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Abstract

To have a more meaningful impact, educational applications
need to significantly improve the way feedback is offered to
teachers and students. We propose two methods for determin-
ing propositional-level entailment relations between a refer-
ence answer and a student’s response. Both methods, one
using hand-crafted features and an SVM and the other using
word embeddings and deep neural networks, achieve signifi-
cant improvements over a state-of-the-art system and two al-
ternative approaches.

Introduction
Recent advancements in machine learning have started to
put their mark on educational technology. Although the vast
majority of the classrooms around the world look essentially
the same as they have for several decades, many teachers and
students have started to embrace the advantages that technol-
ogy can bring to the learning process. Moreover, extensive
studies have already shown that students who use Intelligent
Tutoring Systems outperform students from regular classes
(Kulik and Fletcher 2016). This paper focuses on increasing
the learning gains in classrooms through algorithms that en-
hance the analysis between the teacher’s reference answer,
a student’s response, and the relations between them. We
contribute by proposing two fine-grained approaches that
predict entailment relations between a student’s response
and each proposition or clause from the teacher’s answer.
Both methods, one that uses neural networks with word em-
beddings and the other an SVM model with hand-crafted
features, reach similar average F1-scores, significantly out-
performing a state-of-the-art system and two alternative ap-
proaches. On this account, we make use of Minimal Mean-
ingful Propositions (MMPs) (Godea, Bulgarov, and Nielsen
2016). MMPs have recently been introduced as a decom-
position of text into the set of propositions that individually
represent single minimal claims or arguments that cannot
be further decomposed without losing contextual meaning.
By splitting the instructor’s reference answer into MMPs,
we can make more meaningful comparisons between the
learner’s response and the individual claims expressed in the
reference answer.
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Data

We use a modified version of the dataset introduced by
Godea, Bulgarov and Nielsen (2016), which contains real-
classroom questions, each associated with a teacher input
reference answer and an average of 22 student responses.
The most important difference is adding the entailment la-
bels. Two graduate students from the Education and Lin-
guistics Department established the proper entailment rela-
tions between each pair of reference answer MMP and stu-
dent response – understood (31%) or not understood (69%),
with a third annotator acting as an adjudicator. A total of
20,815 entailment instances resulted, which were split into
train (60%), development (20%) and test (20%) sets.

Classification

A first approach to this task uses hand-crafted features. The
features are split into general features and facet (Nielsen,
Ward, and Martin 2009) features. The 45 general features
describe general relations between the reference answer
MMP and the student response, such as the overall similari-
ties and dependencies between words, Pointwise Mutual In-
formation (PMI) scores, overlapping content, BLEU score,
etc. For the rest of the features, we make use of facets due to
their granularity level, allowing us to pinpoint the main rela-
tions between the two texts. Governor, modifier and relation
features are used for each of the following facets: (1) the
least likely understood; (2) the most likely understood; and
(3), as the averages of all facets. The least and most likely
understood facets are chosen by averaging the PMI value
between the governors and modifiers of a reference answer
MMP facet and all student response’s facets. Our second ap-
proach to this task is using GloVe word embeddings with a
deep neural network (DNN). Specifically, we computed the
average embedding vector for each text (reference answer
MMP and student response), and combined them into a sin-
gle vector by concatenating the element-by-element prod-
uct vector and absolute difference vector (thus, experiments
with 200-dimensional word embeddings resulted in a 400-
dimensional input to the neural network). The DNN has two
hidden layers, each having 64 hidden nodes and a dropout
rate of 0.5. Only a small number of iterations was needed to
reach the reported results (10 to 20).
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F1-score
Model Underst. Not Underst. W. Avg.

Majority Baseline 0 0.82 0.58
LSA 0.44 0.75 0.66
Corley and Mihalcea 0.43 0.76 0.66
Horbach et al. 0.39 0.83 0.67

SVM – man. ftrs. 0.53 0.83 0.73

WEs – 50 dim. 0.63 0.83 0.76
WEs – 100 dim. 0.60 0.80 0.73
WEs – 200 dim. 0.63 0.80 0.74

Table 1: MMP Entailment Results (WEs = word embed-
dings, LSA = Latent Semantic Analysis)

Results
Table 1 shows results obtained by a majority baseline, La-
tent Semantic Analysis (LSA), and Corley and Mihalcea’s
(2005) unsupervised system for measuring the semantic sim-
ilarity of texts. For the latter two approaches, a score was
obtained for each pairing of a reference answer MMP and
a student response, that was compared against a threshold t
estimated on the development set (LSA: t = 0.5; Corley and
Mihalcea: t = 0.6). A state-of-the-art system, proposed by
Horbach et al. (2013), was also tested for a more meaningful
comparison. Even though their system was slightly altered
to be applicable to our dataset, the main features remained
unchanged.

As can be seen, the approach using word embeddings with
50 dimensions achieves the highest weighted average F1-
score of 0.76, performing about 13% better than the state-
of-the-art system and the two alternative approaches. The
SVM model using hand crafted features obtained a close
F1-score, of 0.73. However, we can observe important dif-
ferences on the understood class where word embeddings
models achieve a significantly higher F1-score of 0.63. This
is a notable improvement of about 43% over just using LSA,
which only obtained an F1-score of 0.44. In comparison
with the state-of-the-art system, our approach is seeing an
increase of 61% on the understood class. On the not un-
derstood class, the difference in results between the alterna-
tive approaches and our proposed methods is significantly
lower, or none in the case of Horbach et al.’s approach. This
is mainly due to the effectiveness of classifying instances in
this class utilizing only the word overlap, which is generally
very low for the not understood class.

Further experimentation. Since the manual features
and word embeddings (WEs) are fairly independent of each
other, combining them should, in theory, further improve the
results. As can be seen by comparing rows 1 and 5 in Table
2, SVM achieves a substantially higher F1-score on the un-
derstood class using WEs instead of the manual features. In
fact, adding WEs to our best SVM approach (row 2) results
in a weighted average F1-score of 0.76, which is equal to
that of the deep neural network (DNN), in row 6. In contrast,
inputting the hand-crafted features to the DNN (row 4), sub-

F1-score
No. Model Underst. Not Underst. W. Avg.

1 SVM (WEs) 0.6 0.83 0.75
2 SVM (WEs + man. ftrs.) 0.61 0.83 0.76
3 DNN (man. ftrs.) 0.50 0.82 0.72
4 DNN (WEs + man. ftrs.) 0.55 0.82 0.73

5 SVM (man. ftrs.) 0.53 0.83 0.73
6 DNN (WEs) 0.63 0.83 0.76

Table 2: MMP Entailment Experimental Results (WEs -
Word Embeddings 50 dim, DNN = Deep Neural Networks)

stantially decreases the results on the understood class. Ex-
periments were also performed where the weights for WEs
and manual features were separately learned by individual
DNNs and merged at a later stage into a third DNN. These
results did not exceed those obtained in rows 2 and 6. A
conclusion that can be drawn from these experiments, con-
sistent with what we initially saw in Table 1, is that WEs are
more helpful than manual features, particularly in identify-
ing the minority understood class. Moreover, even though
they seem independent of each other, combining manual fea-
tures and WEs does not offer much improvement.

Conclusion
This paper makes use of Minimal Meaningful Propositions
in order to break down complex structures and to perform
a fine-grained analysis of student responses. This is the
first work to do so in a fully automatic process. The two
presented approaches exceed the performance of a state-of-
the-art and two alternatives systems by approximately 15%,
achieving a weighted average F1-score of 0.76.
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