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Abstract

A wealth of information regarding intelligent decision mak-
ing is conveyed by human gaze and visual attention, hence,
modeling and exploiting such information might be a promis-
ing way to strengthen algorithms like deep reinforcement
learning. We collect high-quality human action and gaze data
while playing Atari games. Using these data, we train a deep
neural network that can predict human gaze positions and vi-
sual attention with high accuracy.

Introduction

Humans have high acuity foveal vision in the central 1-2 vi-
sual degrees of the visual field (i.e., covering the width of a
finger at arms length), with resolution decreasing exponen-
tially in the periphery. While the machine perceives images
like in Fig. 1a, a human would see Fig. 1b (Perry and Geisler
2002). A foveal visual system may seem inferior compared
to a full resolution camera, but it leads to an outstanding
property of human intelligence: The visual attention mech-
anism. Humans manage to move their foveae to the correct
place at the right time in order to emphasize important task-
relevant features (Rothkopf, Ballard, and Hayhoe 2007). In
this way, a wealth of information is encoded in human gaze
behaviors–for example, the priority of one object over an-
other in performing an action.

Previous work in computer vision has formalized vi-
sual attention modeling as a saliency prediction problem
where saliency is mostly derived from image statistics, such
as intensity, color, and orientation in the classic Itti-Koch
model (Itti, Koch, and Niebur 1998). This approach has
made tremendous progress due to large benchmark datasets
and deep neural networks (Bylinskii et al. 2016). In contrast,
top-down models emphasizes the effects of task-dependent
variables on visual attention (Hayhoe and Ballard 2005).
(Rothkopf, Ballard, and Hayhoe 2007) have shown that
varying task instructions drastically alters the gaze distribu-
tions on different categories of objects (e.g., task-irrelevant
objects are ignored even though they are salient). The top-
down attention model is hence closely related to reinforce-
ment learning since they both concern visual state features
that matter the most for acquiring the reward.
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(a) Original image with gaze (b) Human perceived image

Figure 1: (a) An original game frame for Atari Seaquest with
a red circle indicating the human gaze position. The gaze po-
sition is used to generate a foveated image (b) that is biolog-
ically plausible retinal representations of the visual stimulus
(the stimulus as perceived by the human).

Regardless of their approaches, these works argue that
there is much valuable information encoded in gaze be-
haviors. It should be said that the two approaches are not
mutually exclusive, since attention is modulated in both
saliency-driven and volition-controlled manners (Itti, Koch,
and Niebur 1998). As mentioned before, deep neural net-
works have been a standard approach to predict bottom-up
saliency. In contrast, top-down gaze models often rely on
manually defined task variables. Our approach seeks to com-
bine these approaches and use the representation learning
power of deep networks to extract task-relevant visual fea-
tures, given task-driven gaze data.

Experiments and Results

We collected human data using eight Atari games in the Ar-
cade Learning Environment (Bellemare et al. 2012). The raw
image frame, the human keystroke action, and the gaze po-
sition were recorded. The gaze data was recorded using an
EyeLink 1000 eye tracker at 1000Hz.

We formalize visual attention modeling as an end-to-end
saliency prediction problem, whereby a deep network can
be used to predict a probability distribution of the gaze
(saliency map). The full network architecture is a three-
channel convolution-deconvolution network. The inputs to
the top channel are the images where the preprocessing pro-
cedure follows (Mnih et al. 2015) and hence consist of a
sequence of 4 frames stacked together where each frame
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Saliency(S) Image(I) Motion(M) I+M I+S I+M+S
AUC↑ KL↓ AUC↑ KL↓ AUC↑ KL↓ AUC↑ KL↓ AUC↑ KL↓ AUC↑ KL↓

Breakout 0.494 4.375 0.970 1.304 0.968 1.357 0.970 1.294 0.969 1.301 0.969 1.299
Freeway 0.560 4.289 0.973 1.261 0.972 1.287 0.972 1.257 0.973 1.260 0.973 1.260
Enduro 0.447 4.517 0.988 0.834 0.987 0.844 0.988 0.832 0.988 0.834 0.988 0.835

Riverraid 0.494 4.235 0.962 1.609 0.951 1.829 0.962 1.593 0.961 1.613 0.962 1.592
Seaquest 0.352 4.744 0.963 1.464 0.959 1.540 0.964 1.438 0.963 1.470 0.964 1.437

MsPacman 0.426 4.680 0.932 1.985 0.919 2.217 0.935 1.959 0.933 1.995 0.936 1.961
Centipede 0.691 3.774 0.956 1.711 0.958 1.686 0.961 1.622 0.957 1.709 0.960 1.645
Vecnture 0.607 3.868 0.957 1.749 0.956 1.648 0.964 1.512 0.956 1.727 0.964 1.510

Table 1: Quantitative results of predicting human gaze across eight games. Random prediction baseline: AUC = 0.500, KL =
6.159. As a benchmark, the classic Itti-Koch algorithm is compared to versions of our algorithm. Overall the Image+Motion
model achieves the best accuracy.

is 84 × 84 in grayscale. The mid channel models motion
information (i.e., optical flow calculated using (Farnebäck
2003)) which is included since human gaze is sensitive to
movement. The bottom channel includes bottom-up saliency
map from the classic Itti-Koch model (Itti, Koch, and Niebur
1998). We then average the output of the all channels. The
output of the network is a gaze saliency map trained with
Kullback-Leibler divergence as the loss function. We use the
same architecture and hyperparameters for all eight games.

For a performance comparison we use the classic bottom-
up saliency model (Itti, Koch, and Niebur 1998) as the base-
line. Then an ablation study is performed where the model
consists only one or two channels of the original network.
The performance are evaluated using Area Under the Curve
(AUC) and Kullback-Leibler divergence (KL) as in Table 1.

Overall, the prediction results of all our models are
highly accurate across all games and largely outperform the
bottom-up saliency baseline, indicated by the high AUC
(above 0.90 for all games) and low KL values obtained.
Using image or motion alone each gives reasonable perfor-
mance, while combining these two channels produces the
best results for most games. Including bottom-up saliency
into the model does not improve the performance in gen-
eral. This indicates that in the given tasks, the top-down
visual attention is different than and hard to be inferred
from the traditional bottom-up image saliency. We encour-
age readers to view the video demo of the prediction results
at https://www.youtube.com/watch?v=-zTX9VFSFME.

Conclusion and Future Work

The high accuracy achieved in predicting gaze in our work
implies that, given a cognitively demanding visuomotor
task, human visual attention can be modeled accurately us-
ing an end-to-end learning algorithm. This suggests that
popular deep saliency models could be used to model top-
down visual attention, given task-driven data.

It is worth noting that the results are obtained using a
single human subject’s data. We are in progress of collect-
ing data from multiple subjects. Given high accuracy of our
model, it is possible to test whether the visual attention mod-
els generalize across human subjects for the same game.

Such learned model could potentially be helpful for visuo-

motor behavior learning algorithms. The results of (Mnih et
al. 2015) have demonstrated the effectiveness of end-to-end
learning of visuomotor tasks, where the Deep Q-Network
(DQN) excels at games that involve a single task. However,
for multitasking games such as Seaquest and MsPacman the
performance is still below human levels. In addition, DQN
takes millions of samples to train. The above issues could be
potentially alleviated by incorporating our attention model
that help extract features to speedup learning and to indicate
task priority.
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