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Abstract

We introduce a theoretical model of information acquisition
under resource limitations in a noisy environment. An agent
must guess the truth value of a given Boolean formula ϕ after
performing a bounded number of noisy tests of the truth values
of variables in the formula. We observe that, in general, the
problem of finding an optimal testing strategy for ϕ is hard,
but we suggest a useful heuristic. The techniques we use also
give insight into two apparently unrelated, but well-studied
problems: (1) rational inattention (the optimal strategy may
involve hardly ever testing variables that are clearly relevant
to ϕ) and (2) what makes a formula hard to learn/remember.

1 Introduction

Decision-making is typically subject to resource constraints.
However, an agent may be able to choose how to allocate
his resources. We consider a simple decision-theoretic frame-
work in which to examine this resource-allocation problem.
To motivate the framework, consider an animal that must
decide whether some food is safe to eat. We assume that
“safe” is characterised by a known Boolean formula ϕ, which
depends on pertinent variables such as presence of unusual
smells or signs of other animals consuming the same food.
The animal can perform a limited number of tests of the
variables in ϕ, but these tests are noisy; if a test says that
a variable v is true, that does not mean that v is true, but
only that it is true with some probability. After the agent has
exhausted his test budget, he must either guess the truth value
of ϕ or choose not to guess. Depending on his choice, he gets
a payoff. In this example, guessing that ϕ is true amounts to
guessing that the food is safe to eat. There will be a small
positive payoff for guessing “true” if the food is indeed safe,
but a large negative payoff for guessing “true” if the food is
not safe to eat. In this example we can assume a payoff of
0 if the agent guesses “false” or does not guess, since both
choices amount to not eating the food.

We are interested in optimal strategies for this decision;
that is, what tests should the agent perform and in what
order. Unfortunately (and perhaps not surprisingly), as we
show, finding an optimal strategy (i.e., one that obtains the
highest expected payoff) is infeasibly hard. We provide a
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heuristic that guarantees a positive expected payoff whenever
the optimal strategy gets a positive expected payoff. Our
analysis of this strategy also gives us the tools to examine
two other problems of interest.

The first is rational inattention, the notion that in the face
of limited resources it is sometimes rational to ignore certain
sources of information completely. There has been a great
deal of interest recently in this topic in economics (Sims 2003;
Wiederholt 2010). Here we show that optimal testing strate-
gies in our framework exhibit what can reasonably be called
rational inattention (which we typically denote RI from now
on). Specifically, our experiments show that for a substantial
fraction of formulae, an optimal strategy will hardly ever test
variables that are clearly relevant to the outcome. (Roughy
speaking, “hardly ever” means that as the total number of
tests goes to infinity, the fraction of tests devoted to these
relevant variables goes to 0.) For example, consider the for-
mula v1 ∨ v2. Suppose that the tests for v1 and v2 are equally
noisy, so there is no reason to prefer one to the other for the
first test. But for appropriate choices of payoffs, we show
that if we start by testing v2, then all subsequent tests should
also test v2 as long as v2 is observed to be true (and similarly
for v1). Thus, with positive probability, the optimal strategy
either ignores v1 or ignores v2. Our formal analysis allows
us to conclude that this is a widespread phenomenon.

The second problem we consider is what makes a concept
(which we can think of as being characterised by a formula)
hard. To address this, we use our framework to define a
notion of hardness. We show that, according to this definition,
XORs (i.e., formulae of the form v1 ⊕ · · · ⊕ vn, which are
true exactly if an odd number of the vi’s are true) and their
negations are the hardest formulae. We compare this notion
to other notions of hardness of concepts considered in the
cognitive psychology literature (e.g., (Feldman 2006; Love,
Medin, and Gureckis 2004; Shepard, Hovland, and Jenkins
1961)).

2 Information-acquisition games

We model the information-acquisition game as a single-
player game against nature. The game is characterised by
five parameters:

• a Boolean formula ϕ that mentions variables v1, . . . , vn
for some n > 0;
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• a probability distribution D on truth assignments to
{v1, . . . , vn};

• a bound k on the number of tests;
• an accuracy vector �α = (α1, . . . , αn), with 0 ≤ αi ≤ 1/2

(explained below);
• payoffs (g, b), where g > 0 > b (also explained below).
We denote this game as G(ϕ,D, k, �α, g, b).

In the game G(ϕ,D, k, �α, g, b), nature first chooses a truth
assignment to the variables v1, . . . , vn according to distribu-
tion D. While the parameters of the game are known to the
agent, the assignment chosen by nature is not. For the next
k rounds, the agent then chooses one of the n variables to
test (perhaps as a function of history), and nature responds
with either T or F . The agent then must either guess the truth
value of ϕ or choose not to guess. We view a truth assign-
ment as a function from variables to truth values ({T, F});
we can also view the formula ϕ itself as a function from
truth assignments to truth values. If the agent chooses to test
vi, then nature returns A(vi) (the right answer) with prob-
ability 1/2 + αi (and thus returns ¬A(vi) with probability
1/2 − αi).1 Finally, if the agent choses not to guess at the
end of the game, his payoff is 0. If he chooses to guess, then
his payoff is g (good) if he guesses ϕ(A) (i.e., if he guesses
the truth value of ϕ correctly, given that A is the actual truth
assignment) and b (bad) if he guesses ¬ϕ(A). A strategy for
an agent in this game is just a function that determines which
test the agent performs after observing each test-outcome
sequence of length < k, together with a final action for each
test-outcomes sequence of length k.
Example 2.1. Consider the information-acquisition game
over the formula v1 ∨ v2, with k = 2 tests, a uniform dis-
tribution on truth assignments, accuracy vector (1/4, 1/4),
correct-guess reward g = 1 and wrong-guess penalty b =
−16. As we show (see Appendix A in the full paper) this
game has two optimal strategies:

1. test v1 twice, guess T if both tests came out T , and make
no guess otherwise;

2. test v2 twice, guess T if both tests came out T , and make
no guess otherwise.

��
Thus, in this game, an optimal strategy either ignores v1

or ignores v2. As we show in the full paper, the strategy “test
v1 and then v2, guess T if both tests came out T ” is strictly
worse than these two; in fact, its expected payoff is negative!

If we increase k, the situation becomes more nuanced. For
instance, if k = 4, an optimal strategy tests v1 once, and
if the test comes out F , tests v2 three times and guesses T
if all three tests came out T . However, it always remains
optimal to keep testing one variable as long as the tests keep
coming out true. That is, all optimal strategies exhibit RI in
the sense that there are test outcomes that result in either

1Note that this means that the probability of a false positive and
that of a false negative are the same. While we could easily extend
the framework so as to allow the accuracy in a test on a variable v
to depend on whether A(v) is T or F , doing so would complicate
notation and distract from the main points that we want to make.

v1 never being tested or v2 never being tested, despite their
obvious relevance to v1 ∨ v2.

We will frequently talk about the probability of various
events over the course of a run of the game, and many of the
probabilities we care about depend only on a few parameters
of the game. Formally, we embed the traces of all information-
acquisition games on formulae in n variables in a common
sample space Ωn, whose elements are tuples of the form

(A, vi1 ≈ b1, . . . , vik ≈ bk, a),

where A is the assignment of truth values to the n variables
chosen by nature, vij ≈ bj indicates that the jth test was
performed on variable vij and that nature responded with
the test outcome bj , and a is the final agent action of either
making no guess or guessing some truth value for the for-
mula. A game G(ϕ,D, k, �α, g, b) and agent strategy σ then
induce a probability PrG,σ on this sample space. The only
features of the game G that affect the probability are the
prior distribution D and the accuracy vector α, so we write
PrD,α,σ(ϕ) rather than PrG,σ(ϕ). If some component of the
subscript does not affect the probability, then we typically
omit it. In particular, we show in Appendix B of the full
paper that the strategy σ does not affect PrG,σ(ϕ|S), so we
write PrD,�α(ϕ|S). Finally, the utility (payoff) received by
the agent at the end of the game is a real-valued random
variable that depends on parameters b and g. We can define
the expected utility EG,σ(payoff) as the expectation of this
random variable.

3 Determining optimal strategies

It is straightforward to see that the game tree for the game
G(ϕ,D, k, �α, g, b) has 3(2n)(2n)k leaves: there is a branch-
ing factor of 2n at the root (since there are 2n truth assign-
ments) followed by k branching factors of n (for the n vari-
ables that the agent can choose to test) and 2 (for the two
possible outcomes of a test). At the end there are three choices
(don’t guess, guess T , and guess F ). A straightforward back-
ward induction can then be used to compute the optimal
strategy. Unfortunately, the complexity of this approach is
polynomial in the number of leaves; it quickly grows infeasi-
ble as k grows.

In general, it is unlikely that the dependency on 2n can be
removed. In the special case that b = −∞ and αi =

1
2 for

all i (so tests are perfectly accurate, but the truth value of the
formula must be established for sure), determining whether a
strategy of length k gets a positive expected payoff reduces to
the problem of finding a conjunction of length k that implies
a given Boolean formula. Umans (1999) showed that this
problem is Σp

2-complete, that is, lies in a complexity class
that is at least as hard as both NP and co-NP.

A simple heuristic (that is independent of ϕ) would simply
be to test each variable in ϕ k/n times, and then choose the
action that maximises the expected payoff given the observed
test outcomes. We can calculate in time polynomial in k and
n the expected payoff of a guess, conditional on a sequence
of test outcomes. Since determining the best guess involves
checking the likelihood of each of the 2n truth assignments
conditional on the outcomes, this approach takes time polyno-
mial in k and 2n. We are most interested in formulae where n
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is small, so this time complexity would be acceptable. How-
ever, this approach can be arbitrarily worse than the optimum.
As we observed in Example 2.1, the expected payoff of this
strategy is negative, while there is a strategy that has positive
expected payoff.

An arguably somewhat better heuristic, which we call the
random-test heuristic, is to choose, at every step, the next
variable to test uniformly at random, and again, after k ob-
servations, choosing the action that maximises the expected
payoff. This heuristic clearly has the same time complexity
as the preceding one, while working better in information-
acquisition games that require an unbalanced approach to
testing.
Proposition 3.1. If there exists a strategy that has positive
expected payoff in the information-acquisition game G, then
the random-test heuristic has positive expected payoff.

To prove Proposition 3.1, we need a preliminary lemma.
Intuitively, an optimal strategy should try to generate test-
outcome sequences S that maximise |PrD,�α(ϕ | S)− 1/2|,
since the larger |PrD,�α(ϕ | S)−1/2| is, the more certain the
agent is regarding whether ϕ is true or false. The following
lemma characterises how large |PrD,�α(ϕ | S)− 1/2| has to
be to get a positive expected payoff.

Definition 3.2. Let q(b, g) = b+g
2(b−g) be the threshold asso-

ciated with payoffs b, g. ��
Lemma 3.3. The expected payoff of G(ϕ,D, k, �α, g, b) when
making a guess after observing a sequence S of test outcomes
is positive if and only if

|PrD,�α(ϕ | S)− 1/2| > q(b, g). (1)

Proof. The expected payoff when guessing that the formula
is true is

g · PrD,�α(ϕ | S) + b · (1− PrD,�α(ϕ | S)).
This is greater than zero iff

(g − b) PrD,�α(ϕ | S) + b > 0,

that is, iff

PrD,�α(ϕ | S)− 1/2 >
b

b− g
− 1

2
= q(b, g).

When guessing that the formula is false, we simply exchange
PrD,�α(ϕ | S) and 1−PrD,�α(ϕ | S) in the derivation. So the
payoff is then positive iff

(1−PrD,�α(ϕ | S))− 1

2
= −(PrD,�α(ϕ | S)− 1

2
) > q(b, g).

Since |x| = max{x,−x}, at least one of these two inequal-
ities must hold if (1) does, so the corresponding guess will
have positive expected payoff. Conversely, since |x| ≥ x,
either inequality holding implies (1).

Proof of Proposition 3.1. Suppose that σ is a strategy for G
with positive expected payoff. The outcome sequences of
length k partition the space of paths in the game tree, so we
have ∑

{S:|S|=k}
PrD,�α,σ(S)EG,σ(payoff | S).

Since the payoff is positive, at least one of the summands on
the right must be, say the one due to the sequence S∗. By
Lemma 3.3, |PrD,�α(ϕ is true | S∗)− 1/2| > q(b, g).

Let τ denote the random-test heuristic. Since τ chooses
the optimal action after making k observations, it will not
get a negative expected payoff for any sequence S of k test
outcomes (since it can always obtain a payoff of 0 by choos-
ing not to guess). On the other hand, with positive proba-
bility, the variables that make up the sequence S∗ will be
chosen and the outcomes in S∗ will be observed for these
tests; that is PrD,�α,τ (S

∗) > 0. It follows from Lemma 3.3
that EG,τ (payoff | S∗) > 0. Thus, EG,τ (payoff) > 0, as
desired.

4 Rational inattention

We might think that an optimal strategy for learning about
ϕ would test all variables that are relevant to ϕ (given a
sufficiently large test budget). As shown in Example 2.1, this
may not be true. For example, an optimal k-step strategy for
v1 ∨ v2 can end up never testing v1, no matter what the value
of k, if it starts by testing v2 and keeps discovering that v2 is
true. It turns out that RI is quite widespread.

It certainly is not surprising that if a variable v does not
occur in ϕ, then an optimal strategy would not test v. More
generally, it would not be surprising that a variable that is
not particularly relevant to ϕ is not tested too often, perhaps
because it makes a difference only in rare edge cases. In the
foraging animal example from the introduction, the possibil-
ity of a human experimenter having prepared a safe food to
look like a known poisonous plant would impact whether it
is safe to eat, but is unlikely to play a significant role in day-
to-day foraging strategies. What might seem more surprising
is if a variable v is (largely) ignored while another variable v′
that is no more relevant than v is tested. This is what happens
in Example 2.1; although we have not yet defined a notion
of relevance, symmetry considerations dictate that v1 and v2
are equally relevant to v1 ∨ v2, yet an optimal strategy might
ignore one of them.

The phenomenon of rational inattention observed in Ex-
ample 2.1 is surprisingly widespread. To make this claim
precise, we need to define “relevance”. There are a number
of reasonable ways of defining it; we focus on one below,
although our results hold for other reasonable definitions too.
The definition of the relevance of v to ϕ that we use counts
the number of truth assignments for which changing the truth
value of v changes the truth value of ϕ.

Definition 4.1. Define the relevance ordering ≤ϕ on the
variables in ϕ by taking

v ≤ϕ v′ iff
|{A : ϕ(A[v 
→ T]) �= ϕ(A[v 
→ F])}|

≤ |{A : ϕ(A[v′ 
→ T]) �= ϕ(A[v′ 
→ F])}|,
where A[v 
→ b] is the assignment that agrees with A except
that it assigns truth value b to v.

Thus, rather than saying that v is or is not relevant to ϕ,
we can say that v is (or is not) at least as relevant to ϕ as v′.
Considering the impact of a change in a single variable to
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the truth value of the whole formula in this fashion has been
done both in the cognitive science and the computer science
literature: for example, Vigo (2011) uses the discrete (partial)
derivative to capture this effect, and Lang et al. (2003) define
the related notion of Var-independence.

We could also consider taking the probability of the set of
truth assignments where a variable’s value makes a difference,
rather than just counting how many such truth assignments
there are. This would give a more detailed quantitative view
of relevance, and is essentially how relevance is considered in
Bayesian networks. Irrelevance is typically identified with in-
dependence. Thus, v is relevant to ϕ if a change to v changes
the probability of ϕ. (See Druzdzel and Suermondt (1994)
for a review of work on relevance in the context of Bayesian
networks.) We did not consider a probabilistic notion of rel-
evance because then the relevance order would depend on
the game (specifically, the distribution D, which is one of
the parameters of the game). Our definition makes the rel-
evance order depend only on ϕ. That said, we believe that
essentially the same results as those we prove would obtain
for a probabilistic notion of relevance ordering.

Roughly speaking, ϕ exhibits RI if, for all optimal strate-
gies σ for the game G(ϕ,D, k, �α, b, g), with probability 1,
σ tests a variable v′ frequently while hardly ever testing a
variable v that is at least as relevant to ϕ as v′. We still have
to make precise “hardly ever”, and explain how the claim
depends on the choice of D, �α, k, b, and g. For the latter
point, note that in Example 2.1, we had to choose b and g
appropriately to get RI. This turns out to be true in general;
given D, k, and �α, the claim holds only for an appropriate
choice of b and g that depends on these. In particular, for
any fixed choice of b and g that depends only on k and �α,
there exist choices of priors D for which the set of optimal
strategies is fundamentally uninteresting: we can simply set
D to assign a probability to some truth assignment A that
is so high that no k test outcomes could make it rational to
make any other guess than that the truth value of the formula
is ϕ(A).

Another way that the set of optimal strategies can be ren-
dered uninteresting is when, from the outset, there is no hope
of obtaining sufficient certainty of the formula’s truth value
with the k tests available. Similarly to when the truth value is
a foregone conclusion, in this situation, an optimal strategy
can perform arbitrary tests, as long as it makes no guess at
the end. More generally, even when in general the choice
of variables to test does matter, a strategy can reach a situa-
tion where there is sufficient uncertainty that no future test
outcome could affect the final choice. Thus, a meaningful
definition of RI that is based on the variables tested by op-
timal strategies must consider only tests performed in those
cases in which a guess actually should be made (because the
expected payoff of the optimal strategy is positive).2 We now
make these ideas precise.

2One way to avoid these additional requirements is to modify the
game so that performing a test is associated has a small but positive
cost, so that an optimal strategy avoids frivolous testing when the
conclusion is foregone. The definitions we use have essentially the
same effect, and are easier to work with.

Definition 4.2. A function f : IN → IN is negligible if
limk→∞ f(k)/k = 0. ��

The idea is that ϕ exhibits RI if, as the number k of tests
allowed increases, the fraction of times that some variable
v is tested is negligible relative to the number of times that
another variable v′ is tested, although v is at least as relevant
to ϕ as v′. We actually require slightly more: we want v′ to
be tested a linear number of times (i.e., at least ck times, for
some constant c > 0).

Since we do not want our results to depend on correlations
between variables, we restrict attention to probability distri-
butions D on truth assignments that are product distributions.

Definition 4.3. A probability distribution D on truth assign-
ments to n variables is a product distribution if there exist
probability distributions Di on truth assignments to vi for
i = 1, . . . , n such that D = D1 × · · · ×Dn. ��

As discussed earlier, to get an interesting notion of RI, we
need to allow the choice of payoffs b and g to depend on the
prior distribution D; for fixed b, g, and testing bound k, if the
distribution D places sufficiently high probability on a single
assignment, no k outcomes can change the agent’s mind. For
similar reasons, we do not want to allow D to give a single
assignment probability 1. More generally, assigning prior
probability 1 to any one variable being true or false means that
no tests will change the agent’s mind about that variable, and
so testing it is pointless (and the game is therefore equivalent
to one played on the formula in n − 1 variables where this
variable has been replaced by the appropriate truth value).
We say that a probability distribution that gives all truth
assignments positive probability is open-minded.

With all these considerations in hand, we can finally define
RI formally.

Definition 4.4. The formula ϕ exhibits rational inattention
if, for all open-minded product distributions D and uniform
accuracy vectors �α (those with (α1 = . . . = αn)), there ex-
ists a negligible function f and a constant c > 0 such that for
all k, there are payoffs b and g such that all optimal strate-
gies in the information-acquisition game G(ϕ,D, k, �α, b, g)
have positive expected payoff and, in all runs of the game,
depending on outcomes of tests, either make no guess or

• test a variable v′ at least ck times, but
• test a variable v such that v′ ≤ϕ v at most f(k) times.

��
We can check in a straightforward way whether some

natural classes of formulae exhibit RI in the sense of this
definition.

Example 4.5. (Rational inattention)

1. Conjunctions ϕ =
∧N

i=1 �i and disjunctions ϕ =
∨N

i=1 �i
of N ≥ 2 literals (variables �i = vi or their negations
¬vi) exhibit RI. In each case, we can pick b and g such
that all optimal strategies pick one variable and focus on it,
either to establish that the formula is true (for disjunctions)
or that it is false (for conjunctions). By symmetry, all
variables vi and vj are equally relevant, so vi ≤ϕ vj .

6446



2. The formulae vi and ¬vi do not exhibit RI. There is no
variable v �= vi such that vi ≤(¬)vi v, and for all choices
of b and g, the strategy of testing only vi and ignoring all
other variables (making an appropriate guess in the end)
is clearly optimal for (¬)vi.

3. More generally, we can say that all XORs in ≥ 0 variables
do not exhibit RI. For the constant formulae T and F , any
testing strategy that “guesses” correctly is optimal; for any
XOR in more than one variable, an optimal strategy must
test all of them as any remaining uncertainty about the
truth value of some variable leads to at least equally great
uncertainty about the truth value of the whole formula.
Similarly, negations of XORs do not exhibit RI. Together
with the preceding two points, this means that the only
formulae in 2 variables exhibiting rational inattention are
the four conjunctions �1 ∧ �2 and the four disjunctions
�1 ∨ �2 in which each variable occurs exactly once and
may or may not be negated.

4. For n > 2, formulae ϕ of the form v1 ∨ (¬v1 ∧ v2 ∧ . . .∧
vn)) do not exhibit RI. Optimal strategies that can attain
a positive payoff at all will start by testing v1; if the tests
come out true, it will be optimal to continue testing v1,
ignoring v2 . . . vn. However, for formulae ϕ of this form,
v1 is strictly more relevant than the other variables: there
are only 2 assignments where changing vi flips the truth
value of the formula for i > 1 (the two where v1 
→ F
and vj 
→ T for j /∈ {1, i}) but 2n−2 assignments where
changing v1 does (all but the two where vj 
→ T for
j �= 1). Hence, in the event that all these tests actually
succeed, the only variables that are ignored are not at least
as relevant as the only one that isn’t, so ϕ does not exhibit
RI.

��
Unfortunately, as far as we know, determining the opti-

mal strategies is hard in general. To be able to reason about
whether ϕ exhibits RI in a tractable way, we find it useful to
consider optimal test-outcome sequences.
Definition 4.6. A sequence S of test outcomes is optimal for
a formula ϕ, prior D, and accuracy vector �α if it minimises
the conditional uncertainty about the truth value of ϕ among
all test-outcome sequences of the same length. That is,

∣∣∣∣PrD,�α(ϕ | S)− 1

2

∣∣∣∣ ≥
∣∣∣∣PrD,�α(ϕ | S′)− 1

2

∣∣∣∣
for all S′ with |S′| = |S|.

Using this definition, we can derive a sufficient (but not
necessary!) condition for formulae to exhibit RI.
Proposition 4.7. Suppose that, for a given formula ϕ, for all
open-minded product distributions D and uniform accuracy
vectors �α, there exists a negligible function f and a constant
c > 0 such that for all testing bounds k, the test-outcome
sequences S optimal for ϕ, D, and �α of length k have the
following two properties:
• S has at least ck tests of some variable v′, but
• S has at most f(k) tests of some variable v ≥ϕ v′.
Then ϕ exhibits RI.

Proof. Let P (ϕ,D, �α, f, c, k) denote the statement that for
all test-outcomes sequences S that are optimal for ϕ, D,
and �α, there exist variables v ≥ϕ v′ such that S contains
≥ ck tests of v′ and ≤ f(k) tests of v. We now prove that
for all ϕ, D, �α, f , c, and k, P (ϕ,D, �α, f, c, k) implies the
existence of b and g such that ϕ exhibits RI in the game
G(ϕ,D, k,m, b, g). It is easy to see that this suffices to prove
the proposition.

Fix ϕ, D, �α, f , c, and k, and suppose that
P (ϕ,D, �α, f, c, k) holds. Let

q∗ = max
{S:|S|=k}

∣∣∣∣PrD,�α(ϕ|S)− 1

2

∣∣∣∣ .

Since there are only finitely many outcome sequences of
length k, there must be some ε > 0 sufficiently small such
that for all S with |S| = k, |PrD,�α(ϕ|S) − 1

2 | > q∗ − ε if
and only if |PrD,�α(ϕ|S) − 1

2 | = q∗. Choose the payoffs b
and g such that the threshold q(b, g) = q∗ − ε. We show that
ϕ exhibits RI in the game G(ϕ,D, k,m, b, g).

Let Sk = {S : |S| = k and |PrD,�α(ϕ|S) − 1
2 | = q∗}

be the set of test-outcome sequences of length k optimal
for ϕ, D, and �α. If σ is an optimal strategy for the game
G(ϕ,D, k, �α, g, b), the only sequences of test outcomes after
which σ makes a guess are the ones in Sk. For if a guess is
made after seeing some test-outcome sequence S∗ �∈ Sk, by
Lemma 3.3 and the choice of b and g, that expected payoff of
doing so must be negative, so the strategy σ′ that is identical
to σ except that it makes no guess if S∗ is observed is strictly
better than σ, contradicting the optimality of σ. So whenever
a guess is made, it must be after a sequence S ∈ Sk was
observed. Since sequences in Sk are optimal for ϕ, D, and �α,
and P (ϕ,D, �α, f, c, k) holds by assumption, this sequence
S must contain ≥ ck test of v′ and ≤ f(k) test of v.

All that remains to show that ϕ exhibits RI in the game
G(ϕ,D, k, �α, g, b) is to show that all optimal strategies have
positive expected payoff. To do this, it suffices to show that
there is a strategy that has positive expected payoff. Let S
be an arbitrary test-outcome sequence in Sk. Without loss
of generality, we can assume that PrD,�α(ϕ | S) > 1/2. Let
σS be the strategy that tests every variable the number of
times that it occurs in S in the order that the variables occur
in S, and guesses that the formula is true if and only if S
was in fact the outcome sequence observed (and makes no
guess otherwise). Since S will be observed with positive
probability, it follows from Lemma 3.3 that σS has positive
expected payoff. This completes the proof.

It is easy to show that all that affects PrD,�α(ϕ | S) is the
number of number of times that each variable is tested and
the outcome of the test, not the order in which the tests were
made. It turns out that to determine whether a formula ϕ
exhibits RI, we need to consider, for each truth assignment
A that satisfies ϕ and test-outcome sequence S, the A-trace
of S; this is a tuple that describes, for each variable vi, the
fraction of times vi is tested and the outcome agrees with
A(vi) compared to the fraction of times that the outcome
disagrees with A(vi).

In the full paper, we show that whether a formula exhibits
RI can be determined by considering properties of the A-
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traces of outcome sequences. Specifically, we show that the
set of A-traces of optimal outcome sequences tends to a
convex polytope as the length of S increases. This polytope
has a characterisation as the solution set of an O(n2n)-sized
linear program (LP), so we can find points in the polytope
in time polynomial in 2n. Moreover, conditions such as a
variable v is ignored while a variable v′ that is no more
relevant than v is not ignored correspond to further conditions
on the LP, and thus can also be checked in time polynomial
in 2n. It follows that we can get a sufficient condition for
a formula to exhibit RI or not exhibit RI by evaluating a
number of LPs of this type.

Using these insights, we were able to exhaustively test all
formulae that involve at most 4 variables to see whether, as
the number of tests in the game increases, optimal strategies
were testing a more relevant variable a negligible number of
times relative to a less variable. Since the criterion that we
use is only a sufficient condition, not a necessary one, we
can give only a lower bound on the true number of formulae
that exhibit RI. In the full paper, we discuss an additional
conjecture, the noise transfer conjecture (NTC); if it holds,
we can establish RI for significantly more formulae.

In the following table, we summarise our results. The first
column lists the number of formulae that we are certain ex-
hibit RI; the second column lists the number of additional
formulae that exhibit RI if the NTC holds; the third column
lists the remaining formulae, whose status is unknown. (Since
RI is a semantic condition, when we say “formula”, we really
mean “equivalence class of logically equivalent formulae”.
There are 22

n

equivalence classes of formulae with n vari-
ables, so the sum of the three columns in the row labeled n
is 22

n

.) As the results show, at least 15% of formulae exhibit
RI, and this number increases to roughly 30% with the NTC.

n exhibit RI NTC ⇒ RI unknown
1 0 0 4
2 8 0 8
3 40 56 160
4 9952 8248 47334

Given the numbers involved, we could not exhaustively
check what happens for n ≥ 5. However, we did ran-
domly sample 4000 formulae that involved n variables for
n = 5, . . . , 9. This is good enough for statistical reliability:
we can model the process as a simple random sample of a
binomially distributed parameter (the presence of RI), and
in the worst case (if its probability in the population of for-
mulae is exactly 1

2 ), the 95% confidence interval still has

width ≤ z
√

1
4000

1
2

(
1− 1

2

) ≈ 0.015, which is well below
the fractions of formulae exhibiting RI that we observe (all
above 0.048). As the following table shows, RI continued to
be quite common. Indeed, even for formulae with 9 variables,
about 5% of the formulae we sampled exhibited RI.

n exhibit RI NTC ⇒ RI unknown
5 585 313 3102
6 506 138 3356
7 293 63 3644
8 234 30 3736
9 194 10 3796

The numbers suggest that the fraction of formulae ex-
hibiting RI decreases as the number of variables increases.
However, since the formulae that characterise situations of
interest to people are likely to involve relatively few variables
(or have a structure like disjunction or conjunction that we
know exhibits RI), this suggests that RI is a widespread phe-
nomenon. Indeed, if we weaken the notion of RI slightly (in
what we believe is quite a natural way!), then RI is even more
widespread. As noted in Example 4.5, formulae of the form
v1 ∨ (¬v1 ∧ v2 ∧ . . . ∧ vn) do not exhibit RI in the sense
of our definition. However, for these formulae, if we choose
the payoffs b and g appropriately, an optimal strategy may
start by testing v1, but if sufficiently many test outcomes are
v1 ≈ F , it will then try to establish that the formula is false by
focussing on one variable of the conjunction (v2 ∧ . . . ∧ vn),
and ignoring the rest. Thus, for all optimal strategies, we
would have RI, not for all test-outcome sequences (i.e., not in
all runs of the game), but on a set of test-outcome sequences
that occur with positive probability.

We found it hard to find formulae that do not exhibit RI in
this weaker sense. In fact, we conjecture that the only family
of formulae that do not exhibit RI in this weaker sense are
equivalent to XORs in zero or more variables (v1 ⊕ . . . ⊕
vn) and their negations (Note that this family of formulae
includes vi and ¬vi.) If this conjecture is true, we would
expect to quite often see rational agents (and decision-making
computer programs) ignoring relevant variables in practice.

5 Testing as a measure of complexity

The notion of associating some “intrinsic difficulty” with
concepts (typically characterised using Boolean formulae)
has been a topic of continued interest in the cognitive science
community (Vigo 2011; Feldman 2006; Love, Medin, and
Gureckis 2004; Shepard, Hovland, and Jenkins 1961). We can
use our formalism to define a notion of difficulty for concepts.
Our notion of difficulty is based on the number of tests that
are needed to guarantee a positive expected payoff for the
game G(ϕ,D, k, �α, g, b). This will, in general, depend on D,
�α, g, and b. Actually, by Lemma 3.3, what matters is not g
and b, but q(b, g) (the threshold determined by g and b). Thus,
our complexity measure takes D, �α, and q as parameters.

Definition 5.1. Given a formula ϕ, accuracy vector �α, dis-
tribution D, and threshold 0 < q ≤ 1

2 , the (D, q, �α)-test
complexity cplD,q,α̃(ϕ) of ϕ is the least k such that there
exists a strategy with positive payoff for G(ϕ,D, k, �α, g, b),
where g and b are chosen such that q(b, g) = q. ��

To get a sense of how this definition works, consider what
happens if we consider all formulae that use two variables,
v1 and v2, with the same settings as in Example 2.1: �α =
(1/4, 1/4), D is the uniform distribution on assignments,
g = 1, and b = −16:

1. If ϕ is simply T or F , any strategy that guesses the appro-
priate truth value, regardless of test outcomes, is optimal
and gets a positive expected payoff, even when k = 0.

2. If ϕ is a single-variable formula of the form v1 or ¬v1,
then the greatest certainty |PrD,�α(ϕ | S) − 1/2| that is
attainable with any sequence of two tests is 2/5, when S =
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(v1 ≈ T, v1 ≈ T ) or the same with F . This is smaller than
q(b, g), and so it is always optimal to make no guess; that is,
all strategies for the game with k = 2 have expected payoff
at most 0. If k = 3 and S = (v1 ≈ T, v1 ≈ T, v1 ≈ T ),
then (PrD,�α(ϕ | S) − 1/2) = 13/28 > q(b, g). Thus, if
k = 3, the strategy that test v1 three times and guesses the
appropriate truth value iff all three tests agree has positive
expected payoff.

3. If ϕ is v1 ⊕ v2, then the shortest outcome sequences S
for which PrD,�α(ϕ | S)− 1/2 is greater than q(b, g) have
length 7, and involve both variables being tested. Hence,
the smallest value of k for which strategies with payoff
above 0 exist is 7.
It is not hard to see that T and F have complexity 0, while

disjunctions, conjunctions, and, more generally, majority (“m
out of n variables are true”) have low complexity. We also
completely characterise the most difficult concepts, according
to our complexity measure, at least in the case of a uniform
distribution Du on truth assignments (which is the one most
commonly considered in practice).
Theorem 5.2. Among all Boolean formulae in n variables,
for all 0 < q ≤ 1

2 and accuracy vectors �α, the (Du, q, �α)-
test complexity is maximised by formulae equivalent to the
n-variable XOR v1 ⊕ . . .⊕ vn or its negation.

Proof sketch. Call a formula ϕ antisymmetric in variable v
if ϕ(A) = ¬ϕ(A′) for all pairs of assignments A, A′ that
only differ in the truth value of v. It is easy to check that if a
formula is antisymmetric in all variables, it is equivalent to
an XOR or a negation of one. Given a formula ϕ, the antisym-
metrisation ϕv of ϕ along v is the unique formula such that
ϕv(A) = ϕ(A) if A(v) = T and ϕv(A) = ¬ϕ(A[v 
→ T ])
otherwise. We can show that the (Du, q, �α)-test complexity
of ϕv is at least as high as that of ϕ, and that if v′ �= v, then
ϕv is antisymmetric in v′ iff ϕ is antisymmetric in v′. So,
starting with an arbitrary formula ϕ, we antisymmetrise every
variable in turn. We then end up with an XOR or the nega-
tion of one. Moreover, each antisymmetrisation step in the
process gives a formula whose test complexity is at least as
high as that of the formula in the previous step. The desired
result follows. A detailed proof can be found in the appendix
of the full paper.

It is of interest to compare our notion of “intrinsic diffi-
culty” with those considered in the cognitive science liter-
ature. That literature can broadly be divided up into purely
experimental approaches, typically focused on comparing the
performance of human subjects in dealing with different cat-
egories, and more theoretical ones that posit some structural
hypothesis regarding which categories are easy or difficult.

The work of Shepard, Hovland, and Jenkins (1961) is a
good example of the former type; they compare concepts
that can be defined using three variables in terms of how
many examples (pairs of assignments and corresponding truth
values of the formula) it takes human subjects to understand
and remember a formula ϕ, as defined by a subject’s ability
to predict the truth value of ϕ correctly for a given truth
assignment. We can think of this work as measuring how hard
it is to work with a formula; our formalism is measuring how

hard it is to learn the truth value of a formula. The difficulty
ranking found experimentally by Shepard et al. mostly agrees
with our ranking, except that they find two- and three-variable
XORs to be easier that some other formulae, whereas we have
shown that these are the hardest formulae. Perhaps this is
suggesting that there are differences between how hard it is
to work with a concept and how hard it is to learn it.

Feldman (2006) provides a good example of the latter ap-
proach. He proposes the notion of the power spectrum of
a formula ϕ. Roughly speaking, this counts the number of
antecedents in the conjuncts of a formula when it is written
as a conjunction of implications where the antecedent is a
conjunction of literals and the conclusion is a single literal.
For example, the formula ϕ = (v1 ∧ (v2 ∨ v3)) ∨ (¬v1 ∧
(¬v2 ∧ ¬v3)) can be written as the conjunction of three such
implications: (v2 → v1) ∧ (v3 → v1) ∧ (¬v2 ∧ v1 → v3).
Since there are no conjuncts with 0 antecedents, 2 conjuncts
with 1 antecedent, and 1 conjunct with 2 antecedents, the
power spectrum of ϕ is (0, 1, 2). Having more antecedents
in an implication is viewed as making concepts more com-
plicated, so a formula with a power spectrum of (0, 1, 1) is
considered more complicated than one with a power spec-
trum of (0, 3, 0), and less complicated than one with a power
spectrum of (0, 0, 3).

A formula with a power spectrum of the form
(i, j, 0, . . . , 0) (i.e., a formula that can be written as the con-
junction of literals and formulae of the form x → y, where x
and y are literals) is called a linear category. Experimental
evidence suggests that human subjects generally find linear
categories easier to learn than nonlinear ones (Feldman 2006;
Love, Medin, and Gureckis 2004). (This may be related to the
fact that such formulae are linearly separable, and hence learn-
able by support vector machines (Vapnik and Lerner 1963).)
Although our complexity measure does not completely agree
with the notion of a power spectrum, both notions classify
XORs and their negations as the most complex; these for-
mulae can be shown to have a power spectrum of the form
(0, . . . , 0, 2n−1).

Another notion of formula complexity is the notion of
subjective structural complexity introduced by Vigo (2011),
where the subjective structural complexity of a formula ϕ is
|Sat(ϕ)|e−‖�f‖2 , where Sat(ϕ) is the set of truth assignments
that satisfy ϕ, f = (f1, . . . , fn), fi is the fraction of truth
assignments that satisfy ϕ such that changing the truth value
of vi results in a truth assignment that does not satisfy ϕ,
and ‖�f‖2 =

√
(f1)2 + · · ·+ (fn)2 represents the �2 norm.

Unlike ours, with this notion of complexity, ϕ and ¬ϕ may
have different complexity (because of the |Sat(ϕ)| factor).
However, as with our notion, XORs and their negation have
maximal complexity.

6 Conclusion

We have presented the information-acquisition game, a game-
theoretic model of gathering information to inform a decision
whose outcome depends on the truth of a Boolean formula.
We argued that it is hard to find optimal strategies for this
model by brute force, and presented the random-test heuris-
tic, a simple strategy that only has weak guarantees but is
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computationally tractable. It is an open question whether bet-
ter guarantees can be proven for the random-test heuristic,
and whether better approaches to testing that are still more
computationally efficient than brute force exist.

We used our techniques to show that RI is a widespread
phenomenon (at least, for formulae that use at most 9 vari-
ables, which certainly covers most naturally-arising concepts
for humans). We hope in future work to get a natural struc-
tural criterion for when formulae exhibit RI that can be ap-
plied to arbitrary formulae.

Finally, we discussed how the existence of good strategies
in our game can be used as a measure of the complexity
of a Boolean formula. It would be useful to get a better
understanding of whether test complexity captures natural
structural properties of concepts.

Although we have viewed the information-acquisition
game as a single-agent game, there are natural extensions
of it to multi-agent games, where agents are collaborating
to learn about a formula. We could then examine different
degrees of coordination for these agents. For example, they
could share information at all times, or share information
only at the end (before making a guess). The goal would be
to understand whether there is some structure in formulae that
makes them particularly amenable to division of labour, and
to what extent it can be related to phenomena such as rational
inattention (which may require the agents to coordinate on
deciding which variable to ignore).
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