
Automated Question Answering System
for Community-Based Questions

Chanin Pithyaachariyakul, Anagha Kulkarni
cpithyaa@mail.sfsu.edu, ak@sfsu.edu

San Francisco State University
1600 Holloway Ave, San Francisco, California, 94132

Abstract

The emergence of community question answering sites, such
as, Yahoo! Answer (Y!A), and Quora, indicate that for certain
information needs, users prefer receiving focused answers to
their questions, rather than a list of URLs from search results.
This trend has sparked a rich area of investigation at the inter-
section of Information Retrieval (IR), Natural Language Pro-
cessing (NLP), and Machine Learning (ML) of Automated
Question Answering (QA). In this paper, we present our at-
tempt at developing an efficient QA system for both factoid
and non-factoid questions from any domain. Empirical eval-
uation of our system using multiple datasets demonstrates
that our system outperforms the best system from the TREC
LiveQA tracks, while keeping the response time to under less
than half a minute.

Introduction

Question Answering (QA) problem has been researched ex-
tensively by IR, NLP, and ML communities (Agichtein et
al. 2016). To accomplish the QA task, the following sub-
problems have to be addressed: (i) transforming free-text
questions into well-formed boolean queries (ii) compiling
sources of documents that may contain the answer, (iii)
extracting short units of texts as candidate answers from
the retrieved documents, and (iv) selecting the best answer
using effective ranking algorithms (Wang et al. 2015). To
solve each of these sub-problems, we designed our QA sys-
tem, SF-State-QA, into four components: Question Formula-
tion Module (QFM) applies effective tools to transform ver-
bose questions into key-phrase queries; Document Retrieval
Module (DRM) searches knowledge-rich resources to obtain
answer-bearing web-pages; Candidate Answer Extraction
Module (CAEM) generates short passages from the web-
pages for candidate answers, and Answer Selection Module
(ASM) utilizes ML techniques to select the best answer. We
use TREC LiveQA datasets to evaluate our system perfor-
mance with the official ranking metrics. The results demon-
strate that our system outperforms the best systems from the
TREC LiveQA 2015 and 2016 competitions.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: System’s Architecture

System Overview
Figure 1 illustrates the architecture of our system. Next we
describe the four modules of the system in details.

Query Formulation Module (QFM)
The QFM transforms the free-text questions to well-formed
boolean conjunctive queries that can be evaluated by search
engines. This is one of the most difficult processes because
human-generated questions are often lengthy and ambigu-
ous, containing many unnecessary connecting words for
human-friendly readers. However, the additional words cre-
ate the long queries that mislead the main idea of the ques-
tions, or even do not return any search result. Thus, we need
to analysis the complex questions to generate the queries that
are precise for search engines to highly obtain relevant doc-
uments. In this research, we applied Stanford dependency
parser library (Chen and Manning 2014) to detect phrases in
order to generate the key-phrase queries based on grammat-
ical rules. For instance, the question: “Why’s juice from or-
ange peel supposed to be good for eyes?” is transformed to
a boolean query: “(orange peel) AND (good for eyes) AND
(juice).” This keyword-phrase query is more explicit than
single-word query because orange juice has more dominant
presence on the sites than orange peel juice. Consequently,
with the single-word query, documents about orange juice
have higher opportunities to be retrieved that is not relevant
to the question. Therefore, key-phrase queries are more un-
ambiguous to obtain higher amount of accurate documents.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

8131



In the Y!A datasets, each question provides the category
of the question such as health, pet sport etc. We use this cate-
gory classification to apply a new query expansion approach
for health questions. Since health questions contain many di-
versity of language, the query expansion technique is widely
used to optimize the queries to solve the vocabulary mis-
match (Zhu et al. 2014). In this work, we applied Metamap
tool to discover clinical terms and expand the queries with
the term that might be relevant using the UMLS Metathe-
saurus. For instance, as a question: “How to treat type 2
diabetes without medication?”, The MetaMap tool is used
to expand and formulate the following query: “(medica-
tion OR pharmaceutical preparations) AND (non-insulin-
dependent) AND (type 2 diabetes OR diabetes mellitus)”.
This query is effective to solve the vocabulary mismatch in
medical publications to improve retrieval performance.

Document Retrieval Module (DRM)
For this paper, we utilize two search engines: Bing Y!A
site search API, and Google Search API, and two datasets:
L6 Y!A dataset, English Wikipedia dataset. The L6 Y!A
dataset, which contain 4.4 million questions, is used to check
if these exists an exact match from the old questions. If there
is an exact match, then the best answer from the previous
question is returned, and that is end of the answer generation
for that question. However, if an exact matching question is
not found, then Wikipedia, which contains 5+ million arti-
cles, is used to search for relevant articles. In parallel, Bing
Y!A site search is used to search for the similar questions
from current Y!A site. Also in parallel, Google search API,
is applied to retrieve documents from the WWW. The top
three documents are retrieved by each of the above searched
to obtain a total of nine documents at most.

Candidate Answer extraction Module (CAEM)
We applied jsoup library to download and convert HTML
pages into the lists of plain-text sentences. We used the slic-
ing window technique to concatenate the sentences into con-
cise passages, which contain at most 1,000 characters. We
then calculate and rank the passages based on its semantic
similarity to the queries using Okapi BM25. The top pas-
sages are returned as candidate answers to the next pipeline.

Answer Selection Module (ASM)
ASM is built to select the best answer from the lists of can-
didate answers. We applied LambdaMART (Burges 2010),
a Learning to Rank algorithm. We used the TREC LiveQA
datasets to train the model. The labeled data is based on
the following features: TF.iDF, Okapi BM25, cosine simi-
larity, number of overlapping terms, number of characters,
number of words, and number of non-alphanumeric charac-
ters. The candidate answers are labeled by its score of the
features and run through the Ranklib library based Lamb-
daMART model. The candidate answer, which obtains the
highest score, is selected as the best answer.

Experiments, Results, and Analysis
For empirical evaluation, we used TREC LiveQA 2015 and
2016 datasets, which contain 1,000+ questions each. We ran-

domly selected 200 questions from the datasets and per-
formed manual assessment using TREC LiveQA 4-level
Likert scale from 1 (poor) to 4 (excellent). We evaluated the
system’s performance based on the official TREC LiveQA
metrics: avgScore(0-3) and Success@i+. The avgScore is
average score over all questions (tranferring 1-4 to 0-3). The
Success@i+ (i=1..4) is the number of question with score i
or above, divided by the total number of questions. We com-
pared our system’s performance with the highest ranking
systems from each competition. Table1 reports the end-to-
end results of TREC LiveQA 2015 and 2016 datasets. Our
system outperformed the best systems in all evaluation met-
rics providing at least 1.42 of avgScore with approximately
26 seconds of processing time per question.

Table 1: End-to-end Results

avgScore(0-3) Success@
2+ 3+ 4+

TREC 2015
SF-State-QA 1.420 0.650 0.430 0.340
OAQA 1.081 0.532 0.359 0.190

TREC 2016
SF-State-QA 1.570 0.760 0.500 0.330
EmoryCrowed 1.260 0.620 0.421 0.220

Conclusions
We presented an automated QA system that employs sim-
ple but effective query generation approach, uses multiple
document sources to compile a strong pool of candidate
answers, and then identifies the best answer using trained
answer ranking models. Empirical evaluations demonstrate
that our system performs 31% and 25% better than the best
performing system at TREC LiveQA 2015 and 2016, respec-
tively, with average response time of less than half a minute.

References
Agichtein E., Carmel D., Pelleg D., Pinter Y., Harman D.,
2016. Overview of the TREC 2016 LiveQA Track. Proceed-
ings of TREC, 2016 1–10.
Burges C., 2010. From ranknet to lambdarank to lamb-
damart: An overview. Learning 11: 23-581.
Chen D., and Manning D. C. 2014. A Fast and Accurate
Dependency Parser using Neural Networks. In Proceedings
of EMNLP, 2014 740–750. Doha, Qatar.: EMNLP Press.
Wang D., and Nyberg E. 2015. CMU OAQA at TREC 2015
LiveQA: Discovering the Right Answer with Clues. In Pro-
ceedings of TREC LiveQA, 2015.
Shtok A., and Szpektor I. 2012. Learning from the past: An-
swering new questions with past answers. In Proceedings of
the 21st International Conference on World Wide Web, 2012
759-768. Lyon, France.: ACM Press.
Zhu, D., Wu, S., Carterette, B., and Liu, H. (2014). Using
Large Clinical Corpora for Query Expansion in Text-based
Cohort Identification. Journal of Biomedical Informatics, 0,
275-281.

8132


