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Abstract

Our work extends Juba’s formulation of learning abductive
reasoning from examples, in which both the relative plausi-
bility of various explanations, as well as which explanations
are valid, are learned directly from data. We extend the for-
mulation to consider partially observed examples, along with
declarative background knowledge about the missing data.
We show that it is possible to use implicitly learned rules
together with the explicitly given declarative knowledge to
support hypotheses in the course of abduction. We observe
that when a small explanation exists, it is possible to ob-
tain a much-improved guarantee in the challenging exception-
tolerant setting.

Introduction

Abduction is the task of inferring a plausible hypothesis to
explain an observed or hypothetical condition. Although it is
most prominently observed in scientific inquiry as the step of
proposing a hypothesis to be investigated, it is also an every-
day mode of inference. Simple tasks such as understanding
stories (Hobbs et al. 1990) and images (Poole 1990) involve
a process of abduction to infer an interpretation of the larger
events, context, and motivations that are only partially de-
picted.

In this work, we consider a PAC-learning (Valiant 1984;
2000) formulation of the combined task of learning to ab-
duce, introduced by Juba (2016). In this formulation, one is
given a collection of examples drawn from the prior distri-
bution (i.e., example jointly sampled values of attributes) to-
gether with a condition to explain, represented as a Boolean
formula c on the attributes. The task is then to propose a
formula h, which essentially must be a k-DNF for computa-
tional reasons, satisfying the following two criteria:
1. Plausibility: the probability that h is satisfied on the prior

distribution must be at least some (given) minimum value
μ > 0

2. Entailment: the probability that the condition to explain
c is satisfied, conditioned on the hypothesis h holding, is
at least 1− ε for some given error tolerance ε > 0.

Our works extend Juba’s formulation of the abduction task
to use partial examples and draw on declaratively specified
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background knowledge. We observe that by using a cover-
ing algorithm, it is possible to guarantee significantly better
explanations when a small hypothesis (using relatively few
terms) is adequate. Concretely, when some r-term k-DNF
explanation on n attributes has an error rate of ε∗, we obtain
an error rate of Õ(r(log log n+ log k)ε∗), in contrast to the
bound obtained for the state-of-the-art algorithm of Zhang et
al. (2017), which gave an error rate of Õ(

√
nkε∗) (but does

not consider the effect of the size of the hypothesis).

Preliminaries

We work in a standard machine learning model in which the
data consists of many examples, assigning boolean values to
a variety of attributes. For example, if our data is about birds,
each bird may correspond to an example and then there can
be attributes such as: whether the bird has feathers or not,
whether it eats bugs or not, and other properties.

Partial Observability In the real world, it is hard to re-
quire each example to contain all of the attributes. So, we
want to make inferences with incomplete data. Partial ob-
servability means that some attributes of examples may
be unknown. We represent this by allowing the value of
each attribute to be 1 (true), 0 (false), or ∗ (unobserved).
For instance, an example ρ(i) could be [x1 = 1, x2 =
∗, · · · , xn = 0]. (For convenience, we denote ρ(i) to be
the ith example and ρi to be the ith coordinate of an exam-
ple ρ.) In our abduction task, we say our partial examples
are drawn from such a masked distribution M(D).

Implicit Learning The main tool to deal with partial
observability is implicit learning. Implicit learning means
learning without producing explicit representations. Given a
knowledge base (a set of formulas), and a query formula, we
want to know if the knowledge base can derive the query for-
mula. The main theorem of implicit learning says, as long as
the formulas in a knowledge base are sufficiently observed in
partial examples, we can determine whether the knowledge
base can derive the query without explicitly constructing or
representing the knowledge base.
Definition 1 (Witnessed Formula) Given a partial exam-
ple ρ, we say a formula φ is witnessed if φ|ρ is 0 or 1.

Where φ|ρ means the formula φ restricted to example ρ. In-
formally speaking, we get the restricted formula by plugging
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in the observed value of the given example. For instance, let
φ = x1∨x2. In a partial example, x1 = 1;x2 = ∗. Then φ is
witnessed (true) even x2 is not observed. But it could be hard
to determine the value when it gets complicated. Notice that
each formula can be either witnessed true, witnessed false,
or not witnessed.

Definition 2 (Proof System) Given a knowledge base KB
(a set of formulas), and a query formula φ, a proof is a finite
sequence of formulas ψ1, · · · , ψk, such that:
1. {ψ1, · · · , ψk} � φ.
2. ∀i ∈ [1, k], either ψi ∈ KB or {ψ1, · · · , ψi−1} � ψi.
Where “�” means “can prove” or “provable”.

Each step of the proof {ψ1, · · · , ψi−1} � ψi corre-
sponds to a relation Rj(ψ1, · · · , ψi−1, ψi). A proof system
is a set of such relations {Rj}∞j=0, i.e., such that whenever
Rj(ψ1, · · · , ψi−1, ψi) holds, {ψ1, · · · , ψi−1} � ψi.

DecidePAC Algorithm We have an algorithm that can tell
whether a formula is provable or not, from the previous work
(Juba 2013). Given knowledge base KB and partial exam-
ples {ρ(1), · · · , ρ(m)} drawn from M(D), for a query for-
mula φ, DecidePAC can tell whether there is a proof of φ if
the knowledge we need is witnessed sufficiently often: De-
cidePAC will Accept if there exists a proof of φ in from KB
and formulas ψ1, ψ2, · · · that are simultaneously witnessed
true with probability at least 1− ε+ γ on M(D); otherwise,
if [KB ⇒ φ] is not (1− ε− γ)-valid, then DecidePAC will
reject formula φ.

Notice that there are three different concepts of being true:
1. observed (or witnessed), 2. provable, and 3. true. We
want to bridge from the witnessed values of examples to
their ground truth, through logical inference.

Abduction under Partial Observability

Given a query or an event, abduction is the task of finding an
explanation for the query or event. An explanation is a com-
bination of some conditions that may have caused the query.
For example, when the query is “Engine does not run,” an
explanation can be “No gas, or key is not turned.”

We require the resulting explanation to satisfy two con-
ditions, “plausibility” and “entailment.” Entailment means
that when the conditions in the explanation are true, the
query should also often be true, or at least rarely false. Thus,
the explanation is a (potential) cause of the query. Plausi-
bility means the explanation is often true. In other words,
for many examples, these conditions are observed. This sup-
presses unlikely explanations such as “A comet hits the car.”
which is a valid entailment, but not plausible.

Definition 3 (Partial Information Abduction) Abduction
is the following task: given any query formula c and
independent partial examples {ρ(1) · · · ρ(m)} over a masked
distribution M(D), we want to find a k-DNF explanation
h, such that the explanation h satisfies:
1. Pr[∃t ∈ h : t provable under ρ] ≥ μ (Plausibility)

2. Pr

[ ¬c provable
under ρ

∣∣∣∣ ∃t ∈ h : t provable
under ρ

]
≤ ε (Weak

Entailment)

Implicit Abduction Algorithm

A k-DNF explanation is actually a disjunction of terms, h =
t1 ∨ t2 ∨ · · · ∨ tr. Each term represents a condition, or a
possibility. Our goal is to find a formula that covers as many
such conditions as possible while still being a potential cause
of the query c.

We observe there is a natural correspondence between our
k-DNF abduction task and set cover: each example of abduc-
tion is an element of the set cover problem, and each term
is a set. We say a term covers an example when the term is
provable in that example. The number of examples from the
distribution is equivalent to its frequency or empirical prob-
ability with respect to the distribution M(D). If the result-
ing explanation consists of terms that are provable in most
of examples, then we can conclude that our explanation is
provable with high probability.

At a high level, our algorithm enumerate through all pos-
sible terms, check them with DecidePac to ensure “entail-
ment”, and then use greedy algorithm of set cover problem
to find a collection satisfying “plausibility.”
Theorem 4 (Implicit Abduction) Given a query c, partial
examples ρ(1), · · · , ρ(m) from a masked distribution M(D),
and a restriction-closed proof system with Knowledge base
KB:

If there exists a r-term k-DNF h∗ = t∗1 ∨ · · · ∨ t∗r satisfy-
ing:
1. With probability at least (1+ γ)μ, ∃t∗i ∈ h∗, such that t∗i

is provable under ρ from KB (Plausibility).
2. If some term t∗ of h∗ is provable, then ¬c is only provable

with probability at most (1− γ)ε. (Weak Entailment)
Then, we can find a k-DNF h in polynomial time, such

that with probability 1− δ,
1. Pr[∃t ∈ h provable under ρ] ≥ (1− γ)μ (Plausibility)

2. Pr

[ ¬c provable
under ρ

∣∣∣∣ ∃t ∈ h provable
under ρ

]
<

Õ(r(log log n+log k+log r+log log 1
δ+log 1

γ )(1+γ)ε))

(Weak Entailment).
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