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Abstract

Deep neural networks have gained great success recently
for sentiment classification. However, these approaches do
not fully exploit the linguistic knowledge. In this paper, we
propose a novel sentiment lexicon enhanced attention-based
LSTM (SLEA-LSTM) model to improve the performance of
sentence-level sentiment classification. Our method success-
fully integrates sentiment lexicon into deep neural networks
via single-head or multi-head attention mechanisms. We con-
duct extensive experiments on MR and SST datasets. The ex-
perimental results show that our model achieved comparable
or better performance than the state-of-the-art methods.

Introduction

In general, sentiment classification is the problem of classi-
fying the sentiment polarity of a text as positive, negative or
neutral. Most existing work establishes sentiment classifiers
using supervised machine learning approaches, such as sup-
port vector machine (SVM), convolutional neural network
(CNN) (Lei, Barzilay, and Jaakkola 2015), long short-term
memory (LSTM) (Tai, Socher, and Manning 2015).

Despite the effectiveness of previous studies, sentiment
classification still remains a challenge in real-world. A com-
prehensive and high quality sentiment lexicon plays a cru-
cial role in traditional sentiment classification approaches.
Despite its usefulness, to date, the sentiment lexicon has re-
ceived little attention in recent neural network models (e.g.,
CNN and LSTM) that achieve the state-of-the-art in generic
sentiment classification.

To address the aforementioned limitation, we propose a
novel sentiment lexicon enhanced attention-based LSTM
(SLEA-LSTM) model. More specifically, our model con-
sists of two independent LSTM networks with additional at-
tention layers on the top. The two LSTM networks are used
to learn the hidden representations of context and sentiment
words of input, respectively. In addition, we explore two
types of attention mechanisms: single-head and multi-head
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attention methods (Vaswani et al. 2017). The single-head at-
tention computes attention weights of different word loca-
tions according to their intent importance associated with
sentiment lexicon, which usually only focuses on specific
parts of the input. However, the multi-head attention allows
the model to jointly attend to information from different rep-
resentation subspaces at different positions. The experiment
results show that our model is efficient and achieves state-
of-the-art results.

Our Model
We first use two independent LSTM layers to convert the
sequence of input word embeddings into two sequences of
hidden states Hc = [hc

1, ..., h
c
m] and Hs = [hs

1, ..., h
s
n] for

context words and sentiment words, where m represents the
length of the sequence and n represent the number of sen-
timent words. Then, the representation of sentiment words
can be computed by applying a mean-pooling operation:
zs =

∑n
i=1 h

s
i/n.

Single-head Attention model

Most existing attention approaches compute an attention
weight vector for each input, which we call single-head at-
tention mechanism. With single-head attention, the final lex-
icon enhanced sentence representation is a weighted sum of
context hidden states:

o =

m∑

i=1

aih
c
i , with ai =

exp(σ([hc
i ; zs])∑m

i=1 exp(σ([h
c
i ; zs])

(1)

where ai indicates the importance of the i-th word in the
context, and σ is a score function that calculates the impor-
tance of hc

i in the context. The score function σ is defined
as:

σ([hc
i , zs]) = uT

s1 tanh(Ws1 [h
c
i ; zs]) (2)

where [hc
i ; zs] denotes the concatenation of hc

i and zs, Ws1
and us1 are parameters to be learned.

Multi-head Attention model

Instead of using attention weight vectors for single-head at-
tention, multi-head attention produces attention weight ma-
trix. With multi-head attention, the final sentence represen-
tation takes the following form:

o = flatten(AHc),withA =
exp(ρ([hc

i ; zs])∑m
i=1 exp(ρ([h

c
i ; zs])

(3)
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where A denotes attention matrix which indicates the im-
portance of the i-th word in multiple hops of attention, and
flatten is an operation that will flatten matrix into vector
form. ρ is a score function that calculates the importance of
hc
i in multiple hops of attention:

ρ([hc
i , zs]) = Us2

T tanh(Ws1[h
c
i ; zs]) (4)

where Us2 and Ws2 are projection parameters to be learned.
Finally, we feed the output vector o to a softmax layer to

predict the sentiment distribution. The training objective is
to minimize the cross-entropy error of the predicted and true
class distributions.

Experiments

Datasets and sentiment lexicon

Movie Review (MR) This dataset (Pang and Lee 2005)
consists of 5,331 positive and 5,331 negative samples. We
use 80% samples for training, 10% samples for validation,
and the remaining are used for testing.

Stanford Sentiment Treebank (SST) This dataset
(Socher et al. 2013) contains 8545 training samples, 1101
validation samples, 2210 test samples, where each sample
is annotated as very negative, negative, neutral, positive, or
very positive.

In this paper, our sentiment lexicon combines the senti-
ment words from both (Qian et al. 2017) and our manual
collection, which totally contains 11,017 sentiment words.

Baseline methods

We compare our models with several state-of-the-art base-
line methods, including RNTN (Socher et al. 2013),
LSTM/BiLSTM, Tree-LSTM (Tai, Socher, and Manning
2015), CNN, CNN-Tensor (Lei, Barzilay, and Jaakkola
2015), DAN (Iyyer et al. 2015), NCSL (Teng, Vo, and Zhang
2016), LR-LSTM and LR-Bi-LSTM (Qian et al. 2017).

Implementation details

In the experiments, we use 300-dimensional GloVe1 vectors
to initialize the word embeddings for context and sentiment
words. We initialize the recurrent weight matrices as random
orthogonal matrices and all the bias vectors are initialized to
zero. Both LSTM and attention layer have 50 units each. We
conduct mini-batch (with size 64) training using RMSprop
optimization algorithm to train the model. The learning rate
is 0.001, and the dropout rate is 0.5.

Experimental results

In our experiments, the evaluation metric is classification ac-
curacy. We summarize the experimental results in Table 1.
Compared to the baseline methods, our models achieve bet-
ter or comparable results. For example, the classification ac-
curacy increases from 82.9% to 84.0% on MR dataset. This
verifies the effectiveness of the proposed approaches that in-
tegrates sentiment lexicon into the deep neural networks via
attention mechanism. As expected, our multi-head attention

1http://nlp.stanford.edu/projects/glove

Method MR SST(sent.-level)
RNTN 75.9% 43.4%
LSTM 77.4% 45.6%

BiLSTM 79.3% 46.5%
Tree-LSTM 80.7% 48.1%

CNN 81.5% 46.9%
CNN-Tensor - 50.6%

DAN - 47.7%
NSCL 82.9% 47.1%

LR-LSTM 81.5% 48.3%
LR-Bi-LSTM 82.1% 48.6%

SLEA-LSTM (Single-head) 82.9% 48.9%
SLEA-LSTM (Multi-head) 84.0% 49.3%

Table 1: Evaluation results

model performs better than the single-head attention model.
Our model also benefits from the information from different
representation subspaces at different positions.

Conclusion

In this paper, we propose a novel sentiment lexicon en-
hanced attention-based LSTM model which integrates sen-
timent lexicon into deep neural network via attention
mechanisms. Experimental results showed that our method
achieves better or comparable results.
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