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In order to improve their understanding, cellular mech-
anisms need to be observed at the nanoscale, which is al-
lowed by optical super-resolution microscopy. Among these
techniques, STimulated Emission Depletion (STED) mi-
croscopy (Hell and Wichmann 1994; Klar et al. 2000; Willig
et al. 2006)1 brings a 10 fold improvement of the imaging
resolution over conventional optical microscopy, allowing
to observe molecular structures and protein complexes of
living cells in action (Sahl, Hell, and Jakobs 2017). Super-
resolution microscopes are highly specialized devices, sig-
nificantly more complex to use than conventional optical mi-
croscopes, hence reducing their accessibility. Moreover, the
overall quality of the obtained images can vary a lot depend-
ing on the imaging parameters or the biological structure of
interest. It is therefore very difficult to evaluate the quality
of such images for non-expert users, making it a challenge
when tuning imaging parameters toward good images.

In this work, we tackle the problem of learning to evalu-
ate the quality of STED images. This could allow not only to
support non-experts in their measurements, but also consti-
tute a step toward a fully automated imaging system. We ad-
dress this problem using deep learning. To this end, a brand
new dataset was built, which is used to train the network
and assess its performance. We then conduct a user study
to evaluate the capability of the network for fooling an ex-
pert in front of other experts. We also evaluate the capability
of the network to generalize its quality prediction to STED
images of a different protein.

Problem Statement

Let I denote the space of possible STED images. We aim
at learning the quality function f : I �→ [0, 1] that takes as
input an image and outputs a quality score. This corresponds
to a standard regression problem.

The quality score of an image incorporates several fea-
tures such as the resolution of the observed structures, the
signal-to-noise ratio (SNR), the deterioration of the fluo-
rophores (photobleaching) and structure (photoxicity) due
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1Stefan W. Hell was awarded a Nobel prize in 2014 for this
revolutionary microscopy technique.

to the imaging process, or the observability of specific struc-
tures. The quality score given to an image by an expert is
therefore some sort of (unknown) tradeoff between several
objectives.

Proposed Approach

We propose to learn the quality function from an expert us-
ing a CNN (Convolutional Neural Network). More specifi-
cally, we consider a network made of 6 convolutional layers
and 2 fully connected layers. An ELU activation (Exponen-
tial Linear Unit) is used after each convolutional and fully
connected unit. Max pooling (kernel 2x2, stride 1) is added
after each convolutional unit. Batch normalization is applied
to all the layers except the first one. The output is driven by
a nonlinear activation (sigmoid) to retrieve a quality score
between 0 and 1.

A brand new dataset has been built for the task at hand.
It contains 1140 grayscale images of 224 × 224 pixels of
20 nm. Each image was obtained by the imaging of the pro-
tein actin. Different qualities of images were produced by
changing the acquisition parameters. Images have been la-
beled by an expert, where each label corresponds to a qual-
ity score in [0, 1]. A 80/10/10 split of the randomly shuffled
dataset is used for training, validation, and testing respec-
tively. The training set was doubled using data augmenta-
tion, resulting in 1,824 training images. MSE was used as
loss function and we reached ∼ 12% RMSE.

User Study

If the MSE is a an acceptable loss function for training, it
is not very informative for assessing the ability of the neural
network to fully replace a human expert in the learning loop.
Indeed, if experts appear to be very noisy, the MSE might
be high while the system might be performing quite well.
It is therefore interesting to compare the system predictions
against the expert, from the perspective of another expert.

To this extent, we developed a web-based application that
would sequentially present an expert with STED images and
two scores: the target and the network prediction, in random
order. The expert would either pick the most relevant score,
mark both scores as equivalent, or discard the image. The
last case means that an error occured at the time of the label-
ing since that neither the prediction nor the target appears
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Table 1: Confusion (%) given the target quality (%).

Actin Tubulin
Target Network Random Network Random
0 - 20 63±25 26±15 58±25 4±9
20 - 40 61±29 46±22 77±20 44±23
40 - 60 76±10 76±17 80±12 44±15
60 - 80 84±11 70±9 79±20 85±13
80 - 100 68±20 48±37 − −

Table 2: Domination (%) given the target quality (%).

Actin Tubulin
Target Network Random Network Random
0 - 20 28±21 10±9 33±23 2±4
20 - 40 32±22 23±11 51±26 16±14
40 - 60 48±14 48±15 57±18 20±8
60 - 80 40±12 30±7 61±18 46±13
80 - 100 61±24 25±20 − −

to be good to the expert tester. Similar user studies for as-
sessing the capability of a system to produce realistic results
from a human perspective have been used previously (Gard-
ner et al. 2017).

Measuring Performance

Let Ñ denote the size of the effective test set, that is the num-
ber of images that were not discarded by the tester. Let T ,
P , and E respectively denote the number of images where
the tester picked the target, the prediction, and marked them
as equivalent. We introduce two performance measures:

C = 1−

∣
∣
∣(2P + E)− Ñ

∣
∣
∣

Ñ
and (1)

D =
P

T + P
. (2)

Confusion (Eq. 1) indicates whether network predictions
can be confused with true targets by other experts, and dom-
ination (Eq. 2) indicates how much the network predictions
are beating the labeling expert.

Benchmark

The user study is performed on two datasets. The Actin
dataset contains 103 images of the actin protein on fixed
hippocampal neurons. More specifically, these images are
drawn from the 10% test split taken from the initial data.
The Tubulin dataset contains 94 images of a different pro-
tein: the tubulin of cytoskelettal.

The experiment is performed by 11 experts. Each expert
performs the experiment for both datasets. None of these ex-
perts were involved in the gathering of the data. The neural
network is compared against a random system that predicts
a score by sampling it uniformly from the training labels,
therefore predicting based on the training data distribution.

Results

Tables 1 and 2 show these performance measures per bin of
quality scores, averaged over the 11 testers, with one stan-
dard deviation. More specifically, the performance measures

are calculated for each tester and their scores are then aver-
aged. We observe that the proposed network approach beats
the random baseline in almost all target quality bins, on both
datasets, and regarding both measures. Note that not enough
data are currently available in order to make these results
statistically significant and further experiments would be re-
quired to this extent. We also observe that both algorithms
have troubles when it comes to predict a low score, a possi-
ble explanation could come from the data distribution. How-
ever, our network outperforms the random strategy, hence
exhibiting a capacity of generalization. More details can be
found in the supplementary materials.

Surprisingly, the network obtains a high domination per-
formance on the tubulin protein dataset. Recall that images
of this particular protein have never been seen by the net-
work. In other words, the network predicts scores that often
appear to be even better than the true targets, from the eye of
a tester. This is a very interesting situation that raises ques-
tions regarding the noise inherent to human labelling as well
as the human perception of subtle concepts such as quality.

Discussion and openings

The obtained results raise several questions. For example,
how can predictions of the proposed network become bet-
ter than actual scores given by a human expert? Could we
use the resulting network to help understanding the quality
scoring process by a human expert? More specifically, given
that the quality function is driven by the appearance of spe-
cific structures, could the resulting network be able to detect
these structures? This application is a first step toward the
automatization of analysis and optimization tasks for neu-
roscientists working with high-end microscopy settings. In
fact, the system has been fully deployed on a STED setting
and is currently being used in a control loop for optimizing
imaging parameters. These tools have the potential to help
users in taking full advantage of these systems, which could
facilitate the adoption of this powerful technique.
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