
Exploring the Use of Shatter for AllSAT
Through Ramsey-Type Problems

David E. Narváez
Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY, USA 14623

den9562@rit.edu

Abstract

In the context of SAT solvers, Shatter is a popular tool
for symmetry breaking on CNF formulas. Nevertheless, little
has been said about its use in the context of ALLSAT prob-
lems. ALLSAT has gained much popularity in recent years
due to its many applications in domains like model checking,
data mining, etc. One example of a particularly transparent
application of ALLSAT to other fields of computer science
is computational Ramsey theory. In this paper we study the
effect of incorporating Shatter to the workflow of using
Boolean formulas to generate all possible edge colorings of
a graph avoiding prescribed monochromatic subgraphs. We
identify two drawbacks in the naı̈ve use of Shatter to break
the symmetries of Boolean formulas encoding Ramsey-type
problems for graphs.

1 Introduction

The ALLSAT problem is a variant of the SAT problem
where we are interested in finding all the models (satisfying
assignments) of the input formula. The survey by Toda and
Soh (2016) summarizes the state-of-the-art in techniques
used for solving ALLSAT problems. Many ideas from SAT
solvers are applicable to ALLSAT solvers with few adapta-
tions. A technique that has proved effective in SAT solvers
and is of particular importance for ALLSAT problems is
symmetry breaking in Boolean formulas (Sakallah 2009).
The survey by Walsh (2012) provides a good overview of
the current approaches and techniques used to deal with this
problem. Shatter (Aloul, Sakallah, and Markov 2006) is
a tool that generates symmetry-breaking clauses as a prepro-
cessing step to solve Boolean formulas in order to simplify
the search space for conventional SAT solvers. Shatter
has become a popular preprocessing tool since it can be used
on any CNF formula encoded in the popular DIMACS for-
mat and it has the desirable property that the size of the
symmetry-breaking clauses it adds to the formula is linear
in the number of variables of the original formula.

To study the effect of Shatter’s symmetry breaking ap-
proach in a clean application where symmetries can be for-
mally defined and studied, we look at symmetry breaking for
Ramsey-type problems in combinatorial computing. In this
paper we focus on graph 2-colorings, which are partitions

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the edges of a graph into two sets. We say that a graph
F arrows the pair of graphs (G,H), written F → (G,H),
when any 2-coloring of the set of edges of a graph F yields a
monochromatic G in the first color or a monochromatic H in
the second color. It is straightforward to see how 2-color ar-
rowing problems can be encoded into Boolean satisfiability
problems. In the case of finite Ramsey numbers, a didactic
description of this encoding appears in (Zhang 2009). Given
Shatter’s popularity, it may seem as a good tool to tackle
the generation of irredundant sets of colorings for Ramsey-
type problems. Nevertheless, in this paper we identify and
discuss some drawbacks of using this approach without cau-
tion. Our technical report (Narváez 2017) provides strategies
and additional tools to cope with the negative effects of us-
ing Shatter for ALLSAT.

2 Background and Definitions

A fundamental construction in Shatter’s formulation of
symmetry breaking predicates is a graph that encodes the re-
lationship between clauses and literals of the input formula.
The symmetry breaking predicates added by Shatter
come from the automorphisms of this graph. A bird’s eye
view of the process Shatter uses to break the symmetries
of a Boolean formula φ is as follows: (a) the graph Gφ is
generated as per the rules in (Aloul, Sakallah, and Markov
2006), (b) the group of automorphisms of Gφ is found, (c) a
subset of these automorphisms (in particular, Shatter
uses the generators of the group, following (Crawford et al.
1996)) is used to generate symmetry breaking clauses that
are added to φ .

2.1 Ramsey Colorings

Several Ramsey-type problems can be expressed in terms
of the arrowing property defined in Section 1. In particu-
lar, the generalized Ramsey number R(G,H) can be de-
fined as the smallest natural number N such that KN ar-
rows the pair (G,H). We define C(F ;G,H) as the set of
colorings witnessing F �→ (G,H). Clearly, C(F ;G,H) =
∅ ⇔ F → (G,H). We will call a set of colorings for pa-
rameters F , G and H complete if every isomorphism class
in C(F ;G,H) is represented in the set. To use ALLSAT
solvers to generate graph 2-colorings, we exploit the fact
that the Boolean domain contains two values ⊥ (false) and
� (true) and express the negation of the arrowing property

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

8123

φ(F ;G,H) =

⎛
⎝ ∧

s∈S(F,G)

∨
{u,v}∈E(G)

x{s(u),s(v)}

⎞
⎠ ∧

⎛
⎝ ∧

s∈S(F,H)

∨
{u,v}∈E(H)

x{s(u),s(v)}

⎞
⎠ (1)

Figure 1: The standard encoding for the non-arrowing property as a Boolean formula. Here, S(X,Y) denotes the set of non-
induced subgraph isomorphisms from X to Y (see Section 2).

in terms of Boolean formulas. Consider the Boolean for-
mula φ(F ;G,H) on variables x{u,v} for every edge {u, v}
in F defined as per equation (1) in Figure 1. One can gen-
erate C(F ;G,H) by using an ALLSAT solver to list ev-
ery model of φ(F ;G,H). An undesirable characteristic of
this approach is that C(F ;G,H) can be large and one is in
general more interested in generating unique (under isomor-
phism) witness colorings directly from the SAT formulation
of F �→ (G,H).

3 Results

One of the main improvements of Shatter over the orig-
inal formulation of the symmetry breaking clauses (Craw-
ford et al. 1996) is that Shatter adds symmetry-breaking
clauses whose number of literals is linear in the number of
variables of the input formula. This is achieved by chaining
the symmetry breaking constraints and adding a relaxation.
This relaxation has an undesirable effect in the number of
satisfying assignments of the resulting formula. In (Narváez
2017) we present a detailed analysis of this effect.

To illustrate this issue we provide a concrete example.
From finite Ramsey theory, we know that R(C5, C5) =
9 (Chartrand and Schuster 1971), where C5 is the cycle
of length 5. This means that φ(K9;C5, C5) /∈ SAT, but
φ(K8;C5, C5) ∈ SAT, so we are interested in finding
all edge colorings of the complete graph K8 witnessing
R(C5, C5) > 8. φ(K8;C5, C5) contains 28 variables (cor-
responding to

(
8
2

)
edges in K8) and 1344 clauses, and there

are 1190 models for that formula. From this information, we
know that |C(K8;C5, C5)| = 1190. After processing this
formula with Shatter, the resulting formula with symmetry
breaking clauses has 70 variables, 1499 clauses, and 824
models. On the other hand, using our own implementation
of the chaining method without the relaxation outputs a for-
mula with 165 variables, 1809 clauses, and 5 models. Using
nauty (McKay and Piperno 2014) to reduce any of these
sets of colorings to pick just one representative from each
equivalence class of colorings under isomorphism, we find
that there are 4 unique colorings, so the chaining method
without the relaxation outputs only one redundant coloring.

A sufficient condition for the set of colorings generated
from the formula output by Shatter to be incomplete is the
presence of free variables. For details, see (Narváez 2017),
where we also provide an example of a graph Gex for which
the coloring set generated from the output of preprocessing
φ(Gex, C5, C5) with Shatter does not generate a complete
set of colorings even though φ(Gex, C5, C5) has no free
variables. This shows that the condition we present is not
a necessary one.

4 Conclusion

While Shatter has been an influential tool in the field of
symmetry breaking in Boolean formulas for over a decade,
this paper shows that it has problems when applied to
ALLSAT. Recently, BreakID (Devriendt et al. 2016) has
built upon the symmetry breaking techniques introduced by
Shatter and has added some novel ideas like row inter-
changeability. Even though BreakID implements the same
relaxations as Shatter, it does include an option to not
use these relaxations and is thus better suited for ALLSAT
applications since it will not introduce additional models.

Acknowledgments

The author would like to thank the anonymous reviewers
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence (AAAI-18) for their valuable comments.

References
Aloul, F. A.; Sakallah, K. A.; and Markov, I. L. 2006. Efficient
symmetry breaking for boolean satisfiability. IEEE Transactions
on Computers 55(5):549–558.
Chartrand, G., and Schuster, S. 1971. On the existence of spec-
ified cycles in complementary graphs. Bulletin of the American
Mathematical Society 77:995–998.
Crawford, J. M.; Ginsberg, M. L.; Luks, E. M.; and Roy, A. 1996.
Symmetry-breaking predicates for search problems. In Interna-
tional Conference on the Principles of Knowledge Representation
and Reasoning, 148–159. Morgan Kaufmann.
Devriendt, J.; Bogaerts, B.; Bruynooghe, M.; and Denecker, M.
2016. Improved static symmetry breaking for SAT. In SAT, volume
9710 of Lecture Notes in Computer Science, 104–122. Springer.
McKay, B. D., and Piperno, A. 2014. Practical graph isomorphism,
II. Journal of Symbolic Computation 60:94–112.
Narváez, D. 2017. Exploring the use of Shatter for
ALLSAT through Ramsey-type problems. Technical Report
arXiv:1711.06362 [cs.AI], Computing Research Repository.
Sakallah, K. A. 2009. Symmetry and satisfiability. In Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press. 289–338.
Toda, T., and Soh, T. 2016. Implementing efficient all solutions
SAT solvers. Journal of Experimental Algorithmics 21:1.12:1–
1.12:44.
Walsh, T. 2012. Symmetry breaking constraints: Recent results.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, 2192–2198. AAAI Press.
Zhang, H. 2009. Combinatorial designs by SAT solvers. In Hand-
book of Satisfiability, volume 85 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press. 533–568.

8124

