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Abstract

We address the problem of approximating a matrix by the
linear combination of a column sparse matrix and a low rank
matrix. Two variants of a heuristic search algorithm are de-
scribed. The first produces an optimal solution but may be
slow, as these problems are believed to be NP-hard. The sec-
ond is much faster, but only guarantees a suboptimal solution.
The quality of the approximation and the optimality criterion
can be specified in terms of unitarily invariant norms.

1 Introduction

Approximating a matrix by a linear combination of a small
number of vectors is an important problem encountered in
many applications of numerical linear algebra. Let X and
V' be two matrices. The approximation of X in the column
subspace of V' can be written as:

X ~ VA, 1

Here A is the coefficients matrix and © is an error criterion.
When the columns of V' are restricted to be the columns of
X, the problem is the well known Column Subset Selec-
tion Problem (CSSP); when all the columns of V' are un-
restricted, the problem is the classic Principal Component
Analysis (PCA).

The generalization of these two problems is the case where
some of the columns of the V" are required to be columns of
X, and the rest are unrestricted. In this case the approxima-
tion (1) can be written as:

X =~ SAl +VA2

approximation error = O(X — V' A)

@)

Here S consists of columns from X, and V' is unrestricted.
We refer to this representation as the “double low-rank rep-
resentation” (DLRR). The algorithms described in this pa-
per are for the DLRR, and thus can be applied to the CSSP.

The approximation errors of the three representations con-
sidered here are shown in (3). The notation | S| is used for the
number of columns of the matrix .S, and the notation S C X
indicates that the columns of S are a also columns of X.
We propose heuristic search algorithms for the DLRR that
are optimal for all unitarily invariant norms (e.g. Spectral,
Nuclear, Frobenius).
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EPCA(X7 ’I’) = I‘I/IIAI‘I @(X - VA)

subjectto |V'| =r

ECSSP(Xa 7") = min @(X - SA)

subjectto S C X, |S| =7

EDLRR(X7 1, 7“2) = min @(X — SAl — VAQ)
y411,V, A2

subjectto S C X, |S| =11, [V] =12

2 The algorithm

Our method conducts a heuristic search on the column sub-
sets graph that was originally described in (Arai, Maung,
and Schweitzer 2015). The graph nodes correspond to col-
umn subsets, and there is an edge from subset .S; to subset
S if adding one column to S; creates S;. The graph gener-
ated for the matrix X = (21, x2,x3) is depicted in the top
part of Fig 1.

The heuristic search algorithm is shown at the bottom of
Fig 1. The algorithm keeps a fringe list L of nodes that need
to be examined, and a list C' of closed nodes, containing
nodes that will not be visited again. The nodes are selected
from the fringe according to the value of the heuristic func-
tion f’. The algorithm terminates at the first time that a node
n; is selected which has a column subset of size r;.

This algorithm is essentially the same as the classic A* al-
gorithm (Pearl 1984). However, the standard heuristic func-
tions d, f, g, h that are used by the classic A* do not have a
trivial equivalent in our case. We proceed to define heuristic
functions with similar notation to the ones used in the classic
A* algorithm.

2.1 Heuristic functions

The DLRR is defined in terms of X, ry,r2. At each node
n; the subset S; and its size k; are known. Define e* to be
the smallest error of approximating X by a selection of r;
columns and the best possible additional 75 unrestricted vec-
tors. The heuristic functions are defined at each node n;. The
function d is defined as the smallest error of approximating
X by a selection of 1 columns that include S; and the best
possible additional 75 unrestricted vectors. The function g
is defined as the smallest error of approximating X by the



Input: X, ry, ro, and a heuristic function f’(n).
Each node n; has a subset S; of size k;.
Initialization: Put an empty subset into L.
1 while L is nonempty do
Pick n; with the smallest f(n;) from L.
if kl =T then
| Stop and return 7; as the solution node.
else
Add n; to C.
for all children n; of n; do
if n; is not in C or L then
| putn;in L.
end
end
end
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13 end
14 Here L is empty. Solution was not found.

Figure 1: The subset graph and the search algorithm

selection .S; and the best possible additional ro unrestricted
vectors. The function f is defined as the smallest error of
approximating X by the selection .S; and the best possible
additional r1+r9— k; unrestricted vectors.

e (X,r1,r) = SAHlli‘I/lA2 O(X —SA; —VA,y)

subjectto S C X, |S| =11, |V]| =12
i X—-5A4,-VA

3731‘1/171429( SA; —VAy)

subjectto S; C S C X,|S| =71, |V] =ro

g(ni,ra) = AT\;,I}% O(X — S;A; — VAy)

d(ni,ri,7m2) =

“

subjectto |V| =rz
f(’/li,T’l,’f‘Q) = min @(X — SlAl — VAQ)
1,V A2

subjectto |V|=r; +ro —k;

We could not find an analog for the heuristic function A from
the classic A*. Clearly, the best heuristic choice for the al-
gorithm is f/=d. But since d cannot be calculated efficiently
we consider other choices using f and g. Observe that both f
and g can be viewed as approximations of d. The important
theoretical characterizations of our results are stated below.
Proposition: For each node n;:

f(ng,ri,re) <d(ng,ri,ra) < g(ng,ra)

and if k; = ry then the inequalities become equalities.
The heuristic f/ = g leads to a greedy algorithm. To see
this observe that g is monotonically decreasing along any
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path of the graph. Therefore, when a node m; is picked in
the Line 2 of the algorithm its children will be examined
before all other nodes currently in the fringe.

The heuristic f = f gives an algorithm similar to the
classic A*. In particular it can be proved that this choice
guarantees that the algorithm finds an optimal solution.

The heuristic f* = f + g gives an algorithm similar to
the classic Weighted A* algorithm (Pearl 1984; Arai et al.
2016). For € > 0 the algorithm is much faster than f' = f,
and gives better accuracy than the case where f’ = g. The
sub-optimality guarantee is stated in the theorem below:
Theorem: Let n, be an optimal solution node for the DLRR.
Define:

fl(ni,’l"l,'rg):f(ni,Tl,TQ)‘Fﬁg(ni,?”Q), 620

Then the algorithm in Fig 1 will terminate with a sub-
optimal solution node n., with the corresponding values
S VAT, ASF satisfying:

O(X — S™ A — VA3
< e*(X,r1,7r2) + €Epca(X, 12)

where Epcy is defined in Eq. 3. The proofs can be found in
the full version of this paper.

The results above hold for arbitrary error function ©.
Though © should be selected to allow efficient calculations
of the heuristic f’. The full paper shows that this can be
achieved for all Unitarily Invariant norms. These include
Frobenius, Spectral, Nuclear etc.

(&)

3 Experimental Results

We implemented and tested our algorithms on various
datasets from the UCI Machine Learning repository. The re-
sults for the CSSP were compared to those obtained by (Nie,
Huang, and Ding 2012) and (Gu and FEisenstat 1996) (for
spectral norm). The accuracy of our algorithms compared fa-
vorably with those algorithms. The DLRR can also be com-
puted by first applying CSSP to select 7; columns and then
PCA for the remaining ro vectors. Our experiments con-
firmed the hypothesis that solving DLRR with our method
(which is optimal) gives significantly better accuracy than
the optimal CSSP followed by PCA. These experimental re-
sults will be shown in the full version of the paper.
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