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Real-Time Artificial Intelligence Research
Because of breakthroughs in the field of deep learning, the
accuracy of image classification and multimedia recogni-
tion in Artificial Intelligence (AI) research has improved
rapidly. In this study, the objective is the classification of
high-dimensional data, and, in particular, the screening of
very rare entries from a large population. In general, the ini-
tial set of vectors is divided into several groups by using a
clustering method, and an outlier detection method identifies
distinct entries such as noise. Our focus is on a new cogni-
tive research problem in which the aim is to detect boundary
entries, namely entries that are geometrically located near
the outer edges of a population in multidimensional space.

Serendipiter (Guo et al. 2017) is a fast cell sorter that dis-
covers very rare cells with atypical ability from an enormous
number of cells. A block diagram of Serendipiter is shown in
Figure 1. The cells are identified from the cell-measurement
information obtained by multiple sensor technologies, such
as optical imaging and spectroscopy. The measurement and
identification latencies must be below ten milliseconds. The
discovery of very rare cells (constituting one per a trillion
cells) within a realistic time is anticipated for efficient bio-
fuel production by Euglena spp. and high-precision blood
testing. Serendipiter accurately analyzes single cells and
classifies 10,000 cells per second. We approached this chall-
enge by using the skyline computation method and consid-
ering the set of boundary entries as a set of skyline points.

Figure 1: Block diagram of Serendipiter

Skyline Computation
The skyline computation algorithm (Börzsönyi, Kossmann,
and Stocker 2001) is used to extract extraordinary entries
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Figure 2: Examples of skylines in multidimensional spaces
(left: two dimensions and right: three dimensions); the yel-
low and blue points denote the skyline and non-skyline
points, respectively.

from a database containing entries with multiple attributes.
Points that are not dominated by the other points are called
skyline or pareto-optimal points. The left and right panels
of Figure 2 show examples of skylines in two- and three-
dimensional space, respectively.

The task of computing the skyline of a dynamic set
of points is known as the continuous skyline computation
(Morse, Patel, and Grosky 2007). Real databases are updated
frequently in streaming or other suitable environments. The
injection and ejection times of an entry into and from the
database are called the activation and deactivation times of
the entry, respectively. In a continuous skyline computation,
a set of skyline points is updated due to point activation and
deactivaton.

The JR-tree

The continuous skyline computation presents a difficult
problem because the activation or deactivation of just one
point can demote many existing skyline points from the sky-
line, or promote many existing points to the skyline, both of
which will change a substantial part of the skyline. Previous
methods utilize spatial indexing trees, such as B-trees, R-
trees, or quadtrees (Morse, Patel, and Grosky 2007). The JR-
tree (Koizumi, Inaba, and Hiraki 2015) is the state-of-the-art
algorithm for continuous skyline computation. A complete
dominance graph is a directed acyclic graph, whose vertex
represents each point and whose arc represents each domi-
nance relation. A JR-tree is a rooted spanning subtree of the
complete dominance graph. The JR-tree algorithm is faster
than other algorithms because (1) it uses a more appropriate
hierarchical structure, and (2) it is dimension-independent.
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Figure 3: Two examples of JR-trees (b) constructed from
nine points represented by two-dimensional vectors (a).

Figure 3 shows two examples of JR-trees.
To output the skyline, we need to enumerate the children

of O, which corresponds to the origin; but there is no need
to traverse the tree. In continuous skyline computation, the
injection and ejection operations generate one possible JR-
tree that represents the current set of points. The injection
increases the depth of the tree. However, the computation of
those points far from the origin (such as deeper vertices) can
be delayed because their results may not be required until
the end of the computation. To postpone such an operation,
we make use of lazy injection. Based on JR-tree, we pro-
pose a hardware algorithm for high-speed continuous sky-
line computation and implement it on a field-programmable
gate array (FPGA). Figure 4 shows the logic diagram of its
design.

Figure 4: Logic diagram for the hardware implementation of
the JR-tree, consisting of (1) Query dispatcher, (2) Skyline
comparator, and (3) Skyline enumerator.

Evaluation

We generated three types of random synthetic dataset,
CORRelated, INDEpendent, and ANTI-correlated, charac-
terizing the spatial information by the respective correlation
strengths of the spatial distributions.

We also extracted features from cell images taken with
a fluorescence microscope, which is high-resolution images
from the CYTO 2017 Image Analysis Challenge (CYTO
2017), and created real-world datasets. The images were
taken with a Leica SP5 confocal fluorescence microscope.
They display immunostaining of human proteins and con-
sist of four fluorescence channels (see Figure 5). Each im-
age was tagged using 19 types of labels. We created two
datasets that consisted of 19,495 three-dimensional entries

(a) (b) (c) (d)

Figure 5: Examples of human protein cell images from
the CYTO 2017 Image Analysis Challenge. Each image is
tagged as follows: (a) Mitochondria, (b) Cytosol, (c) Cytoki-
netic Bridge, and (d) Focal Adhesion Sites.

called CYTOSOL and FAS. We allocated uniformly dis-
tributed lifetimes to the entries to create datasets for con-
tinuous skyline computation.

We evaluated our proposed algorithms against two exist-
ing software algorithms for continuous skyline computation
using both synthetic and real-world datasets (see Figure 6).
For the synthetic datasets, the hardware implementation of
the JR-tree was the fastest method; in particular, for the five-
dimensional CORR datasets, it was 3.7 times faster than the
software implementation of the JR-tree. As the distribution’s
correlation coefficient increased, the hardware-based JR-tree
became faster. For the CYTOSOL dataset, the hardware JR-
tree was 1.7 times faster than the software JR-tree.
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Figure 6: Comparison of the normalized execution times
for the existing software implementations, LookOut and our
software and hardware implementations of the JR-tree.
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