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Abstract
Generally in Reinforcement Learning the goal, or reward sig-
nal, is given by the environment and cannot be controlled
by the agent. We propose to introduce an intrinsic motiva-
tion module that will select a reward function for the agent
to learn to achieve. We will use a Universal Value Function
Approximator (Schaul et al. 2015), that takes as input both
the state and the parameters of this reward function as the
goal to predict the value function (or action-value function)
to generalize across these goals. This module will be trained
to generate goals such that the agent’s learning is maximized.
Thus, this is also a method for automatic curriculum learning.

Introduction
Reinforcement Learning (Sutton and Barto 1998) is widely
studied as a method to train an agent by interaction with
it’s environment. There have been a wide variety of suc-
cesses of this paradigm in robotics (Stone, Sutton, and
Kuhlmann 2005), computer systems, board games (Tesauro
1995), video games (Mnih et al. 2015), online web services,
etc.

An RL agent learns by trying to maximize a scalar reward
function that the environment provides it. In most cases, a
human has to hand-engineer a suitable reward signal for the
agent to maximize, or the application itself needs to have an
intuitive reward signal (the score in video games, for exam-
ple). However, it is hard for an agent to learn a meaningful
policy if this reward signal is sparse, or non-existent. This
is evidenced by games that are difficult even for recent Deep
Learning augmented systems to learn, like Montezuma’s Re-
venge (Mnih et al. 2015).

Intrinsic Motivation (Barto and Simsek 2005) in Rein-
forcement Learning is a method to allow an agent to generate
its own reward function. Such an intrinsic reward is a gen-
erated reward signal that is designed to facilitate learning a
wide variety of problems, rather than learning to optimize a
single one. If designed appropriately, such intrinsic rewards
can act as a curriculum for an agent to bootstrap itself and
learn faster. It can also be used to learn skills or options (Sut-
ton, Precup, and Singh 1999) that can then be used to learn
any task of interest in that environment faster (Chentanez,
Barto, and Singh 2005).
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In this project, we propose to learn a goal generator that
will select or generate goals (reward signals) for the RL
agent to learn to achieve. This generator will learn to gen-
erate goals that the agent will learn from most. Instead of
using these intrinsic motivations to learn separate options,
we propose to use Universal Value Function Approximators
(Schaul et al. 2015), which are function approximators de-
signed to generalize across states and goals.

There has been recent work in using UVFAs to generalize
across goals (Held et al. 2017; Andrychowicz et al. 2017;
Cabi et al. 2017) and for automatic curriculum learning
(Graves et al. 2017; Matiisen et al. 2017; Sukhbaatar et al.
2017). We believe this area is a novel and interesting one
with a lot more issues to explore.

Background
A Markov Decision Process is a tuple 〈S,A, T,R0, γ〉,
where S is the set of states, A is the set of available ac-
tions, T (st+1|st, at) is the state transition probability for
st, st+1 ∈ S, at ∈ A, γ ∈ [0, 1) is the discounting factor
and R0(st, at, st+1) is a scalar reward function.

A policy π(a|s) is defined as the probability of taking an
action a in state s. The value of a state s given a reward
function is defined as

Vπ(st)
.
= E

[ ∞∑
i=t

γi−tR0(si, ai, si+1)

]
(1)

where the actions are taken according to policy π and the
next state is drawn from T (st+1|st, at). The corresponding
action value is defined as:

Q(st, at)
.
= E[R0(st, at, st+1) + γVπ(st+1)] (2)

We redefine reward R(s, a, s′, g) as a function over state
s ∼ S, action a ∼ π(s), next state s′ ∼ T (s′|s, a) and goal
g ∼ P (G). Here, G can be the set of states S for single
goal systems or a set of all possible goals, where a viable
goal would be any subset of S. The value and action-value
functions correspondingly change to reflect the dependence
on the goal.

We will restrict ourselves right now to goals that are di-
rectly comparable to states. R(s, a, s′, g) can then be defined
either as a sparse reward signal, which checks if s′ = g, or
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Figure 1: The goal generator generates a goal, and the Q
function approximates action values for all actions condi-
tioned on the current state and the given goal

as a distance or similarity measure to the goal state, for a
more continuous signal.

Adversarial Goal Generation
Consider an agent that has two components, value predic-
tion and goal generation. The goal generator will draw goals
from the distribution P (G|ω), and will be able influence
this distribution using parameters ω. The value prediction,
V̂ (s, g|θ), will approximate the true value of a state for a
given goal and will do so using parameters θ.

V ∗(s, g) is the optimal value of the state s for the goal
g on following the optimal policy π(a|s, g) for that goal,
defined by the Bellman equation.

V ∗(s, g) = R(s, a, s′, g) + γV ∗(s′, g) (3)

If we consider this goal generation as an adversarial game,
then the generator can try to generate goals such that the
agent’s value prediction error is maximized. The objective
that will be optimized is:

max
ω

min
θ

∑
s∼S,g∼P (G|ω)

‖V ∗(s, g)− V̂ (s, g|θ)‖2 (4)

So in (4), we want the agent to learn to predict the optimal
value function as defined in (3), or minimize its error with
respect to this true value function.

However, knowing the optimal value function beforehand
is unlikely. So instead we can also have the goal generator
generate goals which maximize the change in the agent’s
value function (Şimşek and Barto 2006), or maximize the
mean TD error over transitions for generated goals.

Overall, we feel an intrinsic motivation approach to auto-
matic curriculum learning is very promising. We propose to

use an adversarial framework to generate goals for the agent
and using UVFAs to generalize this learning across diverse
goals.
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