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Abstract

In this paper, we propose a Discriminative Semi-Supervised
Feature Selection (DSSFS) method. In this method, a ε-
dragging technique is introduced to the Rescaled Linear
Square Regression in order to enlarge the distances between
different classes. An iterative method is proposed to simulta-
neously learn the regression coefficients, ε-draggings matrix
and predicting the unknown class labels. Experimental results
show the superiority of DSSFS.

Introduction
With the rapid increase of data size, it is desirable to develop
feature selection methods that are capable of exploiting both
labeled and unlabeled data. During the past ten years, various
semi-supervised feature selection methods have been pro-
posed recently. Most semi-supervised feature selection meth-
ods are filter-based by ranking the features wherein the highly
ranked features are selected and applied to a predictor (Zhao
and Liu 2007; Xu et al. 2016). However, the filter-based fea-
ture selection could discard important features that are less
informative by themselves but are informative when com-
bined with other features. Ren et al. proposed a wrapper-type
forward semi-supervised feature selection framework (Ren
et al. 2008), which performs supervised sequential forward
feature selection on both labeled and unlabeled data. How-
ever, this method is time consuming for high-dimensional
data because it involves iterative feature subset searching.
Embedded semi-supervised methods take feature selection as
part of the training process, therefore, are superior to others in
many respects. Recently, Chen et al. proposed a Rescaled Lin-
ear Square Regression (RLSR) for semi-supervised feature
selection task (Chen et al. 2017).

In order to select features with discriminative power, it
is often desired that the distances between data points in
different classes are as large as possible after they are trans-
formed. In this paper, we propose a fast Discriminative Semi-
Supervised Feature Selection (DSSFS). In this method, a
ε-dragging technique is introduced to the Rescaled Linear
Square Regression to enlarge the distances between different
classes. We propose an iterative method to optimize the new
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model. Experimental results on four real-life data sets show
the superiority of DSSFS.

Discriminative Semi-Supervised Feature
Selection

In semi-supervised learning, a data set X ∈ R
d×n with c

classes consists of two subsets: a set of l labeled objects
XL = (x1, ...,xl) which are associated with class labels
YL = {y1, ...,yl}T ∈ R

l×c, and a set of u = n − l
unlabeled objects XU = (xl+1, ...,xl+u)

T whose labels
YU = {yl+1, ...,yl+u}T ∈ R

u×c are unknown. Here,
yi ∈ R

c(1 ≤ i ≤ l) is a binary vector in which yj
i = 1

if xi belongs to the j-th class.
To measure the importances of d features, we introduce

d scale factors θ in which θj > 0(1 ≤ j ≤ d) measures
the importances of the j-th feature. We use θ to evaluate
the importances of the d features and the k most important
features can be selected according the biggest k values in θ.
To learn Θ and YU simultaneously, we form the following
problem

min

(∥∥∥XTΘW + 1bT −Y − (2Y − 1) ◦M
∥∥∥2

F
+ γ ‖W‖2F

)

st. W, b, θ > 0, 1T θ = 1, YU ≥ 0, YU1 = 1, M ≥ 0
(1)

where Θ ∈ R
d×d is a rescale matrix which is a diagonal

matrix and Θjj =
√
θj . Let E = 2Y − 1, then E ∈ R

n×c

is a constant matrix, in which eil = +1 if the i-th object
belongs to the l-th class,−1 if the i-th object does not belong
to the l-th class, or 0 if l ≤ i ≤ n. M is a ε-draggings matrix
to be learnt.

According to Theorem (1) in (Chen et al. 2017), problem
(1) is equivalent to the following sparse problem

min

(∥∥∥XTW + 1bT −Y − (2Y − 1) ◦M
∥∥∥2

F
+ γ ‖W‖22,1

)

st. W, b, θ > 0, 1T θ = 1, YU ≥ 0, YU1 = 1, M ≥ 0
(2)

where the optimal solution of θ is θj =
‖wj‖

2∑d
j=1‖wj‖2

.
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We define an iterative algorithm, named Discriminative
Semi-Supervised Feature Selection (DSSFS) , to solve prob-
lem (2), in which b, W, YU and M are alternately updated
in each iteration until convergency. If b, YU and M are fixed,
the optimal solution of W can be obtained by an iterative
algorithm, in which an additional variable Q is introduced.
The optimal solution of W is

W = (XHXT + γQ)−1XH(Y + (2Y − 1) ◦M) (3)

where Q ∈ R
d×d is a diagonal matrix with the j-th diag-

onal element as qjj =
∑d

v=1

√
‖wv‖2

2+ε√
‖wj‖2

2+ε
. W and Q can be

alternatively updated until convergence.
If W, YU and M are fixed, the optimal solution of b is

b =
1

n

[
(Y + (2Y − 1) ◦M)T1−WTX1

]
(4)

If b, M and W are fixed, the optimal solution of YU,
the optimal solution of each yi ∈ YU can be individually
updated as

yi = ((2mi + 1)◦−1 ◦ (WTxi + b+mi) + η)+ (5)

where η can be obtained by solving yT
i 1 = 1.

If b, YU and W are fixed, the optimal solution of M is

M = max((2Y − 1) ◦ (XTW + 1bT −Y),0) (6)

Experimental Results and Analysis
To validate the effectiveness of DSSFS, we compared it
with six state-of-the-art feature selection methods, includ-
ing three semi-supervised feature selection methods sSe-
lect (Zhao and Liu 2007), RLSR (Chen et al. 2017) and
RRPC (Xu et al. 2016), two unsupervised feature selection
method Laplacian Score (LS) (He, Cai, and Niyogi 2005)
and MCFS (Cai, Zhang, and He 2010), and a supervised
feature selection method RFS (Nie et al. 2010). In this ex-

Table 1: The average accuracy ± standard deviation results
(the best result on each data set is highlighted in bold).

Algorithm Binalpha Usps Colon MC
LS 0.466±0.16 0.601±0.12 0.651±0.07 0.687±0.04

MCFS 0.531±0.06 0.673±0.02 0.666±0.04 0.691±0.05
RFS 0.573±0.11 0.602±0.14 0.699±0.06 0.712±0.04

sSelect 0.407±0.14 0.64±0.08 0.566±0.04 0.623±0.04
PRPC 0.5±0.09 0.658±0.03 0.703±0.02 0.702±0.03
RLSR 0.556±0.11 0.677±0.03 0.751±0.05 0.719±0.04
DSSFS 0.59±0.1 0.679±0.03 0.761±0.03 0.732±0.03

periment, we used four real-life data sets, i.e., the Binalpha,
Usps, Colon and Musk clean1 (MC) data sets. For each data
set, we randomly selected 40% of samples as training exam-
ples, and the remaining examples were then used as the test
data. The test data were also used as the unlabeled data for
the semi-supervised feature selection algorithm. For unsuper-
vised feature selection methods, we only used the training
examples without labels. For the selected features, we trained

linear SVM to predict the unlabeled data, the average ac-
curacies and standard deviation were computed. We set the
regularization parameter γ of LS, RFS, sSelect, RLSR and
DSSFS as {10−3, 10−2, 10−1, 1, 102, 103}, λ of sSelect as
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

The average accuracies of seven feature selection methods
are summarized in Table 1. Overall, our proposed method
DSSFS outperformed all other methods on these data sets. To
be specific, DSSFS has nearly 3% improvement on the Binal-
pha data set, compared to the second best method RFS. We
also notice that DSSFS defeats RLSR on these data sets. This
indicates that the introduction of discriminative ε-dragging
technique indeed improves the performance of feature selec-
tion.

Conclusions
This paper presents a Discriminative Semi-Supervised Fea-
ture Selection (DSSFS) method. Experimental results show
the superiority of our method.
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