
A Neural Stochastic Volatility Model

Rui Luo,† Weinan Zhang,‡ Xiaojun Xu,‡ Jun Wang†
†University College London

‡Shanghai Jiao Tong University
{r.luo,j.wang}@cs.ucl.ac.uk, {wnzhang,xuxj}@apex.sjtu.edu.cn

Abstract

In this paper, we show that the recent integration of statistical
models with deep recurrent neural networks provides a new
way of formulating volatility (the degree of variation of time
series) models that have been widely used in time series anal-
ysis and prediction in finance. The model comprises a pair of
complementary stochastic recurrent neural networks: the gen-
erative network models the joint distribution of the stochas-
tic volatility process; the inference network approximates the
conditional distribution of the latent variables given the ob-
servables. Our focus here is on the formulation of temporal
dynamics of volatility over time under a stochastic recurrent
neural network framework. Experiments on real-world stock
price datasets demonstrate that the proposed model gener-
ates a better volatility estimation and prediction that outper-
forms mainstream methods, e.g., deterministic models such
as GARCH and its variants, and stochastic models namely
the MCMC-based stochvol as well as the Gaussian-process-
based, on average negative log-likelihood.

Introduction
The volatility of the price movements reflects the ubiq-
uitous uncertainty within financial markets. It is critical
that the level of risk (aka, the degree of variation), indi-
cated by volatility, is taken into consideration before invest-
ment decisions are made and portfolio are optimised (Hull
2006); volatility is substantially a key variable in the pricing
of derivative securities. Hence, estimating and forecasting
volatility is of great importance in branches of financial stud-
ies, including investment, risk management, security valua-
tion and monetary policy making (Poon and Granger 2003).

Volatility is measured typically by employing the standard
deviation of price change in a fixed time interval, such as
a day, a month or a year. The higher the volatility is, the
riskier the asset should be. One of the primary challenges
in designing volatility models is to identify the existence
of latent stochastic processes and to characterise the under-
lying dependences or interactions between variables within
a certain time span. A classic approach has been to hand-
craft the characteristic features of volatility models by im-
posing assumptions and constraints, given prior knowledge
and observations. Notable examples include autoregressive

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

conditional heteroscedasticity (ARCH) model (Engle 1982)
and the extension, generalised ARCH (GARCH) (Bollerslev
1986), which makes use of autoregression to capture the
properties of time-varying volatility within many time se-
ries. As an alternative to the GARCH model family, the class
of stochastic volatility (SV) models specify the variance
to follow some latent stochastic process (Hull and White
1987). Heston (Heston 1993) proposed a continuous-time
model with the volatility following an Ornstein-Uhlenbeck
process and derived a closed-form solution for options pric-
ing. Since the temporal discretisation of continuous-time dy-
namics sometimes leads to a deviation from the original tra-
jectory of system, those continuous-time models are seldom
applied in forecasting. For practical purposes of forecast-
ing, the canonical model (Jacquier, Polson, and Rossi 2002;
Kim, Shephard, and Chib 1998) formulated in a discrete-
time fashion for regularly spaced data such as daily prices of
stocks is of great interest. While theoretically sound, those
approaches require strong assumptions which might involve
detailed insight of the target sequences and are difficult to
determine without a thorough inspection.

In this paper, we take a fully data driven approach and de-
termine the configurations with as few exogenous input as
possible, or even purely from the historical data. We pro-
pose a neural network re-formulation of stochastic volatility
by leveraging stochastic models and recurrent neural net-
works (RNNs). In inspired by the work from Chung et al.
(Chung et al. 2015) and Fraccaro et al. (Fraccaro et al. 2016),
the proposed model is rooted in variational inference and
equipped with the latest advances of stochastic neural net-
works. The model inherits the fundamentals of SV model
and provides a general framework for volatility modelling;
it extends previous sequential frameworks with autoregres-
sive and bidirectional architecture and provide with a more
systematic and volatility-specific formulation on stochastic
volatility modelling for financial time series. We presume
that the latent variables follow a Gaussian autoregressive
process, which is then utilised to model the variance pro-
cess. Our neural network formulation is essentially a general
framework for volatility modelling, which covers two major
classes of volatility models in financial study as the special
cases with specific weights and activations on neurons.

Experiments with real-world stock price datasets are per-
formed. The result shows that the proposed model produces

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6401



more accurate estimation and prediction, outperforming var-
ious widely-used deterministic models in the GARCH fam-
ily and several recently proposed stochastic models on av-
erage negative log-likelihood; the high flexibility and rich
expressive power are validated.

Related Work
A notable framework for volatility is autoregressive con-
ditional heteroscedasticity (ARCH) model (Engle 1982): it
can accurately identify the characteristics of time-varying
volatility within many types of time series. Inspired by
ARCH model, a large body of diverse work based on
stochastic process for volatility modelling has emerged
(Bollerslev, Engle, and Nelson 1994). Bollerslev (Bollerslev
1986) generalised ARCH model to the generalised autore-
gressive conditional heteroscedasticity (GARCH) model in a
manner analogous to the extension from autoregressive (AR)
model to autoregressive moving average (ARMA) model by
introducing the past conditional variances in the current con-
ditional variance estimation. Engle and Kroner (Engle and
Kroner 1995) presented theoretical results on the formula-
tion and estimation of multivariate GARCH model within
simultaneous equations systems. The extension to multi-
variate model allows the covariance to present and depend
on the historical information, which are particularly useful
in multivariate financial models. An alternative to the con-
ditionally deterministic GARCH model family is the class
of stochastic volatility (SV) models, which first appeared
in the theoretical finance literature on option pricing (Hull
and White 1987). The SV models specify the variance to
follow some latent stochastic process such that the current
volatility is no longer a deterministic function even if the
historical information is provided. As an example, Heston’s
model (Heston 1993) characterises the variance process as a
Cox-Ingersoll-Ross process driven by a latent Wiener pro-
cess. While theoretically sound, those approaches require
strong assumptions which might involve complex proba-
bility distributions and non-linear dynamics that drive the
process. Nevertheless, empirical evidences have confirmed
that volatility models provide accurate prediction (Ander-
sen and Bollerslev 1998) and models such as ARCH and
its descendants/variants have become indispensable tools in
asset pricing and risk evaluation. Notably, several models
have been recently proposed for practical forecasting tasks:
Kastner et al. (Kastner and Frühwirth-Schnatter 2014) im-
plemented the MCMC-based framework stochvol where the
ancillarity-sufficiency interweaving strategy (ASIS) is ap-
plied for boosting MCMC estimation of stochastic volatility;
Wu et al. (Wu, Hernández-Lobato, and Ghahramani 2014)
designed the GP-Vol, a non-parametric model which utilises
Gaussian processes to characterise the dynamics and jointly
learns the process and hidden states via online inference al-
gorithm. Despite the fact that it provides us with a practi-
cal approach towards stochastic volatility forecasting, both
models require a relatively large volume of samples to en-
sure the accuracy, which involves very expensive sampling
routine at each time step. Another drawback is that those
models are incapable to handle the forecasting task for mul-
tivariate time series.

On the other hand, deep learning (LeCun, Bengio, and
Hinton 2015; Schmidhuber 2015) that utilises nonlinear
structures known as deep neural networks, powers various
applications. It has triumph over pattern recognition chal-
lenges, such as image recognition (Krizhevsky, Sutskever,
and Hinton 2012), speech recognition (Chorowski et al.
2015), machine translation (Bahdanau, Cho, and Bengio
2014) to name a few.

Time-dependent neural networks models include RNNs
with neuron structures such as long short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997), bidirectional
RNN (BRNN) (Schuster and Paliwal 1997), gated recur-
rent unit (GRU) (Cho et al. 2014) and attention mecha-
nism (Xu et al. 2015). Recent results show that RNNs excel
for sequence modelling and generation in various applica-
tions (van den Oord, Kalchbrenner, and Kavukcuoglu 2016;
Cho et al. 2014; Xu et al. 2015). However, despite its ca-
pability as non-linear universal approximator, one of the
drawbacks of neural networks is its deterministic nature.
Adding latent variables and their processes into neural net-
works would easily make the posteriori computationally in-
tractable. Recent work shows that efficient inference can
be found by variational inference when hidden continuous
variables are embedded into the neural networks structure
(Kingma and Welling 2013; Rezende, Mohamed, and Wier-
stra 2014). Some early work has started to explore the use
of variational inference to make RNNs stochastic: Chung
et al. (Chung et al. 2015) defined a sequential framework
with complex interacting dynamics of coupling observable
and latent variables whereas Fraccaro et al. (Fraccaro et al.
2016) utilised heterogeneous backward propagating layers
in inference network according to its Markovian properties.

In this paper, we apply the stochastic neural networks to
solve the volatility modelling problem. In other words, we
model the dynamics and stochastic nature of the degree of
variation, not only the mean itself. Our neural network treat-
ment of volatility modelling is a general one and existing
volatility models (e.g., the Heston and GARCH models) are
special cases in our formulation.

Preliminaries: Volatility Models
Volatility models characterise the dynamics of volatility pro-
cesses, and help estimate and forecast the fluctuation within
time series. As it is often the case that one seeks for pre-
diction on quantity of interest with a collection of historical
information at hand, we presume the conditional variance
to have dependency – either deterministic or stochastic – on
history, which results in two categories of volatility models.

Deterministic Volatility Models: the GARCH
Model Family
The GARCH model family comprises various linear mod-
els that formulate the conditional variance at present as a
linear function of observations and variances from the past.
Bollerslev’s extension (Bollerslev 1986) of Engle’s prim-
itive ARCH model (Engle 1982), referred as generalised
ARCH (GARCH) model, is one of the most well-studied

6402



and widely-used volatility models:

σ2
t = α0 +

p∑
i=1

αix
2
t−i +

q∑
j=1

βjσ
2
t−j , (1)

xt ∼ N (0, σ2
t ), (2)

where Eq. (2) represents the assumption that the observa-
tion xt follows from the Gaussian distribution with mean 0
and variance σ2

t ; the (conditional) variance σ2
t is fully deter-

mined by a linear function (Eq. (1)) of previous observations
{x<t} and variances {σ2

<t}. Note that if q = 0 in Eq. (1),
GARCH model degenerates to ARCH model.

Various variants have been proposed ever since. Glosten,
Jagannathan and Runkle (Glosten, Jagannathan, and Run-
kle 1993) extended GARCH model with additional terms
to account for asymmetries in the volatility and proposed
GJR-GARCH model; Zakoian (Zakoian 1994) replaced the
quadratic operators with absolute values, leading to thresh-
old ARCH/GARCH (TARCH) models. The general func-
tional form is formulated as

σd
t = α0 +

p∑
i=1

αi|xt−i|d +
q∑

j=1

βjσ
d
t−j

+

o∑
k=1

γk|xt−k|dI{xt−k < 0}, (3)

where I{xt−k < 0} denotes the indicator function:
I{xt−k < 0} = 1 if xt−k < 0, and 0 otherwise, which
allows for asymmetric reactions of volatility in terms of the
sign of previous observations.

Many variants of the GARCH model can be expressed by
assigning values to parameters p, o, q, d in Eq. (3):
1. ARCH(p): p ∈ N

+; q ≡ 0; o ≡ 0; d ≡ 2

2. GARCH(p, q): p ∈ N
+; q ≡ 0; o ≡ 0; d ≡ 2

3. GJR-GARCH(p, o, q): p ∈ N
+; q ∈ N

+; o ∈ N
+; d ≡ 2

4. AVARCH(p): p ∈ N
+; q ≡ 0; o ≡ 0; d ≡ 2

5. AVGARCH(p, q): p ∈ N
+; q ∈ N

+; o ≡ 0; d ≡ 2

6. TARCH(p, o, q): p ∈ N
+; q ∈ N

+; o ∈ N
+; d ≡ 1

Another fruitful specification shall be Nelson’s exponen-
tial GARCH (EGARCH) model (Nelson 1991), which in-
stead formulates the dependencies in log-variance log(σ2

t ):

log(σ2
t ) = α0 +

p∑
i=1

αig(xt−i) +

q∑
j=1

βj log(σ
2
t−j), (4)

g(xt) = θxt + γ(|xt| − E[|xt|]), (5)

where g(xt) (Eq. (5)) accommodates the asymmetric rela-
tion between observations and volatility changes. If we set
q ≡ 0 in Eq. (4), the EGARCH(p, q) model degenerates to
EARCH(p) model.

Stochastic Volatility Models
An alternative to the (conditionally) deterministic volatility
models is the class of stochastic volatility (SV) models. First
introduced in the theoretical finance literature, earliest SV

models such as Hull and White’s (Hull and White 1987)
as well as Heston model (Heston 1993) are formulated by
stochastic differential equations in a continuous-time fash-
ion for analysis convenience. In particular, Heston model in-
stantiates a continuous-time stochastic volatility model for
univariate processes:

dσ(t) = −βσ(t) dt+ δ dwσ(t), (6)

dx(t) = (μ− 0.5σ2(t)) dt+ σ(t) dwx(t). (7)

where x(t) = log s(t) is the logarithm of stock price st at
time t, wx(t) and wσ(t) represent two correlated Wiener
processes and the correlation between dwx(t) and dwσ(t)
is expressed as E[dwx(t) · dwσ(t)] = ρ dt.

For practical use, empirical versions of the SV model,
typically formulated in a discrete-time fashion, are of great
interest. The canonical model (Jacquier, Polson, and Rossi
2002; Kim, Shephard, and Chib 1998) for regularly spaced
data is formulated as

log(σ2
t ) = η + φ(log(σ2

t−1)− η) + zt, (8)

zt ∼ N (0, σ2
z), xt ∼ N (0, σ2

t ). (9)

Equation (8) indicates that the (conditional) log-variance
log(σ2

t ) depends on not only the historical log-variances
{log(σ2

t )} but a latent stochastic process {zt}. The latent
process {zt} is, according to Eq. (9), white noise process
with i.i.d. Gaussian variables.

Notably, the volatility σ2
t is no longer conditionally de-

terministic (i.e. deterministic given the complete history
{σ2

<t}) but to some extent stochastic in the setting of SV
models: Heston model involves two correlated continuous-
time Wiener processes while the canonical model is driven
by a discrete-time Gaussian white-noise process.

Volatility Models in a General Form
Hereafter we denote the sequence of observations as {xt}
and the latent stochastic process as {zt}. As seen in previ-
ous sections, the dynamics of volatility process {σ2

t } can be
abstracted as

σ2
t = f(σ2

<t, x<t, z≤t) = Σx(x<t, z≤t). (10)

The latter equality follows as we recursively substitute
σ2
τ with f(σ2

<τ , x<τ , z≤τ ) for all τ < t. For models in
the GARCH family, we discard z≤t in the specification of
Σx(x<t, z≤t) (Eq. (10)); on the other hand, for the SV
model, x<t is ignored instead. We can loosen the constraint
that xt is zero-mean to a time-varying mean μx(x<t, z≤t)
for more flexibility.

Recall that the latent stochastic process {zt} (Eq. (9)) in
the SV model is an i.i.d. Gaussian white noise process. We
may extend the white noise process to a more flexible one
with inherent autoregressive dynamics: the mean μz(z<t)
and variance Σz(z<t) are functions of an autoregressive
form on the historical values. Thus, the generalised model
can be formulated as

zt|z<t ∼ N (μz(z<t), Σ
z(z<t)), (11)

xt|x<t, z≤t ∼ N (μx(x<t, z≤t), Σ
x(x<t, z≤t)), (12)

6403



where we have presumed that both the observation xt and
the latent variable zt are normally distributed. Note that the
autoregressive process degenerates to i.i.d. white noise pro-
cess when μz(z<t) ≡ 0 and Σz(z<t) ≡ σ2

z . It should be
emphasised that the purpose of reinforcing an autoregres-
sive structure (11) of the latent variable zt is that we believe
such formulation fits better to real scenarios from financial
aspect compared with the i.i.d. convention: the price fluctua-
tion of a certain stock is the consequence of not only its own
history but also the influence from the environment, e.g. its
competitors, up/downstream industries, relevant companies
in the market, etc. Such external influence is ever-changing
and may preserve memory and hence hard to characterise if
restricted to i.i.d. noise. The latent variable zt with an au-
toregressive structure provides a possibility of decoupling
the internal influential factors from the external ones, which
we believe is the essence of introducing zt.

Neural Stochastic Volatility Models
In this section, we establish the neural stochastic volatility
model (NSVM) for volatility estimation and prediction.

Generating Observable Sequence
Recall that the observable variable xt (Eq. (12)) and the la-
tent variable zt (Eq. (11)) are described by autoregressive
models (as xt also involves an exogenous input z≤t). Let
pΦ(xt|x<t, z≤t) and pΦ(zt|z<t) denote the probability dis-
tributions of xt and zt at time t. The factorisation on the joint
distributions of sequences {xt} and {zt} applies as follow:

pΦ(Z) =
∏

t

pΦ(zt|z<t)

=
∏

t

N (zt;μ
z
Φ(z<t), Σ

z
Φ(z<t)), (13)

pΦ(X|Z) =
∏

t

pΦ(xt|x<t, z≤t)

=
∏

t

N (xt;μ
x
Φ(x<t, z≤t), Σ

x
Φ(x<t, z≤t)), (14)

where X = {xt}1:T and Z = {zt}1:T represents the
sequences of observable and latent variables, respectively,
whereas Φ stands for the collection of parameters of gener-
ative model. The unconditional generative model is defined
as the joint distribution:

pΦ(X,Z) =
∏
t

pΦ(xt|x<t, z≤t)pΦ(zt|z<t). (15)

It can be observed that the mean and variance are con-
ditionally deterministic: given the historical information
{z<t}, the current mean μz

t = μz
Φ(z<t) and variance

Σz
t = Σz

Φ(z<t) of zt is obtained and hence the distribu-
tion N (zt;μ

z
t , Σ

z
t ) of zt is specified; after sampling zt from

the specified distribution, we incorporate {x<t} and cal-
culate the current mean μx

t = μx
Φ(x<t, z≤t) and variance

Σx
t = Σx

Φ(x<t, z≤t) of xt and determine its distribution
N (xt;μ

x
t , Σ

x
t ) of xt. It is natural and convenient to present

such a procedure in a recurrent fashion because of its autore-
gressive nature. Since RNNs can essentially approximate ar-
bitrary function of recurrent form, the means and variances,

which may be driven by complex non-linear dynamics, can
be efficiently computed using RNNs.

The unconditional generative model consists of two
pairs of RNN and multi-layer perceptron (MLP), namely
RNNz

G/MLPz
G for the latent variable and RNNx

G/MLPx
G for

the observable. We stack those two RNN/MLP pairs together
according to the causal dependency between variables. The
unconditional generative model is implemented as the gen-
erative network:

{μz
t , Σ

z
t } = MLPz

G(h
z
t ;Φ), (16)

hz
t = RNNz

G(h
z
t−1, zt−1;Φ), (17)

zt ∼ N (μz
t , Σ

z
t ), (18)

{μx
t , Σ

x
t } = MLPx

G(h
x
t ;Φ), (19)

hx
t = RNNx

G(h
x
t−1, xt−1, zt;Φ), (20)

xt ∼ N (μx
t , Σ

x
t ), (21)

where hz
t and hx

t denote the hidden states of the correspond-
ing RNNs. The MLPs map the hidden states of RNNs into
the means and deviations of variables of interest. The collec-
tion of parameters Φ is comprised of the weights of RNNs
and MLPs. NSVM relaxes the conventional constraint that
the latent variable zt is N (0, 1) in a way that zt is no longer
i.i.d noise but a time-varying signal from external process
with self-evolving nature. As discussed above, this relax-
ation will benefit the effectiveness in real scenarios.

One should notice that when the latent variable zt is ob-
tained, e.g. by inference (see details in the next subsection),
the conditional distribution pΦ(X|Z) (Eq. (14)) will be in-
volved in generating the observable xt instead of the joint
distribution pΦ(X,Z) (Eq. (15)). This is essentially the sce-
nario of predicting future values of the observable variable
given its history. We will use the term “generative model”
and will not discriminate the unconditional generative model
or the conditional one as it can be inferred in context.

Inferencing the Latent Process

As the generative model involves the latent variable zt, of
which the true values are inaccessible even we have ob-
served xt, the marginal distribution pΦ(X) becomes the key
that bridges the model and the data. However, the calcula-
tion of pΦ(X) itself or its complement, the posterior dis-
tribution pΦ(Z|X), is often intractable as complex integrals
are involved. We are unable to learn the parameters by differ-
entiating the marginal log-likelihood log pΦ(X) or to infer
the latent variables through the true posterior. Therefore, we
consider instead a restricted family of tractable distributions
qΨ(Z|X), referred to as the approximate posterior family,
as approximations to the true posterior pΦ(Z|X) such that
the family is sufficiently rich and of high capacity to provide
good approximations.

It is straightforward to verify that given a sequence of ob-
servations X = {x1:T }, for any 1 ≤ t ≤ T , zt is dependent
on the entire observation sequences. Hence, we define the
inference model with the spirit of mean-field approximation
where the approximate posterior is Gaussian and the follow-

6404



ing factorisation applies:

qΨ(Z|X) =

T∏

t=1

qΨ(zt|z<t, x1:T )

=
∏

t

N (zt; μ̃
z
Ψ(z<t, x1:T ), Σ̃

z
Ψ(z<t, x1:T )), (22)

where μ̃z
Ψ(zt−1, x1:T ) and Σ̃z

Ψ(zt−1, x1:T ) are functions of
the given observation sequence {x1:T }, representing the ap-
proximated mean and variance of the latent variable zt; Ψ
denotes the collection of parameters of inference model.

The neural network implementation of the model, referred
to as the inference network, is designed to equip a cascaded
architecture with an autoregressive RNN and a bidirectional
RNN, where the bidirectional RNN incorporates both the
forward and backward dependencies on the entire observa-
tions whereas the autoregressive RNN models the temporal
dependencies on the latent variables:

{μ̃z
t , Σ̃

z
t } = MLPz

I(h̃
z
t ;Ψ), (23)

h̃z
t = RNNz

I(h̃
z
t−1, zt−1, [h̃

→
t , h̃←

t ];Ψ), (24)

h̃→
t = RNN→

I (h̃→
t−1, xt−1;Ψ), (25)

h̃←
t = RNN←

I (h̃←
t+1, xt+1;Ψ), (26)

zt ∼ N (μ̃z
t , Σ̃

z
t ;Ψ), (27)

where h̃→
t and h̃←

t represent the hidden states of the forward
and backward directions of the bidirectional RNN. The au-
toregressive RNN with hidden state h̃z

t takes the joint state
[h̃→

t , h̃←
t ] of the bidirectional RNN and the previous value

of zt−1 as input. The inference mean μ̃z
t and variance Σ̃z

t

is computed by an MLP from the hidden state h̃z
t of the au-

toregressive RNN. We use the subscript I instead of G to
distinguish the architecture used in inference model in con-
trast to that of the generative model. It should be emphasised
that the inference network will collaborates with the gener-
ative network on conditional generating procedure.

Algorithm 1 Recursive Forecasting

1: loop
2: {z〈s〉1:t } ← draw S paths from q(z1:t|x1:t)

3: {z〈s〉1:t+1}← extend {z〈s〉1:t } for 1 step via p(zt+1|z1:t)
4: p̂(xτ+1|x1:τ ) ← 1/S ×∑

s p(xτ+1|z〈s〉1:τ+1, x1:τ )

5: σ̂2
t+1 ← var{x̂1:S

t+1}, {x̂1:S
t+1} ∼ p̂(xτ+1|x1:τ )

6: {x1:t+1} ← [{x1:t}, xt+1] with new xt+1

7: t ← t+ 1, (optionally) retrain the model

Forecasting Observations in Future
For a volatility model to be practically applicable in fore-
casting, the generating procedure conditioning on the history
is of essential interest. We start with 1-step-ahead prediction,
which serves as building block of multi-step forecasting.

Given the historical observations {x1:T } up to time step
T , 1-step-ahead prediction of either Σx

T+1 or xT+1 is fully

depicted by the conditional predictive distribution:

p(xT+1|x1:T ) =

∫
z

p(xT+1|z1:T+1, x1:T )

· p(zT+1|z1:T )p(z1:T |x1:T ) dz, (28)

where the distributions on the right-hand side refer to those
in the generative model with the generative parameters Φ
omitted. As the true posterior p(z1:T |x1:T ) involved in Eq.
(28) is intractable, the exact evaluation of conditional pre-
dictive distribution p(xT+1|x1:T ) is difficult.

A straightforward solution is that we substitute the true
posterior p(z1:T |x1:T ) with the approximation q(z1:T |x1:T )
(see Eq. (22)) and leverage q(z1:T |x1:T ) to inference S sam-
ple paths {z〈1:S〉

1:T } of the latent variables according to the his-
torical observations {x1:T }. The approximate posterior from
a well-trained model is presumed to be a good approxima-
tion to the truth; hence the sample paths shall be mimics of
the true but unobservable path. We then extend the sample
paths one step further from T to T +1 using the autoregres-
sive generative distribution p(zT+1|z1:T ) (see Eq. (13)). The
conditional predictive distribution is thus approximated as

p̂(xT+1|x1:T ) ≈ 1

S

∑
s

p(xT+1|z〈s〉1:T+1, x1:T ), (29)

which is essentially a mixture of S Gaussians. In the case
of multi-step forecasting, a common solution in practice is
to perform a recursive 1-step-ahead forecasting routine with
model updated as new observation comes in; the very same
procedure can be applied except that more sample paths
should be evaluated due to the accumulation of uncertainty.
Algorithm 1 gives the detailed rolling scheme.

Experiment
In this section, we present the experiment on real-world
stock price time series to validate the effectiveness and to
evaluate the performance of the prosed model.

Dataset and Pre-processing
The raw dataset comprises 162 univariate time series of the
daily closing stock price, chosen from China’s A-shares and
collected from 3 institutions. The choice is made by select-
ing those with earlier listing date of trading (from 2006 or
earlier) and fewer suspension days (at most 50 suspension
days within the entire period of observation), such that the
undesired noises introduced by insufficient observation or
missing values – highly influential on the performance but
essentially irrelevant to the purpose of volatility modelling
– can be reduced to the minimum. The raw price series is
cleaned by aligning and removing abnormalities: we manu-
ally aligned the mismatched part and interpolated the miss-
ing value by stochastic regression imputation (Little and Ru-
bin 2014) where the imputed value is drawn from a Gaussian
distribution with mean and variance calculated by regression
on the empirical value within a short interval of 20 recent
days. The series is then transformed from actual prices st
into log-returns xt = log(st/st−1) and normalised. More-
over, we combinatorically choose a predefined number d out

6405



of 162 univariate log-return series and aggregate the selected
series at each time step to form a d-dimensional multivariate
time series, the choice of d is in accordance with the rank of
correlation, e.g. d = 6 in our experiments. Theoretically, it
leads to a much larger volume of data as

(
162
6

)
> 2 × 1010.

Specifically, the actual dataset for training and evaluation
comprises a collection of 2000 series of d-dimensional nor-
malised log-return vectors of length 2570 (∼ 7 years) with
no missing values. We divide the whole dataset into two sub-
sets for training and testing along the time axis: the first 2000
time steps of each series have been used as training samples
whereas the rest 570 steps of each series as the test samples.

Baselines
We select several deterministic volatility models from the
GARCH family as baselines:
1. Quadratic models

• ARCH(1); GARCH(1,1); GJR-GARCH(1,1,1);

2. Absolute value models

• AVARCH(1); AVGARCH(1,1); TARCH(1,1,1);

3. Exponential models.

• EARCH(1); EGARCH(1,1);

Moreover, two stochastic volatility models are compared:

1. MCMC volatility model: stochvol;

2. Gaussian process volatility model GP-Vol.

For the listed models, we retrieve the authors’ implemen-
tations or tools: stochvol1, GP-Vol2 (the hyperparameters
are chosen as suggested in (Wu, Hernández-Lobato, and
Ghahramani 2014)) and implement the models, such as
GARCH, EGARCH, GJR-GARCH, etc., based on several
widely-used packages345 for time series analysis. All base-
lines are evaluated in terms of the negative log-likelihood on
the test samples, where 1-step-ahead forecasting is carried
out in a recursive fashion similar to Algorithm 1.

Model Implementation
In our experiments, we predefine the dimensions of observ-
able variables to be dimxt = 6 and the latent variables
dim zt = 4. Note that the dimension of the latent variable
is smaller than that of the observable, which allows us to
extract a compact representation. The NSVM implementa-
tion in our experiments is composed of two neural networks,
namely the generative network (see Eq. (16)-(21)) and infer-
ence network (see Eq. (23)-(27)). Each RNN module con-
tains one hidden layer of size 10 with GRU cells; MLP mod-
ules are 2-layered fully-connected feedforward networks,
where the hidden layer is also of size 10 whereas the out-
put layer splits into two equal-sized sublayers with differ-
ent activation functions: one applies exponential function to
ensure the non-negativity for variance while the other uses

1https://cran.r-project.org/web/packages/stochvol
2http://jmhl.org
3https://pypi.python.org/pypi/arch/4.0
4https://www.kevinsheppard.com/MFE Toolbox
5https://cran.r-project.org/web/packages/fGarch

linear function to calculate mean estimates. Thus MLPz
I ’s

output layer is of size 4 + 4 for {μ̃z, Σ̃z} whereas the
size of MLPx

G’s output layer is 6 + 6 for {μx, Σx}. Dur-
ing the training phase, the inference network is connected
with the conditional generative network (see, Eq. (16)-(18))
to establish a bottleneck structure, the latent variable zt in-
ferred by variational inference (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014) follows a Gaus-
sian approximate posterior; the size of sample paths is set
to S = 100. The parameters of both networks are jointly
learned, including those for the prior. We introduce Dropout
(Srivastava et al. 2014) into each RNN modules and impose
L2-norm on the weights of MLP modules as regularistion
to prevent overshooting; Adam optimiser (Kingma and Ba
2014) is exploited for fast convergence; exponential learn-
ing rate decay is adopted to anneal the variations of con-
vergence as time goes. Two covariance configurations are
adopted: 1. we stick with diagonal covariance matrices con-
figurations; 2. we start with diagonal covariance and then ap-
ply rank-1 perturbation (Rezende, Mohamed, and Wierstra
2014) during fine-tuning until training is finished. The re-
cursive 1-step-ahead forecasting routine illustrated as Algo-
rithm 1 is applied in the experiment for both training and test
phase: during the training phase, a single NSVM is trained,
at each time step, on the entire training samples to learn a
holistic dynamics, where the latent shall reflect the evolu-
tion of environment; in the test phase, on the other hand, the
model is optionally retrained, at every 20 time steps, on each
particular input series of the test samples to keep track on
the specific trend of that series. In other words, the trained
NSVM predicts 20 consecutive steps before it is retrained
using all historical time steps of the input series at present.
Correspondingly, all baselines are trained and tested at every
time step of each univariate series using standard calibra-
tion procedures. The negative log-likelihood on test samples
has been collected for performance assessment. We train the
model on a single-GPU (Titan X Pascal) server for roughly
two hours before it converges to a certain degree of accuracy
on the training samples. Empirically, the training phase can
be processed on CPU in reasonable time, as the complexity
of the model as well as the size of parameters is moderate.

Result and Discussion
The performance of NSVM and baselines is listed for com-
parison in Table 1: the performance on the first 10 indi-
vidual stocks (chosen in alphacetical order but anonymised
here) and the average score on all 162 stocks are reported in
terms of negative log-likelihood (NLL) measure. The result
shows that NSVM has achieved higher accuracy over the
baselines on the task of volatility modelling and forecast-
ing on NLL, which validates the high flexibility and rich ex-
pressive power of NSVM for volatility modelling and fore-
casting. In particular, NSVM with rank-1 perturbation (re-
ferred to as NSVM-corr in Table 1) beats all other models
in terms of NLL, while NSVM with diagonal covariance
matrix (i.e. NSVM-diag) outperforms GARCH(1,1) on 142
out of 162 stocks. Although the improvement comes at the
cost of longer training time before convergence, it can be
mitigated by applying parallel computing techniques as well

6406



Table 1: The performance of the proposed model and the baselines in terms of negative log-likelihood (NLL) evaluated on the
test samples of real-world stock price time series: each row from 1 to 10 lists the average NLL for a specific individual stock;
the last row summarises the average NLL of the entire test samples of all 162 stocks.

Stock NSVM-corr NSVM-diag ARCH GARCH GJR AVARCH AVGCH TARCH EARCH EGARCH stochvol GP-Vol
1 1.11341 1.42816 1.36733 1.60087 1.60262 1.34792 1.57115 1.58156 1.33528 1.53651 1.39638 1.56260
2 1.04058 1.28639 1.35682 1.63586 1.59978 1.32049 1.46016 1.45951 1.35758 1.52856 1.37080 1.47025
3 1.03159 1.32285 1.37576 1.44640 1.45826 1.34921 1.44437 1.45838 1.33821 1.41331 1.25928 1.48203
4 1.06467 1.32964 1.38872 1.45215 1.43133 1.37418 1.44565 1.44371 1.35542 1.40754 1.36199 1.32451
5 0.96804 1.22451 1.39470 1.31141 1.30394 1.37545 1.28204 1.27847 1.37697 1.28191 1.16348 1.41417
6 0.96835 1.23537 1.44126 1.55520 1.57794 1.39190 1.47442 1.47438 1.36163 1.48209 1.15107 1.24458
7 1.13580 1.43244 1.36829 1.65549 1.71652 1.32314 1.50407 1.50899 1.29369 1.64631 1.42043 1.19983
8 1.03752 1.26901 1.39010 1.47522 1.51466 1.35704 1.44956 1.45029 1.34560 1.42528 1.26289 1.47421
9 0.95157 1.15896 1.42636 1.32367 1.24404 1.42047 1.35427 1.34465 1.42143 1.32895 1.12615 1.35478

10 0.99105 1.13143 1.36919 1.55220 1.29989 1.24032 1.06932 1.04675 23.35983 1.20704 1.32947 1.18123
AVG 1.18354 1.23521 1.27062 1.27051 1.28809 1.28827 1.27754 1.29010 1.33450 1.36465 1.27098 1.34751

(a) The volatility forecasting for Stock 37

(b) The volatility forecasting for Stock 82

Figure 1: Case studies of volatility forecasting.

as more advanced network architecture or training methods.
Apart from the higher accuracy NSVM obtained, it provides
us with a rather general framework to generalise univariate
time series models of any specific functional form to the
corresponding multivariate cases by extending network di-
mensions and manipulating the covariance matrices. A case
study on real-world financial datasets is illustrated in Fig. 1.

NSVM shows higher sensibility on drastic changes and
better stability on moderate fluctuations: the response of
NSVM in Fig. 1a is more stable in t ∈ [1600, 2250], the
period of moderate price fluctuation; while for drastic price
change at t = 2250, the model responds with a sharper

spike compared with the quadratic GARCH model. Fur-
thermore, NSVM demonstrates the inherent non-linearity
in both Fig. 1a and 1b: at each time step within t ∈
[1000, 2000], the model quickly adapts to the current fluctu-
ation level whereas GARCH suffers from a relatively slower
decay from the previous influences. The cyan vertical line at
t = 2000 splits the training samples and test samples. We
show only one instance within our dataset due to the limita-
tion of pages, the performance of other instances are similar.

Conclusion

In this paper, we proposed a new volatility model, referred
to as NSVM, for volatility estimation and prediction. We in-
tegrated statistical models with deep neural networks, lever-
aged the characteristics of each model, organised the depen-
dences between random variables in the form of graphical
models, implemented the mappings among variables and pa-
rameters through RNNs and MLPs, and finally established a
powerful stochastic recurrent model with universal approx-
imation capability. The proposed architecture comprises a
pair of complementary stochastic neural networks: the gen-
erative network and inference network. The former mod-
els the joint distribution of the stochastic volatility process
with both observable and latent variables of interest; the lat-
ter provides with the approximate posterior i.e. an analyti-
cal approximation to the (intractable) conditional distribu-
tion of the latent variables given the observable ones. The
parameters (and consequently the underlying distributions)
are learned (and inferred) via variational inference, which
maximises the lower bound for the marginal log-likelihood
of the observable variables. NSVM has presented higher
accuracy on the task of volatility modelling and forecast-
ing on real-world financial datasets, compared with vari-
ous widely-used models, such as GARCH, EGARCH, GJR-
GARCH, TARCH in the GARCH family, MCMC-based
stochvol model as well as Gaussian process volatility model
GP-Vol. Future work on NSVM would be to investigate the
modelling of time series with non-Gaussian residual distri-
butions, in particular the heavy-tailed distributions e.g. Log-
Normal logN and Student’s t-distribution.

6407



References
Andersen, T. G., and Bollerslev, T. 1998. Answering the skep-
tics: Yes, standard volatility models do provide accurate forecasts.
International economic review 885–905.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate. CoRR
abs/1409.0473.
Bollerslev, T.; Engle, R. F.; and Nelson, D. B. 1994. Arch models.
Handbook of econometrics 4:2959–3038.
Bollerslev, T. 1986. Generalized autoregressive conditional het-
eroskedasticity. Journal of econometrics 31(3):307–327.
Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine
translation. In Moschitti, A.; Pang, B.; and Daelemans, W., eds.,
Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, 1724–1734. ACL.
Chorowski, J.; Bahdanau, D.; Serdyuk, D.; Cho, K.; and Bengio,
Y. 2015. Attention-based models for speech recognition. In Cortes
et al. (2015), 577–585.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.; and
Bengio, Y. 2015. A recurrent latent variable model for sequential
data. In Cortes et al. (2015), 2980–2988.
Cortes, C.; Lawrence, N. D.; Lee, D. D.; Sugiyama, M.; and Gar-
nett, R., eds. 2015. Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada.
Engle, R. F., and Kroner, K. F. 1995. Multivariate simultaneous
generalized arch. Econometric theory 11(01):122–150.
Engle, R. F. 1982. Autoregressive conditional heteroscedasticity
with estimates of the variance of united kingdom inflation. Econo-
metrica: Journal of the Econometric Society 987–1007.
Fraccaro, M.; Sønderby, S. K.; Paquet, U.; and Winther, O. 2016.
Sequential neural models with stochastic layers. In Lee, D. D.;
Sugiyama, M.; von Luxburg, U.; Guyon, I.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain, 2199–2207.
Glosten, L. R.; Jagannathan, R.; and Runkle, D. E. 1993. On the re-
lation between the expected value and the volatility of the nominal
excess return on stocks. The journal of finance 48(5):1779–1801.
Heston, S. L. 1993. A closed-form solution for options with
stochastic volatility with applications to bond and currency options.
Review of financial studies 6(2):327–343.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural Computation 9(8):1735–1780.
Hull, J., and White, A. 1987. The pricing of options on assets with
stochastic volatilities. The journal of finance 42(2):281–300.
Hull, J. C. 2006. Options, futures, and other derivatives. Pearson
Education India.
Jacquier, E.; Polson, N. G.; and Rossi, P. E. 2002. Bayesian analy-
sis of stochastic volatility models. Journal of Business & Economic
Statistics 20(1):69–87.
Kastner, G., and Frühwirth-Schnatter, S. 2014. Ancillarity-
sufficiency interweaving strategy (ASIS) for boosting MCMC esti-
mation of stochastic volatility models. Computational Statistics &
Data Analysis 76:408–423.

Kim, S.; Shephard, N.; and Chib, S. 1998. Stochastic volatility:
likelihood inference and comparison with arch models. The review
of economic studies 65(3):361–393.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. CoRR abs/1412.6980.
Kingma, D. P., and Welling, M. 2013. Auto-encoding variational
bayes. CoRR abs/1312.6114.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Bartlett,
P. L.; Pereira, F. C. N.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States., 1106–1114.
LeCun, Y.; Bengio, Y.; and Hinton, G. E. 2015. Deep learning.
Nature 521(7553):436–444.
Little, R. J., and Rubin, D. B. 2014. Statistical analysis with miss-
ing data. John Wiley & Sons.
Nelson, D. B. 1991. Conditional heteroskedasticity in asset re-
turns: A new approach. Econometrica: Journal of the Econometric
Society 347–370.
Poon, S.-H., and Granger, C. W. 2003. Forecasting volatility
in financial markets: A review. Journal of economic literature
41(2):478–539.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochas-
tic backpropagation and approximate inference in deep generative
models. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,
volume 32 of JMLR Workshop and Conference Proceedings, 1278–
1286. JMLR.org.
Schmidhuber, J. 2015. Deep learning in neural networks: An
overview. Neural Networks 61:85–117.
Schuster, M., and Paliwal, K. K. 1997. Bidirectional recurrent neu-
ral networks. IEEE Trans. Signal Processing 45(11):2673–2681.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research
15(1):1929–1958.
van den Oord, A.; Kalchbrenner, N.; and Kavukcuoglu, K. 2016.
Pixel recurrent neural networks. In Balcan, M., and Weinberger,
K. Q., eds., Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Conference Proceed-
ings, 1747–1756. JMLR.org.
Wu, Y.; Hernández-Lobato, J. M.; and Ghahramani, Z. 2014. Gaus-
sian process volatility model. In Ghahramani, Z.; Welling, M.;
Cortes, C.; Lawrence, N. D.; and Weinberger, K. Q., eds., Advances
in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, 1044–1052.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A. C.; Salakhutdinov,
R.; Zemel, R. S.; and Bengio, Y. 2015. Show, attend and tell: Neu-
ral image caption generation with visual attention. In Bach, F. R.,
and Blei, D. M., eds., Proceedings of the 32nd International Con-
ference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings,
2048–2057. JMLR.org.
Zakoian, J.-M. 1994. Threshold heteroskedastic models. Journal
of Economic Dynamics and control 18(5):931–955.

6408


