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Abstract

We address the problem of approximating a matrix by the
linear combination of a column sparse matrix and a low rank
matrix. Two variants of a heuristic search algorithm are de-
scribed. The first produces an optimal solution but may be
slow, as these problems are believed to be NP-hard. The sec-
ond is much faster, but only guarantees a suboptimal solution.
The quality of the approximation and the optimality criterion
can be specified in terms of unitarily invariant norms.

1 Introduction

Approximating a matrix by a linear combination of a small
number of vectors is an important problem encountered in
many applications of numerical linear algebra. Let X and
V be two matrices. The approximation of X in the column
subspace of V can be written as:

X ≈ V A, approximation error = Θ(X − V A) (1)

Here A is the coefficients matrix and Θ is an error criterion.
When the columns of V are restricted to be the columns of
X , the problem is the well known Column Subset Selec-
tion Problem (CSSP); when all the columns of V are un-
restricted, the problem is the classic Principal Component
Analysis (PCA).
The generalization of these two problems is the case where
some of the columns of the V are required to be columns of
X , and the rest are unrestricted. In this case the approxima-
tion (1) can be written as:

X ≈ SA1 + V A2 (2)

Here S consists of columns from X , and V is unrestricted.
We refer to this representation as the “double low-rank rep-
resentation” (DLRR). The algorithms described in this pa-
per are for the DLRR, and thus can be applied to the CSSP.

The approximation errors of the three representations con-
sidered here are shown in (3). The notation |S| is used for the
number of columns of the matrix S, and the notation S ⊂ X
indicates that the columns of S are a also columns of X .
We propose heuristic search algorithms for the DLRR that
are optimal for all unitarily invariant norms (e.g. Spectral,
Nuclear, Frobenius).
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EPCA(X, r) = min
V,A

Θ(X − V A)

subject to |V | = r

ECSSP(X, r) = min
S,A

Θ(X − SA)

subject to S ⊂ X , |S| = r

EDLRR(X, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to S ⊂ X , |S| = r1, |V | = r2

(3)

2 The algorithm

Our method conducts a heuristic search on the column sub-
sets graph that was originally described in (Arai, Maung,
and Schweitzer 2015). The graph nodes correspond to col-
umn subsets, and there is an edge from subset Si to subset
Sj if adding one column to Si creates Sj . The graph gener-
ated for the matrix X = (x1, x2, x3) is depicted in the top
part of Fig 1.

The heuristic search algorithm is shown at the bottom of
Fig 1. The algorithm keeps a fringe list L of nodes that need
to be examined, and a list C of closed nodes, containing
nodes that will not be visited again. The nodes are selected
from the fringe according to the value of the heuristic func-
tion f ′. The algorithm terminates at the first time that a node
ni is selected which has a column subset of size r1.

This algorithm is essentially the same as the classic A∗ al-
gorithm (Pearl 1984). However, the standard heuristic func-
tions d, f, g, h that are used by the classic A∗ do not have a
trivial equivalent in our case. We proceed to define heuristic
functions with similar notation to the ones used in the classic
A∗ algorithm.

2.1 Heuristic functions

The DLRR is defined in terms of X, r1, r2. At each node
ni the subset Si and its size ki are known. Define e∗ to be
the smallest error of approximating X by a selection of r1
columns and the best possible additional r2 unrestricted vec-
tors. The heuristic functions are defined at each node ni. The
function d is defined as the smallest error of approximating
X by a selection of r1 columns that include Si and the best
possible additional r2 unrestricted vectors. The function g
is defined as the smallest error of approximating X by the
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Input: X , r1, r2, and a heuristic function f ′(n).
Each node ni has a subset Si of size ki.
Initialization: Put an empty subset into L.

1 while L is nonempty do
2 Pick ni with the smallest f ′(ni) from L.
3 if ki = r1 then
4 Stop and return ni as the solution node.
5 else
6 Add ni to C.
7 for all children nj of ni do
8 if nj is not in C or L then
9 put nj in L.

10 end

11 end

12 end

13 end
14 Here L is empty. Solution was not found.

Figure 1: The subset graph and the search algorithm

selection Si and the best possible additional r2 unrestricted
vectors. The function f is defined as the smallest error of
approximating X by the selection Si and the best possible
additional r1+r2− ki unrestricted vectors.

e∗(X, r1, r2) = min
S,A1,V,A2

Θ(X − SA1 − V A2)

subject to S ⊂ X, |S| = r1, |V | = r2
d(ni, r1, r2) = min

S,A1,V,A2

Θ(X − SA1 − V A2)

subject to Si ⊂ S ⊂ X, |S| = r1, |V | = r2
g(ni, r2) = min

A1,V,A2

Θ(X − SiA1 − V A2)

subject to |V | = r2
f(ni, r1, r2) = min

A1,V,A2

Θ(X − SiA1 − V A2)

subject to |V | = r1 + r2 − ki

(4)

We could not find an analog for the heuristic function h from
the classic A∗. Clearly, the best heuristic choice for the al-
gorithm is f ′=d. But since d cannot be calculated efficiently
we consider other choices using f and g. Observe that both f
and g can be viewed as approximations of d. The important
theoretical characterizations of our results are stated below.
Proposition: For each node ni:

f(ni, r1, r2) ≤ d(ni, r1, r2) ≤ g(ni, r2)

and if ki = r1 then the inequalities become equalities.
The heuristic f ′ = g leads to a greedy algorithm. To see
this observe that g is monotonically decreasing along any

path of the graph. Therefore, when a node ni is picked in
the Line 2 of the algorithm its children will be examined
before all other nodes currently in the fringe.
The heuristic f ′ = f gives an algorithm similar to the
classic A∗. In particular it can be proved that this choice
guarantees that the algorithm finds an optimal solution.
The heuristic f ′ = f + εg gives an algorithm similar to
the classic Weighted A∗ algorithm (Pearl 1984; Arai et al.
2016). For ε > 0 the algorithm is much faster than f ′ = f ,
and gives better accuracy than the case where f ′ = g. The
sub-optimality guarantee is stated in the theorem below:
Theorem: Let n∗ be an optimal solution node for the DLRR.
Define:

f ′(ni, r1, r2) = f(ni, r1, r2) + εg(ni, r2), ε ≥ 0

Then the algorithm in Fig 1 will terminate with a sub-
optimal solution node n∗∗ with the corresponding values
S∗∗, V ∗∗, A∗∗

1 , A∗∗
2 , satisfying:

Θ(X − S∗∗A∗∗
1 − V ∗∗A∗∗

2 )

≤ e∗(X, r1, r2) + εEPCA(X, r2)
(5)

where EPCA is defined in Eq. 3. The proofs can be found in
the full version of this paper.
The results above hold for arbitrary error function Θ.
Though Θ should be selected to allow efficient calculations
of the heuristic f ′. The full paper shows that this can be
achieved for all Unitarily Invariant norms. These include
Frobenius, Spectral, Nuclear etc.

3 Experimental Results

We implemented and tested our algorithms on various
datasets from the UCI Machine Learning repository. The re-
sults for the CSSP were compared to those obtained by (Nie,
Huang, and Ding 2012) and (Gu and Eisenstat 1996) (for
spectral norm). The accuracy of our algorithms compared fa-
vorably with those algorithms. The DLRR can also be com-
puted by first applying CSSP to select r1 columns and then
PCA for the remaining r2 vectors. Our experiments con-
firmed the hypothesis that solving DLRR with our method
(which is optimal) gives significantly better accuracy than
the optimal CSSP followed by PCA. These experimental re-
sults will be shown in the full version of the paper.
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