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Introduction
Bandit problems are of high theoretical interest, as they rep-
resent a simple setup for the study of the explore-exploit
trade-off faced by an agent in an unknown environment.
Despite the large corpus on the topic, most prior work has
focused on a single-agent setup (Bubeck and Cesa-Bianchi
2012).

Here, we consider the scenario of a graph of multiple
interconnected agents implementing a common policy and
each playing a bandit problem with identical reward distri-
butions. We impose a restriction on the information propa-
gated in the graph such that ”neighbouring” agents can only
observe each other’s actions, but not the corresponding pay-
offs.

Not only does the resulting problem expand bandit the-
ory, but it can also be of particular applicability to online
influencers, the prediction of viral trends, or the modeling
of other social behaviours relying heavily on imitation with
limited communication between individuals.

Our approach extends the vanilla Upper Confidence
Bound (UCB) algorithm (Auer, Cesa-Bianchi, and Fischer
2002) to the imitating multi-agent bandit problem described
above. The resulting Imitation Upper Confidence Bound
(IUCB) algorithm involves an action selection process in
two parts according to which an agent either acts individ-
ually using UCB or imitates the most popular action among
all its neighbours.

IUCB Algorithm
Let k be an agent in the graph and let Bk be the set of all
agents connected to k with a single edge (i.e. the neighbours
of k). For each of its own plays of arm i, the agent updates
a running average Xk

i (t) of rewards and a play count nk
i (t)

for that arm. At each timestep t, the agent also keeps track
of the number P k

i (t) of times that the arm was selected by
one of its neighbours in the last 10 time steps. Formally, this
measure of popularity is defined to be

P k
i (t) =

∑
j∈Bk

t−1∑
s=t−10

{Aj(s) = i}, (1)
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where Aj(t) is the arm selected by agent j at time t and
{I(t)} is simply the indicator function of event I(t). Also,
let

Ck
i (t) := Xk

i (t) + c

√
ln t

nk
i (t)

(2)

be the original UCB confidence bound, with c > 0 a tunable
parameter.

The action selection proceeds as such: every agent initial-
izes the IUCB algorithm by selecting each bandit arm ex-
actly once. Then, for all the following timesteps, a random
variable vk(t) ∈ [0, 1] is sampled from a uniform distribu-
tion for each agent. The action is subsequently selected ac-
cording to:

Ak(t) =

⎧⎨
⎩
argmax

i

[
Ck

i (t)
]
, vk(t) ≥ α

argmax
i

[
P k
i (t)

]
, vk(t) < α,

(3)

where α ∈ [0, 1] is the imitation frequency.

Results
We implemented the IUCB algorithm on graphs with dif-
ferent structures and sizes, and empirically demonstrate the
improved performance over vanilla UCB on a large set of
10-armed bandits with Gaussian reward distributions. Full
details of the experimental methodology can be found in the
supplemental material.

Fig. 1 shows the average cumulated regret R̄ for all struc-
tures tested as a function of graph size. As can be seen
in panel (a), the IUCB algorithm cumulates only approx-
imately half the regret of vanilla UCB, thus achieving a
significantly better performance. This is a direct effect of
the actions done through imitation, as will become apparent
from Fig. 2

From the detailed view in panel (b), we observe that regret
draws a non-linear benefit from an increase in graph size.
This benefit is especially seen in the case of the Erdős-Rényi
random and Barabási-Albert small-world graphs (Albert and
Barabási 2002).

In the case of the BA small-world graphs, the sharp de-
crease in regret is particularly noteworthy, since they were
all generated with the same new node degree parameter
(m = 3). Consequently, the larger graphs are effectively
sparser than smaller ones.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

8113



(a)

(b)

Figure 1: Average cumulated regret per agent over 1000
time steps. (a) Comparison of various graphs to vanilla UCB
(black line). (b) Detail showing average cumulated regret per
agent as a function of graph size for different structures.

This apparent tendency for increased performance of the
IUCB algorithm in sparser graph structures is accentuated
by the fact that the clique (i.e. fully-connected graph) is
on average the worse performing structure among all those
tested. Our intuition for this observation is that, within a
clique, all agents share an identical neighbourhood. Thus,
when imitating, each agent observes very similar values of
P k
i (t), which leads to a less efficient exploration during the

earlier time steps.
Fig. 2 shows how the average imitation benefit b̄(t)

evolves in time. This metric is formally defined in the sup-
plemental material, but it essentially measures the true gap
between the action Ak(t) selected by an agent when imitat-
ing and the action maximizing the UCB bound Ck

i (t).
Thus, the curves demonstrate that imitation allows agents

to substitute a fraction of early actions that would have been
used through UCB with more optimal ones. We can interpret
imitation as a form of informed exploration, partially com-
pensating for inaccurate early estimates resulting from the
low number of samples taken by individual agents.

Joint analysis of Fig. 1b and Fig. 2 seems to indicate that

Figure 2: Average imitation benefit per agent for different
graph sizes and structures. Time scale is logarithmic.

the best performing graphs are also the ones with the highest
imitation benefit, which is to be expected.

Furthermore, b̄(t) is also an indirect metric of conver-
gence between agents of a given graph. Indeed, since the
imitation frequency α is constant, a decrease in imitation
benefit is only attributable to a decrease in the average gap
between the perceived optimal action and the action taken.

Looking at Fig. 2, we remark that all graphs seem to con-
verge at approximately the same rate, despite differences
in benefit during early time steps. We can therefore con-
clude that the IUCB algorithm asymptotically falls back
upon vanilla UCB as imitation and individual actions be-
come nearly equivalent.

Conclusion
We developed a new algorithm, the Imitation Upper Con-
fidence Bound (IUCB), which empirically achieves better
regret than vanilla UCB in the setting of imitating multi-
agent bandit problems. By measuring the imitation benefit,
we also provided insight on the effect of imitation on indi-
vidual decision-making and on group consensus.

However, theoretical analysis of IUCB and the derivation
of a regret bound remains an open problem and is thus the
target of future work.
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