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Abstract

Visual recognition from very low-quality images is an ex-
tremely challenging task with great practical values. While
deep networks have been extensively applied to low-quality
image restoration and high-quality image recognition tasks
respectively, few works have been done on the important prob-
lem of recognition from very low-quality images. This paper
presents a degradation-robust pre-training approach on im-
proving deep learning models towards this direction. Extensive
experiments on different datasets validate the effectiveness of
our proposed method.

Introduction

While visual recognition has made tremendous progress in
recent years, most models are trained and evaluated on high
quality image datasets, such as LFW and ImageNet. For most
practical applications, the input images cannot be assumed to
be of high quality. Therefore, it becomes highly desirable to
investigate and improve the robustness of visual recognition
systems in very low-quality settings.

Exiting studies demonstrate that most state-of-the-art mod-
els appear fragile when applied on low quality data. The
literature has confirmed the significant effects of quality fac-
tors such as low resolution, contrast, brightness, sharpness,
focus, and illumination on commercial face recognition sys-
tems. Besides face recognition, the low quality data are also
found to negatively affect other recognition applications, such
as hand-written digit recognition and style recognition (Wang
et al. 2016).

We study this important but less explored problem, and
carry out a systematic study on improving deep learning
models towards the task. We generalize conventional unsu-
pervised pre-training and data augmentation methods, and
propose the Degradation-Robust Pre-Training algorithm, that
is generally applicable to handling various low-quality inputs.
The proposed algorithms are thoroughly evaluated on various
datasets, with highly impressive performance improvements
achieved.
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Proposed Method

Notations We define the visual recognition model M that
predicts the category labels {li}Ni=1 from the images {yi}Ni=1.
In the very low-quality (LQ) settings, {yi}Ni=1 can be viewed
as LQ images, degraded from original high-quality (HQ) im-
ages {xi}Ni=1. In testing, our model operates with only LQ
inputs. We use a CNN based image recognition model M
with d layers. The first d1 layers are convolutional, while
the remaining d − d1 layers are fully connected. The i-th
convolutional layer, denoted as convi (i = 1, · · · , d1), con-
tains ni filters of size ci×ci, with default stride size 1 and
zero-padding. The j-th fully-connected (fc) layer, denoted as
fcj , j = 1, · · · , d− d1, has a dimensionality of mj . We use
ReLU activation and apply dropout with a rate of 0.5 to fully-
connected layers. Softmax loss is adopted for classification,
while mean square error (MSE) for reconstruction tasks.

Algorithm 1 Degradation-robust pre-training
Input: Configuration of M; {xi} and {li}, i = 1, ..., N ; the

choice of k; two degradation factors α and β (β ≥ α).
1: Generate {yi}, {zi} from {xi}, based on two degrada-

tion processes parameterized by α and β, respectively.
2: Construct the (k + 1)-layer sub-model Ms. Its first k

layers are configured identically to those of M.
3: Train Ms to reconstruct {xi} from {zi}, using MSE.
4: Export the first k layers from Ms to initialize the first k

layers of M.
5: Tune M over {{yi}, {li}}, using the softmax loss.

Output: M.

Degradation-Robust Pre-Training Algorithm Since the
performance of M trained over {{xi}, {li}} will be dras-
tically degraded when applied to LQ subjects, our main in-
tuition is to jointly utilize {{xi}, {yi}, {li}}, such that the
feature extraction from {yi} could be enhanced and regular-
ized by the ground-truth {xi}, whereas the entire M is also
well adapted for the mapping relationship from {yi} to {li}.

We propose to pre-train the first k layers of M in model
Ms, to reconstruct {xi} from {yi}. Since the set {xi} intro-
duces auxiliary information to these feature extraction layers,
it guides them to discriminate the true signal information
from the degradation errors. After that, the pre-trained k fea-
ture extraction layers are jointly tuned with the remaining
layers of M, for the classification task.

Note that different from the testing case where only LQ
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HQ LQ-2 LQ-2-non-joint LQ-2 LQ-2-4 LQ-2-8 LQ-2-12 LQ-2-16
Top-1 67.43% 60.79% 46.89% 62.12% 62.80% 63.31% 62.91% 62.56%
Top-5 96.61% 95.32% 90.77% 95.10% 95.52% 95.80% 95.34% 95.10%

Table 1: The top-1 and top-5 classification accuracies on the CIFAR-10 dataset, where LQ images are generated by downsampling
the original images with a factor of α=2.

HQ LQ-50% LQ-50%-no-joint LQ-50%
Top-1 67.43% 33.46% 38.64% 50.32%

Top-5 96.61% 83.22% 86.86% 92.03%

Table 2: The top-1 and top-5 classification accuracies on the
CIFAR-10 dataset, where LQ images are generated by adding
α=50% salt & pepper noise.

HQ LQ-2 LQ-2-non-joint
Top-1 67.43% 52.62% 39.80%
Top-5 96.61% 92.70% 87.34%

LQ-2 LQ-2-5 LQ-2-8 LQ-2-9
54.73% 54.77% 55.67% 54.35%
93.24% 93.50% 93.52% 93.15%

Table 3: The top-1 and top-5 classification accuracies on
the CIFAR-10 dataset, where LQ images are generated by
blurring original images (HQ), with Gaussian kernel of std
α=2.

images are available, we have the flexibility to generate LQ
images for training at our will. Furthermore, we explore
the possibility to train M and Ms on different LQ settings,
expecting that Ms could learn more robust feature mapping.
This algorithm, termed as Degradation-Robust Pre-Training,
is outlined in Algorithm 1.

Experiments

Object Recognition We experiment with the CIFAR-10
dataset (Krizhevsky 2009) for this task, which consists of
60,000 32×32 color images from 10 classes. Each class has
5,000 training images and 1,000 test images. We choose
M with d=4, with d1=3 convolutional layers, followed by
d− d1=1 fully-connected layers with m1 always being the
number of classes. We set Ms with k=2, which works well
in all experiments. The default configuration of convolutional
layers are: n1=64, c1=9; n2=32, c2=5; n3=20, c3=5.

Low Resolution We generate LQ (low-resolution) images
{yi} and compare the following cases: HQ: M is trained
and tested on {{xi}, {li}}. LQ-α: M is trained and tested
on {{yi}, {li}}. LQ-α-non-joint: Generate both {yi} and
{zi} with downsampling factor α. Ms is pre-trained as in
Algorithm ?? (α = β), on {{yi}, {xi}}. The remaining d−k
layers of M are then trained on {{yi}, {li}}, with the first k
pre-trained layers fixed. LQ-α: M is trained using Algorithm
?? (α = β). LQ-α-β: M is trained using Algorithm ??
(α < β). The evaluation of M is all performed on the test
set of LQ images (except for the HQ baseline), downsampled
by the factor α. Table 1 displays the results at α=2.

Noise Since adding moderate Gaussian noise has been stan-
dard for data augmentation, we focus on the more destructive
salt & pepper noise. The LQ images {yi} are generated by

HQ LQ-8 LQ-8-non-joint LQ-8-joint LQ-8-16-joint
Top-1 89.23% 19.60% 45.98% 51.00% 51.17%

Top-5 98.57% 65.44% 87.08% 89.15% 89.06%

Table 4: The top-1 and top-5 digit recognition accuracies on
the SVHN dataset, where LQ images are downsampling the
original images (HQ) by factor of α=8.

HQ LQ-2 LQ-2 LQ-2- LQ-2-5- LQ-2-8-
non-joint -joint joint joint

Top-1 89.23% 85.40% 83.84% 82.47% 89.40% 88.29%
Top-5 98.57% 97.55% 96.92% 96.82% 98.32% 98.09%

Table 5: The top-1 and top-5 digit recognition accuracies
on the SVHN dataset, where LQ images are generated by
blurring the original images (HQ), with the Gaussian kernel
of standard deviation α=2.

randomly choosing α=50% pixels in each HQ image xi to be
replaced with either 0 or 255. We compare HQ, LQ-α, LQ-α-
non-joint, and LQ-α, similarly defined as the low-resolution
case. The results are displayed in Table 2.

Blur Images commonly suffer from various types of blurs.
Here we only focus on the Gaussian blur, while similar strate-
gies can be naturally extended to other types. The LQ images
{yi} are generated by convolving the HR images {xi} with
a Gaussian kernel with std α = 2, and the fixed kernel size
9× 9. We compare HQ, LQ-α, LQ-α-non-joint, LQ-α, and
LQ-α-β. The results are displayed in Table 3.

Overall, our proposed algorithm achieves the best result.

Digit Recognition We use the Street View House Num-
ber (SVHN) dataset (Netzer et al. 2011) for this task, which
contains 73, 257 digit images of 32×32 for training, and
26, 032 for testing. Our model has a default configuration
of d=4, d1=2; n1=20, c1=5; n2=50, c2=5; m1=500; m2=10
(class number used). conv1 is followed by 2×2 max pooling.
Table 4 compares HQ, LQ-α, LQ-α-non-joint, LQ-α-joint
and LQ-α-β-joint, in the low resolution case with α=8. Ta-
ble 5 compares those methods in the Gaussian blur case with
standard deviation α=2. Our proposed method performs the
best.
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