
NuMWVC: A Novel Local Search for Minimum Weighted Vertex Cover Problem

Ruizhi Li,1 Shaowei Cai,2 Shuli Hu,3 Minghao Yin,3* Jian Gao4

1School of Management Science and Information Engineering, Jilin University of Finance and Economics,
Changchun, 130117, China

2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, 100080, China
3School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, China

4 College of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China
lirz111@nenu.edu.cn; caisw@ios.ac.cn; husl903@nenu.edu.cn; ymh@nenu.edu.cn; gaojian@dlmu.edu.cn

Introduction

Given a weighted graph G = (V,E), each vertex v is as-
sociated with a weight w(v), the minimum weighted vertex
cover (MWVC) problem is to choose a subset of vertices
with minimum total weight such that every edge in the graph
has at least one of its endpoints chosen. The neighborhood
of a vertex v is denoted as N(v) = {u ∈ V |{u, v} ∈ E}.
The weight of a vertex cover C, is defined as w(C) =∑

v∈C w(v). Each edge e is associated with an edge weight
we(e). We define the cost of a candidate solution C, denoted
by cost(C) =

∑
cover(e,C)=false we(e), which is the total

weight of edges uncovered by C. For a vertex v, its score is
denoted by score(v) = (cost(C)− cost(C ′))/w(v), where
C ′ = C\{v} if v ∈ C, and C ′ = C ∪ {v} otherwise, which
measures the benefit of changing the state of vertex v.

Numerous research efforts have been made on the heuris-
tics for MWVC, such as MS-ITS, proposed in (Zhou et al.
2015), and DLSWCC (Li et al. 2016), clearly dominating
other local search algorithms and making a significant im-
provement. Recent advances in internet have resulted in a
collection of massive graphs. However, we are not aware of
any work on MWVC for massive graphs. We develop a local
search algorithm NuMWVC for MWVC on massive graphs.

Constructing a Vertex Cover with Reductions

The following reduction rules will be used in the construct-
ing procedure to handle vertices with small degrees.

Rule1: If G contains a vertex u s.t. N(u) = {v} and
w(u) ≥ w(v), then there is a MWVC of G that contains v.

Rule2: If G contains a vertex v s.t. N(v) = {n1, n2},
{n1, n2} ∈ E and w(v) ≥ w(n1) + w(n2), then there is an
MWVC of G that contains both n1 and n2.

Rule3: If G contains a vertex v s.t. N(v) = {n1, n2},
N(n1) = {v, n2}, and w(v) ≥ w(n1), then there is an
MWVC of G that contains n1.

Rule4: If G contains 2 vertices u and v s.t. N(u) = N(v) =
{n1, n2}, {n1, n2} /∈ E and w(u)+w(v) ≥ w(n1)+w(n2),
then there is an MWVC of G that contains both n1 and n2.

Our local search algorithm starts from a procedure of con-
structing an initial solution, which is similar to (Cai 2015).

*Corresponding author
Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

First, the proposed reduction rules are applied to put vertices
which must be in the optimal solution into C until there is no
rule satisfied. We call such kind of vertices inferred weighted
vertices. After that, the procedure extends C to be a vertex
cover of G. Last, redundant vertices are removed from C.

Configuration Checking with Aspiration

The CC strategy (Cai, Su, and Sattar 2011) only allows a
vertex v to be added into the current candidate solution if
its configuration is changed, but our configuration checking
with aspiration (CCA) strategy allows to add v regardless of
its configuration if adding it can improve the current best so-
lution. The configuration of a vertex v is a vector consisting
of the states of all the vertices in N(v). The vertex selection
rules are based on the CCA strategy.

Rmv-Rule: Remove one vertex v, which has the highest
score(v) value, and is not an inferred weighted vertex.

Add-Rule: If there exist vertices satisfying the aspiration
criterion, add one such vertex v with highest score(v) value;
otherwise, add one vertex v with highest score(v) value,
whose configuration equals to 1.

Self-adaptive Removing (SAR)

Another strategy is a self-adaptive strategy for removing ver-
tices (see Lines 4-7 of Algorithm 1). The local search re-
moves rmv-num vertices in each iteration. If the algorithm
cannot find a better solution for β iterations, the value of
rmv-num would be decreased by 1. Since at least one vertex
is removed in each step, we guarantee rmv-num ≥ 1. In our
experiments, α is initialized to 3, and β is set to 50.

The NuMWVC Algorithm

As shown in Algorithm 1, it consists of two stages: the con-
struction stage (Line 1) and the local search stage (Lines
3-14). In each step, the algorithm first removes some ver-
tices from the candidate solution. The number of removed
vertices is determined by SAR strategy, while the removed
vertices are selected according to the Rmv-Rule. Then
NuMWVC iteratively adds a vertex into C according to the
Add-Rule until the candidate solution covers all edges, and
then the redundant vertices are removed from C. If a better
solution is obtained, then C∗ is updated by C and the value
of No-improve is reset to 0; otherwise, No-improve++.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

8107



Algorithm 1: NuMWVC
Input: A graph G = (V,E,w)
Output: A vertex cover C of G

1 Constructing a vertex cover C with reductions;
2 C∗ ← C; No-improve← 0; rmv-num← α;
3 while stop criterion is not satisfied do
4 if No-improve == β and rmv-num �= 1 then
5 rmv-num−−;

6 for i = 0; i <rmv-num; i++ do
7 remove v according to Rmv-Rule;

8 while C uncovers some edges do
9 add v according to Add-Rule;

10 remove redundant vertices out of C;
11 if w(C) < w(C∗) then
12 C∗ ← C;
13 No-improve← 0;

14 else No-improve++;
15 ;

16 return C∗;

Experimental Evaluation

We carry out experiments to test NuMWVC on real-world
massive graphs (Cai 2015). We compare with 2 state-of-the-
art algorithms MS-ITS and DLSWCC. For each instance,
our algorithm is performed 20 independent runs, and each
run is terminated if exceeds 1000s. For sake of space, we
only report the average solution (’Avg’), and average time
(’Time’). For the minimum solution, NuMWVC dominates
the others on almost all instances. If an algorithm fails to
give an initial valid solution, the column is marked as "N/A".

For sake of space, we omit the results of some instances,
for which DLSWCC and MS-ITS both fail to give an initial
valid solution. As results in Table 1, MS-ITS only obtains
27 solutions and NuMWVC obtains better solutions than or
same solutions as MS-ITS on these 27 instances. Addition-
ally, NuMWVC obtains better solutions than or same solu-
tions as DLSWCC on 49 instances and DLSWCC only ob-
tains 7 better solutions. For the running time, NuMWVC is
obviously faster than others.

Acknowledgements

This work is supported by NSFC Grants Nos. 61370156,
61402070, 61503074, 61403076 and 61502464.

References

Cai, S.; Su, K.; and Sattar, A. 2011. Local search with edge
weighting and configuration checking heuristics for minimum ver-
tex cover. Artificial Intelligence 175(9):1672–1696.
Cai, S. 2015. Balance between complexity and quality: local search
for minimum vertex cover in massive graphs. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI, 25–31.
Li, R.; Hu, S.; Zhang, H.; and Yin, M. 2016. An efficient local
search framework for the minimum weighted vertex cover prob-
lem. Information Sciences 372:428–445.

Table 1: Experiment results on the massive graphs.

Instance MS-ITS DLSWCC NuMWVC

Avg(Time) Avg(Time) Avg(Time)

bio-dmela 149556.8(2126.4) 148540.4(135.4) 148502.4(37.7)

bio-yeast 24290.0(53.9) 24265.0(3.8) 24265.0(1.6)

ca-AstroPh 662926.5(16156.9) 647019.1(420.9) 645070.6(543.7)

ca-citeseer N/A(N/A) 7048225.5(792.4) 7031461.2(236.9)

ca-CondMat 704798.5(9860.3) 686344.3(489.2) 683745.7(723.7)

ca-CSphd 29609.8(1.2) 29390.0(3.7) 29390.0(0.4)

ca-dblp-2010 N/A(N/A) 6619251.8(496.9) 6601770.0(240.2)

ca-dblp-2012 N/A(N/A) 8986982.4(1106.3) 8963590.6(393.3)

ca-Erdos992 28303.0(8.4) 28298.0(0.2) 28298.0(0.3)

ca-GrQc 122331.5(674.0) 122332.5(95.5) 122254.3(35.0)

ca-HepPh 373069.8(10475.3) 365530.8(308.7) 364001.4(272.1)

ca-MathSciNet N/A(N/A) 7668818.0(838.2) 7637594.9(306.7)

ia-email-EU N/A(N/A) 48269.0(6.0) 48269.0(0.5)

ia-email-univ 32933.0(91.7) 32931.0(1.5) 32931.0(1.3)

ia-enron-large N/A(N/A) 695294.8(774.0) 691651.7(971.0)

ia-fb-messages 32316.5(44.5) 32300.1(2.3) 32300.0(0.7)

ia-reality 4894.0(10.4) 4894.0(0.0) 4894.0(0.0)

ia-wiki-Talk N/A(N/A) 962194.9(1194.7) 953135.6(984.1)

inf-power 121503.3(993.3) 120146.5(110.4) 120093.7(37.8)

rec-amazon N/A(N/A) 2630671.0(1195.3) 2615387.0(37.2)

sc-nasasrb N/A(N/A) 3005889.1(1021.6) 3000299.7(999.2)

sc-shipsec1 N/A(N/A) 6844747.6(2056.6) 6808142.1(336.9)

soc-brightkite N/A(N/A) 1187962.3(1162.3) 1174997.4(982.4)

soc-delicious N/A(N/A) 4958206.4(1720.6) 4926734.0(996.0)

soc-douban N/A(N/A) 515288.1(1111.1) 515270.0(13.6)

soc-epinions N/A(N/A) 539915.5(593.2) 535334.1(725.1)

soc-gowalla N/A(N/A) 4729405.5(909.9) 4713046.2(169.0)

soc-slashdot N/A(N/A) 1248151.4(1182.4) 1233761.6(997.0)

soc-twitter-follows N/A(N/A) 135811.0(314.7) 135811.0(2.5)

socfb-Berkeley13 N/A(N/A) 1011902.5(907.1) 1012052.0(504.8)

socfb-CMU 297032.5(1011.9) 292428.8(111.0) 292475.6(149.8)

socfb-Duke14 460907.8(1629.4) 450898.3(312.8) 450884.8(211.7)

socfb-Indiana N/A(N/A) 1377961.4(1193.1) 1373628.2(690.8)

socfb-MIT 274443.0(12093.2) 272472.4(171.2) 272497.1(167.4)

socfb-OR N/A(N/A) 2116501.0(1169.5) 2106559.1(996.8)

socfb-Penn94 N/A(N/A) 1829265.1(1052.8) 1819186.5(859.8)

socfb-Stanford3 507561.5(4388.7) 495411.3(479.1) 495278.8(294.2)

socfb-UCLA 915068.0(154.9) 888857.8(774.8) 889176.7(244.5)

socfb-UConn 793196.8(15843.7) 771744.5(638.5) 771968.3(317.1)

socfb-UCSB37 678029.5(5456.8) 659615.9(447.5) 659816.9(331.1)

socfb-UIllinois N/A(N/A) 1417140.9(1197.3) 1413151.5(618.8)

socfb-Wisconsin87 N/A(N/A) 1072009.6(1081.1) 1072243.4(588.1)

tech-as-caida2007 N/A(N/A) 200755.8(357.5) 200213.0(28.6)

tech-internet-as N/A(N/A) 312308.4(490.5) 310196.0(209.2)

tech-p2p-gnutella N/A(N/A) 918207.3(1058.6) 916187.8(906.3)

tech-RL-caida N/A(N/A) 4204531.8(414.3) 4199767.5(993.8)

tech-routers-rf 44936.5(61.0) 44902.3(34.9) 44894.3(5.9)

tech-WHOIS 128588.0(6499.9) 128345.3(123.0) 128336.9(30.5)

web-arabic-2005 N/A(N/A) 6573003.0(1855.9) 6557500.9(584.2)

web-BerkStan 293081.0(2304.9) 286871.4(290.4) 285547.0(166.7)

web-edu 79545.5(242.3) 79100.8(47.2) 79050.3(48.1)

web-google 27842.0(0.8) 27842.0(2.6) 27842.0(0.8)

web-indochina-2004 409765.0(3187.9) 405773.4(255.3) 404533.5(319.9)

web-sk-2005 N/A(N/A) 3135843.5(115.3) 3134504.5(134.6)

web-spam 129534.8(644.2) 128994.8(92.6) 128965.8(52.7)

web-webbase-2001 144718.5(399.9) 144444.9(186.7) 144122.0(44.7)

Zhou, T.; Lü, Z.; Wang, Y.; Ding, J.; and Peng, B. 2015. Multi-start
iterated tabu search for the minimum weight vertex cover problem.
Journal of Combinatorial Optimization 1–17.

8108


