
AdGAP: Advanced Global Average Pooling

Arna Ghosh
McGill University

Montreal, QC H3A 0G4. Canada.
Email: arna.ghosh@mail.mcgill.ca

Biswarup Bhattacharya∗
University of Southern California

Los Angeles, CA 90089. USA.
Email: bbhattac@usc.edu

Somnath Basu Roy Chowdhury∗
Indian Institute of Technology
Kharagpur, WB 721302. India.

Email: brcsomnath@ee.iitkgp.ernet.in

Abstract

Global average pooling (GAP) has been used previously
to generate class activation maps. The motivation behind
AdGAP comes from the fact that the convolutional filters pos-
sess position information of the essential features and hence,
combination of the feature maps could help us locate the
class instances in an image. Our novel architecture gener-
ates promising results and unlike previous methods, the ar-
chitecture is not sensitive to the size of the input image, thus
promising wider application.

Introduction
The current advances in computer vision and image recogni-
tion have seen a wide use of convolutional neural networks
(CNNs). Works by (Zhou et al. 2016) have shown that the
convolutional units of various layers of CNNs are capable of
detecting the position of object in the image without any su-
pervision on the location of object. They show that although
earlier convolutional layers are capable of capturing only
the low-level features in the image, higher layers are able
to capture task-specific features. However, the information
about the location of these features in the image is lost when
fully connected layers are used for classification. Some fully
convolutional networks have been proposed recently such as
GoogleNet (Szegedy et al. 2015), and Network in Network
(Lin, Chen, and Yan 2013) that aim to reduce the number
of network parameters while maintaining performance by
avoiding the fully-connected layers.

In the work of (Lin, Chen, and Yan 2013), the Global Av-
erage Pooling layers act as structural regularizer and pre-
vent overfitting. However, (Zhou et al. 2016) shows that the
average pooling layers can be used to retain the localiza-
tion ability of the final layers of the network. This concept
is also used in (Bolanos and Radeva 2016) for localization
and recognition of food items. However, the use of Global
Average Pooling layers in these works requires differential
connection during training and deployment.

Looking into the biology of our nervous system, we know
that this is not the case for connections in the brain. There-
fore, we looked into methods to bridge this gap and came
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up with an architecture where we do not need to alter the
connections of a network. The major motivation of our work
comes from the fact that different high level features corre-
spond to different classes and the classification of an image
to a particular class depends on certain features being ex-
cited more heavily than others.

Therefore, we present a novel architecture that can be
used to localize the positions of instances of all classes in
an image and then classify each of those hotspots. Unlike
previous methods, the architecture is not sensitive to the size
of the input image and hence has a wider scope of applica-
tion. The experiments are done on the MNIST dataset and
further discussions are presented from the point of view of
text extraction from natural images as a proof of concept,
but can be easily extended to other datasets and domains.

Architecture
We begin with a simple CNN architecture, although the
method proposed is easily scalable to any CNN. The net-
work is trained on the MNIST dataset to classify images into
10 classes (digits in this case). Following the training of the
network to obtain a reasonably good classification accuracy,
we try to figure out the importance of each filter in the last
layer for classifying the digits.

Since the final layer filters have the information of the
spatial location of specific features as well, a linear combi-
nation of those filters could provide a heatmap of features in
the image that are required to be classified into one of the 10
classes. We use the error in classification in absence of each
filter as a metric of the importance of that filter, unlike train-
ing another network as in (Zhou et al. 2016) and (Bolanos
and Radeva 2016). We record the error of classification in
presence of all the filters as the baseline. The weights for the
generation of heatmap using a linear combination of these
filter responses is the difference of error from the baseline.
Therefore, if W represents the weight vector for heatmap
generation, the overall classification error (error with all fil-
ters present) is e, and E is the error vector, where Ei repre-
sents the error in classification when filter i is missing (or
response from filter i is blocked from propagating into fur-
ther layers), then

Wi = e− Ei (1)
Suppose the filter response of the final layer filters is rep-

resented as F where Fi represents the filter response of the
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Layer Type Maps and Neurons Filter Size
0 Input 1M × 28 × 28N -
1 Conv 6M × 28 × 28N 5×5
2 MaxPool 6M × 14 × 14N 2×2
3 Conv 16M × 14 × 14N 5×5
4 MaxPool 16M × 7 × 7N 2×2
5 FullyConn 120N 1×1
6 FullyConn 84N 1×1
7 FullyConn 10N 1×1

Table 1: Network architecture used for digit classification

ith filter. Then the heatmap corresponding to the position of
the class instances in image, represented by H, is given by a
weighted average of the filter responses.

H =
∑

i

Wi × Fi (2)

Table 1 depicts the layers of the network used.

Experiments
Setup
We use the MNIST handwritten digits dataset for experi-
mentation. We train the network on the MNIST images. The
training set has 60000 images and the test set has 10000
images. The network is then used to identify the position
of class instances (here digits) on natural images. The net-
work is trained using Adam Optimizer with a learning rate
of 0.001 and learning rate decay of 0.00001. The batch size
is kept at 300 images and the network is trained for 10 iter-
ations (200 batches per epoch). The learning curve is shown
in Figure 1. The results show that the network is able to seg-
ment the text from the images.

Figure 1: Training curve showing the training loss at each
batch of forward pass (Code1)

Results & Illustrations
The results are shown in Figure 2. The network is able to ex-
tract text and numbers from the images, due to their similar-
ity in features. We use a high threshold value on the heatmap
generated from the linear combination of filters to show the
extraction property of the network. Although the network
is trained on numbers, the network is capable of extracting

1https://github.com/brcsomnath/Advanced-GAP
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Figure 2: Results

text as well. This is because the features required to classify
numbers and characters are very similar.

Conclusion
The network architecture proposed can clearly be used for
localization and recognition of trained class instances in an
image. The results are presented on different size images to
illustrate the versatility of the network. Further experiments
would entail deployment on more complex datasets, using
deeper networks, and possibly checking for class-specific or
category-specific heatmaps to locate instances of objects be-
longing to similar “categories”, i.e. objects that respond to
similar features.
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