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Abstract

Support Vector Machines (SVMs) are excellent candidate
solutions to solving multi-class problems, and multi-class
SVMs can be trained by several different methods. Different
training methods commonly produce SVMs with different ef-
fectiveness, and no multi-class SVM training method always
outperforms other multi-class SVM training methods on all
problems. This raises difficulty for practitioners to choose
the best training method for a given problem. In this work,
we propose a Multi-class Method Selection (MMS) approach
to help users select the most appropriate method among
one-versus-one (OVO), one-versus-all (OVA) and structural
SVMs (SSVMs) for a given problem. Our key idea is to select
the training method based on the distribution of training data
and the similarity between different classes. Using the dis-
tribution and class similarity, we estimate the unclassifiable
rate of each multi-class SVM training method, and select the
training method with the minimum unclassifiable rate. Our
initial findings show: (i) SSVMs with linear kernel perform
worse than OVO and OVA; (ii) MMS often produces SVM
classifiers that can confidently classify unseen instances.

Introduction

Existing studies have shown that Support Vector Machines
(SVMs) (Vapnik 1998) perform well in solving multi-class
classification problems (Hsu and Lin 2002). There are two
types of approaches to solving multi-class problems using
SVMs. One is solving the multi-class problem using one
optimization problem, and the other is by decomposing the
multi-class problem into several binary SVM training prob-
lems. Structural SVMs (SSVMs) solve the multi-class prob-
lem as one optimization problem; one-versus-one (OVO)
and one-versus-all (OVA) decomposition solve the multi-
class problem using several binary SVM training problems.

With several approaches to multi-class SVM training and
classification, choosing a proper approach to solve a par-
ticular problem is difficult, since different training meth-
ods commonly produce SVMs with significantly different
effectiveness. Existing studies (Crammer and Singer 2002;
Hsu and Lin 2002) have shown that no multi-class SVM
training method outperforms other methods in all problems.
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In this work, we do not concentrate on which method is bet-
ter in general, but aim to find an approach to help users, es-
pecially those who are from other fields, to automatically
choose the most appropriate method for a given problem.
Our key idea is to select the training method based on the
distribution of training data and the similarity between dif-
ferent classes. According to the balance and similarity of the
data, we estimate the unclassifiable rate of each multi-class
SVM training method, and select the training method with
the minimum unclassifiable rate. Our initial findings show:
(i) SSVMs with linear kernel perform worse than OVO and
OVA; (ii) MMS often produces SVM classifiers that can
confidently classify unseen instances.

Our MMS approach

Considering the constraints of each method, we propose a
Multi-class Method Selection (MMS) approach to help users
automatically choose the appropriate multi-class SVM train-
ing method for a given problem. Next, we present two mea-
surements for training data, and describe our MMS method.

Measurement of balance

We use the variance to measure the balance of data distri-
bution. We first normalize the number of instances in each
class, and then compute the variance V using Equation (1).
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where K is the number of classes, nl is the number of in-
stances in class l, and n′

l is the normalized nl.

Measurement of similarity

Although other similarity functions will be explored in this
work, here we use a radials basis function (RBF) kernel to
measure the similarity of each pair of classes in a dataset. We
first randomly choose some instances in each class. Then we
follow Equation (2) to obtain the similarity S̄ of the dataset.

S(I, J) = min{exp(−‖xi − xj‖2
2σ2

)}, i ∈ I, j ∈ J
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K

(2)
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where S(I, J) denotes the similarity between class I and
class J . S̄ is the average similarity of all pair similarities
(the number of pairs equals K(K−1)

2 ).

Our MMS approach

Our MMS approach consists of two steps. First, we calculate
the balance of the dataset according to Equation (1). If V is
large, then the data distribution is very unbalanced. Since
OVA suffers from the unbalanced data issue, we choose
OVO to solve the multi-class classification. Otherwise, we
evaluate the second step.

Second, we calculate the dataset similarity using Equa-
tion (2). If S̄ is large, the instances in each class are closed
which implies that the unclassifiable rate is large. It is known
that the unclassifiable rate of OVA is larger than OVO’s in
general. In OVO, the votes of a new instance for different
classes are probably the same which makes this instance
assigned to more than one classes. Besides that, OVA may
classify the instances to none of the classes. Therefore if S̄
is large, we should use OVO. If V and S̄ are both small, we
choose either OVO or OVA. As for SSVMs with linear ker-
nel, we found in experiments that they always perform the
worst, so we will test SSVMs with other kernels.

Experimental results

In this section, we provide our experimental results. We con-
ducted our experiments on several datasets from LIBSVM
website (Chang and Lin 2011). Our experiments are based
on the SVM library “Mascot” (Wen et al. 2014) which pro-
duce the same results as LIBSVM does. For OVO and OVA,
we choose the RBF kernel to train the SVMs. We choose
linear kernel to train SSVMs which we will improve later.

Test accuracy comparison

In Table 1, the test accuracy of OVO and OVA is overall
higher than SSVMs. If we predict labels for the unclassifi-
able instances (“UINS” in Table 1) by the combination strat-
egy, the performance of OVA and OVO is similar. However,
if we do not predict the labels of unclassifiable instances
(“NUINS” in Table 1), the test accuracy of OVA decreases
more than OVO as shown below the “NUINS”. In Table 2,
we can see the unclassifiable rate (i.e., # of unclassifiable instances

# of testing instances )
using OVO and OVA. While using OVO, instances may be-
long to more than one class (“MTO” in Table 2). While using
OVA, not only instances may belong to more than one class,
but also they may belong to none of all the classes (“NC” in
Table 2). Table 2 shows that the unclassifiable rate of OVA
is higher than that of OVO. When V and S̄ increase, the un-
classifiable rates of OVO and OVA both increase.

It is because when the V is large, the data distribution is
unbalanced. OVA only assigns the instances from one class
to be positive and all the remaining instances to be negative,
which makes the unbalance even worse. When S̄ is large, the
classes in the dataset are close to each other, and it is hard
to classify the instances which are closed. These lead to in-
creases in unclassifiable rate and decreases in the accuracy
of OVA. The above results indicate that although the perfor-
mance of OVA and OVO is similar, when the V or S̄ is large,

Table 1: Comparison of test accuracy (%)

dataset NUINS UINS SSVMs
OVO OVA OVO OVA

satimage 91.9 89.45 92 91.9 81.9
pendigits 98.46 97.48 98.48 98.8 90.91

usps 95.57 92.97 95.71 95.86 91.93
letter 97.98 95.44 98.02 97.88 76.96

Table 2: Unclassifiable rate of OVO and OVA
dataset OVO(%) OVA(%)

V S̄MTO MTO NC
satimage 0.0025 0.25 3.90 0.0050 0.98
pendigits 0.0023 0.29 1.37 1.78e-5 0.00

usps 0.0045 1.10 3.84 0.0008 0.78
letter 0.0008 0.92 2.52 1.83e-6 0.99

the unclassifiable rate of OVA will be high, reducing confi-
dence in the predictions made by OVA. Therefore, in these
situations, we recommend users to choose OVO method.

Conclusion and future work

In this work, we propose the MMS approach that can help
users select the most appropriate method for a particular
multi-class problem without trying all the methods. From
the experiments, we found SSVMs with linear kernel per-
form worse than OVO and OVA. Our MMS approach often
produces SVM classifiers that can confidently classify un-
seen instances by taking the unclassifiable rate into account.

In the future, we will search for a faster way to train
SSVMs, such that we can use non-linear kernels. Moreover,
we plan to explore other ways of measuring balance and sim-
ilarity, and provide theoretical analysis to our approach.
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