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Abstract

Heterogeneous Transfer Learning (HTL) algorithms lever-
age knowledge from a heterogeneous source domain to per-
form a task in a target domain. We present a novel HTL al-
gorithm that works even where there are no shared features,
instance correspondences and further, the two domains do
not have identical labels. We utilize the label relationships
via web-distance to align the data of the domains in the pro-
jected space, while preserving the structure of the original
data.

Introduction

Traditional supervised algorithms require sufficient labeled
data to learn a computational model for making reliable pre-
dictions. Often, obtaining labeled training data is expensive
and time consuming. Transfer learning algorithms overcome
this limitation for a target domain by leveraging labeled
knowledge from related domains (often termed as the source
domains) that can have different distributions, different fea-
ture spaces and even different label spaces (Sukhija, Krish-
nan, and Singh 2016). Knowledge transfer between domains
with heterogeneous feature spaces is widely known as Het-
erogeneous Transfer Learning (HTL). As the feature spaces
are heterogeneous, the first task of any HTL approach is to
identify a common feature space for the source and target
domain that can be used for adaptation. Based on this com-
mon space, the HTL literature can be categorized into two
groups. The HTL methods belonging to the first group (also
known as Feature Space Remapping (FSR) methods) learn
a single transformation that maps source features to target
features. With the help of this learned transformation, the
data from the source domain can be projected to the target
domain and vice-versa. The approaches associated with the
second group (also known as Latent Space Transformation
(LST) methods) learn a pair of mappings, one for each do-
main, to project the data onto a shared subspace for adapta-
tion. The second task is to bridge the gap between the data
differences that arise when the data from both the domains is
projected onto the common space. For compensating these
differences, some shared information can be leveraged to
maximize the similarity of the source and target domain
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data in the common space. The shared information can be
present in the form of instance correspondences, overlapping
features, shared label space, common meta-features/latent
space or any task specific/independent information. Some
HTL approaches also leverage domain-specific knowledge
by utilizing external sources such as oracles/dictionary, so-
cial media or web to reduce the domain differences.

The proposed algorithm utilizes the inter-label space se-
mantic similarities to improve the joint alignment of the
data from the source and target domains in the common
space. Our approach is motivated by the cross-domain ac-
tivity recognition task where the label spaces are semanti-
cally related. Learning a robust activity recognition model
requires manually annotating large amounts of sensor ob-
servations, which is an expensive task. Cross-domain activ-
ity recognition leverages labeled data from existing smart
homes to a target smart home to circumvent the annotation
effort. The presence of different sensor modalities across the
different smart home layouts leads to heterogeneous feature
spaces. Differences in the daily routine of the residents in
different smart homes results in differences in the marginal
and conditional distribution of the data. However, the daily
activities of different smart home residents lead to seman-
tically related label spaces. The proposed approach learns
a mapping between the heterogeneous sensors to enable
knowledge transfer. We conducted experiments to test the
transfer efficiency of our proposed approach on three single-
resident smart homes from the CASAS datasets (Cook et al.
2013).

Proposed approach

The primary limitation with state-of-the-art LST approaches
is that they rely on implicit feature relationships to find a
lower dimensional optimal shared subspace that will be used
for adaptation. Learning the optimal shared subspace is an
expensive task as it involves a grid-search on the dimension
of the shared subspace. In order to circumvent this inherent
limitation of LST approaches, the proposed HTL algorithm
is conceived as a FSR minimization objective that bridges
the heterogeneous feature and output spaces of the source
and target domains without relying on instance or feature
correspondences. Our novel approach, Label Space Driven
Heterogeneous Transfer Learning with Web Induced Align-
ment (LSDHTL-WIA), aligns the data from the source and
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Table 1: Transfer performance comparison of state-of-the-art algorithms is shown in terms of mean error and standard deviation
(%) over 4 folds. The best performance has been highlighted in bold.

CASAS horizon house datasets

Baseline Results Transfer Results

S→T BRF SVM ECOC SHFR ECOC HFA HeMap SHDA-RF SHFR-RF Co-HTL LSDHTL WIA

hh102→hh113 29.67±2.51 34.58±2.20 28.25±2.86 36.31±2.35 35.51±3.50 26.37±2.23 27.98±2.51 28.32±2.38 25.19±2.49

hh102→hh118 36.41±2.42 43.51±3.01 33.14±2.82 32.99±3.41 41.08±3.33 31.50±2.01 32.01±2.09 31.09±2.66 28.30±2.80

hh113→hh102 36.70±1.95 41.23±2.93 31.58±2.41 41.28±2.65 38.05±3.71 29.88±1.76 32.81±2.38 33.52±2.47 28.97±2.78

hh113→hh118 32.35±2.56 39.41±1.89 31.02±2.16 38.52±2.07 38.04±2.68 28.0±2.02 30.15±2.44 30.06±1.97 27.28±2.46

hh118→hh102 38.95±2.57 41.80±2.21 36.51±2.31 43.51±2.75 41.08±2.72 33.02±2.13 35.40±2.35 36.32±2.28 32.54±2.10

hh118→hh113 31.01±1.80 34.73±3.39 29.27±3.44 31.09±3.67 35.89±3.61 27.73±1.08 30.46±2.95 31.53±2.55 27.42±2.73

target domain in the projected space taking into considera-
tion the semantic relationship between the labels while pre-
serving the original structure of data.

The proposed minimization objective is shown in Equa-
tion 1. Given the source domain data S ∈ R

nS×dS and
target domain data T ∈ R

nT×dT , the proposed optimiza-
tion framework iteratively minimizes the overall loss J(.)
incurred by jointly aligning the data of the source and tar-
get domain for learning the optimal transformation P ∈
R

dS×dT , the optimal projected source data BS ∈ R
nS×dT

and the optimal projected target data BT ∈ R
nT×dS .

J(.) = min
BS ,BT ,P

|| S −BSP
′ ||2 + || T −BTP ||2 +

β(

nS∑

i=1

nT∑

j=1

Wij || xS
i −BTj

||2 +

nS∑

i=1

nT∑

j=1

Wij || BSi
− xT

j ||2)

+ λ(|| BS ||2 + || BT ||2 + || P ||2)
(1)

The first two terms represent the individual reconstruction
loss functions for the source and target domain. A linear re-
construction helps to preserve the original structure of data
in the projected space. However, there can still be signifi-
cant distribution differences in the projected space even af-
ter preserving the original topology. Hence, in order to add
more discriminating information to the learned transforma-
tion, the proposed optimization framework constrains the in-
stances from the source and target domains with the same
or related labels to be closer to each other in the projected
space. This can be viewed as minimizing the conditional dis-
tribution differences in the projected space. The similarity
between the labeled data across the domains is defined using
the Normalized Google Distance (NGD) (Cilibrasi and Vi-
tanyi 2007) on the associated labels. NGD is a well known
semantic similarity measure that returns the web distance
between any two keywords. We transform NGD into a sim-
ilarity measure W ∈ [0, 1]nS×nT for every labeled instance
pair in the source and target domain.

Using the similarity matrix W , the third term induces se-
mantic co-alignment in our framework by penalizing for se-
mantic data misalignment between the source and target data
points in the projected space. While minimizing the inter-
domain differences using the label information, there is a

significant risk of over-fitting on source training data. Hence,
we adopt a regularizer in the objective function (the fourth
term) to penalize over-fitting. The hyper-parameter β regu-
lates the importance of label space induced alignment while
λ controls the importance of the regularization term. The
proposed optimization problem is not jointly convex with
respect to the three variables BS , BT and P . However, it
is convex with respect to any one of them while the other
two have been fixed. Consequently, we utilize an alternating
algorithm for solving the unconstrained optimization, by it-
eratively fixing two out of the three variables to estimate the
remaining one until convergence.

Results and Discussion

We report the performance of LSDHTL-WIA against sev-
eral baselines and state-of-the-art transfer approaches on six
cross-domain activity recognition tasks in Table 1. It can
be seen that our algorithm outperforms all the baseline and
transfer approaches on all transfer tasks. Kindly refer the
supplementary material1 for detailed experimental results. A
limitation of the proposed approach is that it requires some
amount of labeled data in the target domain. Consequently,
if labeled data is absent in the target domain, annotating
relatively small number of unlabeled data becomes an in-
escapable task.
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