM (4)

where M is the structure of the MLN, ΘM are the
weights corresponding to M. The above expression can be
written as,

P ((M; ΘM)|ω) =
∑
M

∫
ΘM

P (ΘM|ω,M)dΘM (5)

× P (M|ω) (6)

Eq. (6) suggests that it is better to compute a weighted av-
erage over different models rather than use a single model.
Each model is weighted by P (M|ω). However, computing
these weights is not trivial, and requires us to compute the
distribution over all possible structures. Therefore, we esti-
mate these weights empirically using stacking.

Stacked MLNs Let PΘ1
, PΘ2

, . . . PΘk
be k distributions

corresponding to the k reduced databases, ω1 . . . ωk. That
is, we perform weight learning on ω1 . . . ωk to obtain the
weights Θ1 . . . Θk respectively. We now define a mixture
distribution that approximates PΘ(ω|Q) as,

k∑
j=1

φjPΘj
(ω|Q) (7)

where φj is the mixture-coefficient corresponding to j-th
distribution in the mixture, ω represents any possible world,
and Q is the set of variables designated as query atoms. To
learn the mixture model discriminatively, given ω, we max-
imize the overall conditional log-likelihood (CLL) as,

max
φ1...φk,Θ1...Θk

log

k∑
j=1

φjPΘj (ω|Q) (8)

One way to solve the optimization problem in Eq. (8) is
to use the standard EM algorithm. Specifically, we treat the
coefficients as hidden variables in the model. In the E-step,
we fill the hidden variables, and in the M-step we perform
a joint max-likelihood optimization over all the components
in the mixture. Typically, the M-step is easy in most appli-
cations of EM such as Gaussian Mixture Models. Unfortu-
nately, this step is costly for MLNs. Specifically, since there
is no closed form solution for the max-likelihood, we need
to run an expensive inference procedure to perform the opti-
mization in each iteration of EM. This approach is not scal-
able for real-world MLN applications. Therefore, alternative
techniques to the standard EM method need to be developed
for MLNs (Domingos and Lowd 2009). Here, we propose
to use a technique called stacked density estimation (Smyth
and Wolpert 1999) to learn the model hierarchically.

To learn our model, we define a modified function that
maximizes the “out-of-sample” CLL of the dataset. This is
needed to ensure that our model generalizes well to unseen
cases. Specifically,

max
φ1...φk,Θ1...Θk

log
k∑

j=1

φjP̂Θj
(ωj |Q) (9)

where P̂Θj
(ωj |Q) is the CLL assuming that ωj is not used

when computing Θj .
To solve Eq. (9), we perform a procedure similar to cross-

validation in ML methods. Specifically, we divide the in-
put data into v folds, ω1 . . . ωv . We learn all the weight-
vectors Θ1 . . . Θk from v − 1 folds and estimate the CLL
on the remaining fold, and repeat this over all folds. We then
compute the optimal mixture coefficients that maximize the
test CLL scores given the optimal weight-vectors. However,
note that the out-of-sample CLL cannot be computed exactly
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Figure 3: Example to illustrate the distribution of true groundings in a sampled dataset for R(x) ∧ S(x). The sampling is
repeated 25 times at sampling percentages of 25%, 50% and 75%, to construct the histograms in (a), (b) and (c) respectively.

for MLNs. Therefore, we calculate a rough estimate of the
CLL as PΘ(ω) =

∑
q∈Q logPΘ(q). That is, we compute the

product of the marginal probabilities of the query atoms in
the test fold, and use it in place of the true CLL (Lowd and
Domingos 2007). Each marginal probability is estimated us-
ing approximate inference procedures. Next, we describe
our approach to learn the mixture coefficients.

Let P̂Θ1(ωi|Q), P̂Θ2(ωi|Q) . . . P̂Θk
(ωi|Q) be the esti-

mated out-of-sample CLLs for the i-th fold. That is, we com-
pute k reduced evidence databases from the remaining folds,
learn the weights for the given MLN structure from each of
these databases, and compute the test CLL on the i-th fold
for each learned MLN. The optimization problem that we
now need to solve is given by,

max
φ1...φk

v∑
i=1

log

k∑
j=1

φjP̂Θj (ωi|Q) (10)

Note that the optimization problem specified in Eq. (10) is
non-convex, and therefore hard to optimize analytically. In-
stead, we solve the optimization problem in Eq. (10) using
the EM algorithm for learning finite mixture models. How-
ever, unlike the traditional EM algorithm for learning finite
mixtures, here, the parameters of the component distribu-
tions are assumed to be fixed, i.e., the MLN weights remain
unchanged for all k components, and only the mixture coef-
ficients are modified in each step.

Specifically, let W be a v × k matrix of weights that de-
termine the relative importance of each mixture component.
The (i, j)-th entry in W is given by,

wij =
φjP̂Θj

(ωi)∑k
m=1 φmP̂Θm

(ωi)
(11)

We start by initializing the mixture coefficients to random
initial values, φ(0)

1 . . . φ
(0)
k . In each subsequent step, we re-

compute each mixture coefficient as,

φ
(t+1)
j =

∑v
i=1 wij

k
(12)

We terminate the algorithm once the coefficients converge
to a fixed point. In our experiments we used the stopping cri-

Algorithm 1: Learning the MLN Mixture
Input: Training database ω, number of components k,

MLN structure μ, Query Q
Output: Mixture distribution of MLNs

1 Divide ω into v folds, ω1 . . . ωv

2 for each fold ωi do
// Learn the MLN weights using ω \ ωi

as the training database
3 for j = 1 to k do
4 Reduce ω \ ωi to ω̂ by sampling from

approximately symmetric clusters
5 Learn the MLN weights discriminatively from ω̂

to obtain Θi

6 Compute the CLL, P̂Θj (ωj) by running inference
on Q using ωi as evidence

7 initialize the W matrix as in Eq. (11)
// Learn the mixture coefficients

8 Initialize φ
(0)
1 . . . φ

(0)
k

9 while Not converged do

10 Update φ
(t)
1 . . . φ

(t)
k using Eq. (12)

11 Update W using Eq. (11)

12 return
∑k

j=1 φ
(t)
j P̂Θj

terion, maxi |φ(t)
i − φ

(t−1)
i | ≤ 0.0001. To avoid local min-

ima, we run the algorithm from several initial random start-
ing states φ

(0)
1 . . . φ

(0)
k , and average the converged coeffi-

cient values across these runs.
Algorithm 1 summarizes our approach for learning the

mixture of MLNs. We first divide the data into v folds, learn
k MLNs from v−1 folds, and compute the test likelihood in
the v-th fold. For learning each of he k MLNs, we cluster ap-
proximately symmetrical evidences, and generate a reduced
representation of the input training database. Once we learn
all the MLNs, we learn the mixture coefficients that maxi-
mizes Eq. (10) by alternating between updating the coeffi-
cients and updating the W matrix.

Note that Algorithm 1 can be efficiently implemented
since each MLN in the mixture can be learned independently
of the other. Specifically, we learn each of the k models in
parallel for each of the v folds. Similarly, the W matrix can

6363



be computed in an embarrassingly parallel manner. That is,
we compute the out-of-sample CLL for each of the v folds,
and for each of the k models in parallel.

Since Algorithm 1 is essentially the EM algorithm for fi-
nite mixtures, with fixed distribution parameters, the follow-
ing result holds from the convergence proof of the EM al-
gorithm (cf. (Dempster, Laird, and Rubin 1977; Meila and
Jordan 2000))
Proposition 1. Algorithm 1 converges to a locally optimal
solution for Eq. (10).

Related Work

Several prior studies have focused on weight learning in
MLNs. Singla and Domingos (Singla and Domingos 2005)
proposed to use approximate MAP inference to perform
learning efficiently. Similarly, Lowd and Domingos (Lowd
and Domingos 2007) developed discriminative learning
methods that use MCSAT sampling, diagonal Newton and
scaled conjugate gradient. Haaren et al. (Haaren et al. 2016)
recently developed a generative weight learning method that
uses lifted inference. Since generative learning does not con-
dition on evidence, lifted inference is somewhat easier to
apply in such learning algorithms. However, even for gener-
ative learning, for practical MLNs, we need to approximate
the gradient since they are typically not liftablem, even in
the absence of evidence. To scale up discriminative learning,
Sarkhel et al. (Sarkhel et al. 2016) used efficient counting
within contrastive divergence, voted perceptron and pseudo-
likelihood learning. The work by Ahmadi et al. (Ahmadi et
al. 2013) is related to our work in the sense that Ahmadi
et al. propose to use mini-batches of training data, and learn
the MLN weights in an online manner. However, they do not
explore mixing several models, as we do in this work. Khot
et al. (Khot et al. 2015) developed methods to learn MLNs
with missing data using a EM-based approach. However, as
far as our knowledge goes, ours is the first work to explore
the use of mixture models to improve MLN weight-learning.

Experiments

Setup

We used three benchmarks from Alchemy, namely We-
bKB, Protein, and ER, to evaluate our approach. We com-
pared our approach with Tuffy (Niu et al. 2011), the cur-
rent state-of-the-art MLN system, and also Magician (Venu-
gopal, S.Sarkhel, and Gogate 2016), which implements scal-
able versions of contrastive divergence (CD), voted percep-
tron (VP) and pseudo-log-likelihood maximisation (PLL),
using approximate counting oracles (Sarkhel et al. 2016).
Both these systems are available as open-source. We also
tried to use Alchemy, an older MLN learning, and inference
system, but it did not work with any of our datasets in our
experiments since it ran out of memory during the ground-
ing process. Further, we created another baseline method
where we used Venugopal and Gogate’s (Venugopal and
Gogate 2014) approach (available in the Magician open-
source code) to compress the distribution. We then used the
compressed distribution generated by this method to learn
the MLN weights using Tuffy, and we refer to this approach

as VG. Finally, we created a baseline where we randomly
sample from the training dataset and create a reduced dataset
on which we run weight learning using Tuffy. We refer this
simple baseline as Random.

We implemented the mixture model by learning the com-
ponents of the mixture in parallel. Specifically, we used a
cluster of k 8GB quad-core machines for k components of
the mixture, where we performed the learning using Tuffy,
and computed the out-of-sample CLL using MCSAT.

Results

We evaluated our approach on three key aspects, (i) Solution
Quality, (ii) Stability, and, (iii) Scalability. For evaluating so-
lution quality, we have reported the cross validated test CLL
score. For stability, we have reported the variance in weight
as well as the variance in CLL and finally, to measure scal-
ability we have reported the running time of competing ap-
proaches.

Solution Quality Table 1 shows our results where we
compute CLL through 5-fold cross validation. The CLL is
approximated using the marginal probabilities computed us-
ing MCSAT. For the mixture model, we set the number of
clusters as 5% of the original domain-size and used the K-
Means algorithm for clustering. We used five components in
our mixture model. To compute the W matrix, we divided
the training data into 5 folds.

As we see in the results shown in Table 1, our ap-
proach using the Mixture MLN substantially outperforms
both Tuffy and all algorithms in Magician, in terms of the
CLL scores. Further, note that Tuffy could only work on the
WebKB MLN, and even on this MLN, it took an extremely
long time (> 10 hours) for the weights to converge. On the
other original MLNs, it failed to work even after running
it for a day. In contrast, Magician could learn weights on all
the benchmarks. However, its CLL scores were considerably
lower than our mixture model. This phenomenon was ob-
served for all algorithms in Magician, i.e., CD, VP and PLL;
and suggests that approximating the dataset yields more ac-
curate results than approximating the learning methods (as
in Magician)

Variance in Weights To understand the importance of us-
ing the mixture model, we performed an experiment where
we compare how far off the different weights learned in a
mixture component are, as compared to the true weights.
Specifically, we designed a very simple MLN consisting
purely of singleton atoms where learning and inference are
well-known to be easy. We used eight predicates distributed
between 4 randomly generated formulas. Since the MLN is
easy to learn, we consider Tuffy’s weights learned from the
full dataset as the accurate or true weights for the dataset. We
then used our clustering approach and generated 25 reduced
datasets, and learned the weights for each of them. Fig. 4
shows our results in terms of the average absolute error be-
tween the true weights and the weights learned from the re-
duced dataset. The variance in error illustrates why a mix-
ture model is more reliable to approximate the true weights
as compared to learning from a single reduced database.
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Magician
Dataset CD VP PLL Tuffy VG Random Mixture MLN

WEBKB -0.66 -0.91 -0.72 -0.89 -0.35 -1.82 -0.13
PROTEIN -0.779 -0.78 -0.74 X -0.67 -1.69 -0.16

ER -0.694 -0.693 -0.693 X -0.56 -0.85 -0.148

Table 1: Comparison of results in terms of estimated average CLL scores using 5-fold cross validation (larger is better).
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Figure 4: Illustrating the variance in error for learned
weights from reduced datasets.
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Figure 5: Illustrating the variance in CLL for varying mix-
ture components.

Variance in CLL Fig. 5 illustrates the variance in CLL
as we vary the number of mixture components. Specifically,
we learned 12 different MLNs based on reduced databases.
We then sampled k mixture components from these MLNs,
and performed stacked learning. We then measured the CLL
on the test dataset and recorded the standard deviation of
the CLL as we sample different sets of k mixture compo-
nents. As seen in the figure, the standard deviation reduces
as we increase the mixture components. However, knowing
the ideal number of mixture components is a hard problem
(just as in other mixture models). In future research, we will
investigate non-parametric approaches to compute the right
number of mixture components needed for a dataset.

Dataset Tuffy Magician VG Random Mixture

WEBKB 10 hours 24 hours 15 mins 12 mins 22 mins
PROTEIN X 3 mins 25 mins 25 mins 45 mins

ER X 10mins 28 mins 20 mins 40 mins

Table 2: Comparison of time required for learning.

Scalability Table 2 illustrates the amount of time required
for learning using the various algorithms. As shown here,
Tuffy and Alchemy are the slowest systems, and while Tuffy
runs on one benchmark but takes a long time, Alchemy fails
on all benchmarks (therefore not shown in table). Magician
(with the lowest possible ibound for the approximate count-
ing oracle) is very fast for certain benchmarks but extremely
slow for others (such as webkb). The random sampling and
learning using VG run in quite similar times. For our ap-
proach, since it is parallelizable, we present the longest time
that it took to learn a single component. Note that, this in-
cludes the learning as well as inference time required in our
stacking procedure. As shown here, our system performs fa-
vorably in terms of time while being much more accurate
than other systems.

Conclusion

In this paper, we proposed a novel, scalable approach to dis-
criminative weight learning in MLNs. Specifically, we first
generated smaller sized training databases from the origi-
nal data, by clustering based on approximate symmetries
and then sampling a representative atom from each clus-
ter. However, doing so results in more uncertainty in the
learned model. To reduce this, we learned multiple MLNs
and combined them through a mixture model. However,
learning a mixture model through traditional EM is expen-
sive. Therefore, we use a stacking approach, where we fix
the MLN weights and optimize the mixture coefficients by
maximizing the out-of-sample CLL. Our experiments on
different benchmarks and comparisons with state-of-the-art
MLN learning systems illustrated accuracy and scalability
of our method.

Future work includes incorporating nonparamet-
rics (Venugopal, Sarkhel, and Cherry 2016) to compute
the optimal number of components, boosting methods for
MLNs, etc.
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