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Abstract

A major barrier to the personalized Human Activity Recog-
nition using wearable sensors is that the performance of the
recognition model drops significantly upon adoption of the
system by new users or changes in physical/ behavioral sta-
tus of users. Therefore, the model needs to be retrained by
collecting new labeled data in the new context. In this study,
we develop a transfer learning framework using convolutional
neural networks to build a personalized activity recognition
model with minimal user supervision.

Introduction
Inertial wearable sensors have been vastly utilized for Hu-
man Activity Recognition (HAR). A major challenge with
the trained HAR models is that the performance of the clas-
sifier is highly sensitive to the context of the sensor and engi-
neered features (Rokni and Ghasemzadeh 2017). Upon any
changes in the task or distribution of the data (e.g., a new
user utilizing the system, or changes in activities of interest),
we will need to obtain additional inputs from a human ex-
pert by redoing the costly process of collecting labeled data
and handcrafting features. This problem becomes more chal-
lenging considering that wearables are deployed in highly
dynamic and uncontrolled environments, mainly due to their
direct and continuous exposure to end-users and their living
environments.

To avoid handcrafting features, the growing trend of rep-
resentation learning from raw sensor data with Convolution
Neural Networks (ConvNets) has demonstrated a great per-
formance in activity recognition in different domains (Zeng
et al. 2014; Yang et al. 2015; Ronao and Cho 2016).

To expand the pattern recognition capabilities from a sin-
gle setting algorithm with a predefined configuration to a
dynamic setting, successful knowledge transfer is needed
to improve the learning performance by avoiding expen-
sive data collection, labeling and training efforts. Authors
of (Bengio et al. 2011) showed that deep learners are more
powerful in utilizing data points that are not from the same
distribution as the training distribution of a shallow learner.
Particularly, (Yosinski et al. 2014) demonstrated that fea-
tures learned in the first layers are not specific to a particular
task and could be useful for other related tasks.
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In this study, we develop a neural network architecture
which enables us to build a personalized HAR model with
minimal human supervision.

Representation Learning for Sensory Data

A 3D accelerometer sensor captures a sample of body accel-
eration is the form of
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where vxt , vyt and vzt denote x, y and z-acceleration, respec-
tively.

Because the sensor captures human accelerations contin-
uously while the subject performs different activities in free-
living situations, ‘start’ and ‘end’ of activities are unknown
a priori. A typical segmentation with a window of size w
on 3-axis accelerometer data forms 3 channels of input data,
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Assuming M activities of interest A={a1, a2, . . ., aM},
the activity recognition task assigns label aj ∈ A to an ob-
served segment Ct.

The input layer of our neural network structure consists
of 3 channels of the smoothed signal segment. First, these
segments are passed through discretization layer. The dis-
cretization helps to reduce sensitivity of the model to small
changes and therefore makes the model more robust in trans-
ferring into other domains. Typically, a small portion of the
signal range is used by an activity segment and this range
varies from one activity to another. Therefore, we feed the
discretized sequence to an embedding layer to generate a
compact representation of the input data. In addition to di-
mensionality reduction, this embedding layer could be use-
ful to reduce the effect of different instrumental calibra-
tion. Therefore, similar activities captured by different ac-
celerometer sensors or performed by different users could
have close representation in this space. The next layer is a
stack of 1D convolutional layers. Each convolutional layer
captures local dependencies and scales invariant characteris-
tics of the input. The sparse connectivity and parameter shar-
ing features of ConvNets not only help in extracting useful
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local features on different body locations, but also reduce the
computational and storage complexity of the model which is
an essential consideration for algorithms that run on embed-
ded sensory devices. A ReLU activation function is applied
on the linear output each of convolutional layer followed by
a max pooling function that replaces the output of the unit
with the maximum output of nearby units. Because the pool-
ing summarizes the outputs over an entire neighborhood, the
pooling layer makes the representation smaller, more man-
ageable, and invariant to local translations. Next, we apply
Dropout method to prevent overfitting with computational
efficient regularization. Then, on top of output of the last
convolutional layer, we add a densely connected layer re-
ferred to as Classification Layer to aggregate all outputs and
construct a scoring function.

Personalized Model using Transfer Learning

Having a trained network for a group of users as the source
domain, we devise a personalized model by reusing the
lower layers of the network and retrained the upper layer
with few number of instances in the target domain. Particu-
larly, when a new user utilizes the model, we freeze all layers
of the trained network except for the classification layer. Ac-
quiring a few number of labels for the new user, in multiple
epochs, we adjust the weights of the top classification layer
to be more specific to the activity pattern of the current user
(i.e., target domain). We call this transfer learning method as
Transfer Convolutional (TrC).

To evaluate our method, we apply the proposed approach
on 2 publicly available datasets, including Sport and Daily
Activity (SDA) (Altun, Barshan, and Tunçel 2010) and
WISDM (Kwapisz, Weiss, and Moore 2011), which contain
data from multiple users and with multiple activities. For the
SDA dataset, where subjects have worn 5 inertial sensors
on different body locations, we combine 3D accelerometer
channels of each sensor and form an input with 15 channels.

The validation process is leave-one-subject-out where a
user is selected for test and the model is trained on data col-
lected from the remaining subjects. Then, using data associ-
ated with the test subject, we build a set of transfer instances
by randomly acquiring 3 labeled instances for each activ-
ity and retraining the classification layer. Furthermore, we
train 5 shallow classifiers Decision Tree (DT), Logistic Re-
gression (LR), Random Forest (RF), SVM ,and Quadratic
Discriminant Analysis (QDA) on the combined dataset of
training data from other subjects and the transferred in-
stances. All trained models are evaluated on the remaining
instances of test subjects (excluding transfer instances). Fig-
ure 1 shows averaged performance of the classifiers over all
possible leave-one-subject-out scenarios. In this experiment,
the network architecture only stacked two layers of convolu-
tion and max pooling. As presented in Figure 1, our transfer
learning approach significantly improves the accuracy of ac-
tivity recognition with only few labeled instances.

Conclusion

Transfer learning could help to adjust already trained activ-
ity recognition model for a new user with minimal human
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Figure 1: Performance of different classifiers

supervision. We showed that using representation learning,
we can reuse the general features learned from available
training data and construct a personalized model with only
few labeled instances.
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study on classifying human activities with miniature inertial
and magnetic sensors. Pattern Recognition 43(10):3605–
3620.
Bengio, Y.; Bergeron, A.; Boulanger-Lewandowski, N.;
Breuel, T.; Chherawala, Y.; Cisse, M.; Erhan, D.; Eustache,
J.; Glorot, X.; Muller, X.; et al. 2011. Deep learners benefit
more from out-of-distribution examples. In Proceedings of
the Fourteenth International Conference on Artificial Intel-
ligence and Statistics, 164–172.
Kwapisz, J. R.; Weiss, G. M.; and Moore, S. A. 2011. Ac-
tivity recognition using cell phone accelerometers. ACM
SigKDD Explorations Newsletter 12(2):74–82.
Rokni, S. A., and Ghasemzadeh, H. 2017. Synchronous dy-
namic view learning: a framework for autonomous training
of activity recognition models using wearable sensors. In
Proceedings of the 16th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks, 79–90.
Ronao, C. A., and Cho, S.-B. 2016. Human activity recog-
nition with smartphone sensors using deep learning neural
networks. Expert Systems with Applications 59:235–244.
Yang, J.; Nguyen, M. N.; San, P. P.; Li, X.; and Krish-
naswamy, S. 2015. Deep convolutional neural networks
on multichannel time series for human activity recognition.
In IJCAI, 3995–4001.
Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? In
Neural information processing systems, 3320–3328.
Zeng, M.; Nguyen, L. T.; Yu, B.; Mengshoel, O. J.; Zhu, J.;
Wu, P.; and Zhang, J. 2014. Convolutional neural networks
for human activity recognition using mobile sensors. In
Mobile Computing, Applications and Services (MobiCASE),
2014 6th International Conference on, 197–205. IEEE.

8144


