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Abstract

Lifelong machine learning (LML) is a paradigm to design
adaptive agents that can learn in dynamic environments. Cur-
rent LML algorithms consider a single agent that has central-
ized access to all data. However, given privacy and security
constraints, data might be distributed among multiple agents
that can collaborate and learn from collective experience. Our
goal is to extend LML from a single agent to a network of
multiple agents that collectively learn a series of tasks.

Introduction
Collective learning in a network of collaborating agents can
potentially improve learning speed and performance of all
agents. It is the product of individual agents, each with
their own interests and constraints, sharing and accumulat-
ing learned knowledge over time. Recent work in LML (Ru-
volo and Eaton 2013) has explored the notion of a single
agent accumulating knowledge over time. Such an individ-
ual LML agent reuses knowledge from previous tasks to im-
prove its learning on new tasks. This LML process improves
performance over all tasks. Although current work in LML
focuses on a single learning agent that incrementally per-
ceives all task data, many real-world applications involve
scenarios in which multiple agents must collectively learn
a series of tasks. Consider the following scenarios:

• Task data could only be partially accessible by each agent.
For example, financial decision support agents may have
access only to one data view or a portion of the data.

• Local data processing can be inevitable, such as when
health care regulations prevent medical data from being
shared between learning systems or for security concerns.

• Data communication may be costly. For instance, home
service robots must process perceptions locally due to the
volume of perceptual data, or wearable devices may have
limited communication bandwidth or battery power.

• Data must be broked and processed in parallel. Big data
often necessitates parallel processing in the cloud across
multiple virtual agents, i.e. CPUs or GPUs.
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Inspired by these scenarios, we want to explore the idea
of lifelong learning networks. We consider multiple LML
agents, each facing their own series of tasks, that transfer
knowledge to collectively improve performance and learn-
ing speed. To develop algorithms for lifelong learning net-
works, we follow a parametric approach and formulate the
problem as an online problem over the network. For each
agent, the corresponding task model parameters are repre-
sented as a task-specific sparse combination of atoms of its
local knowledge base (Kumar and Daume III 2012). Each
agent seeks to learn parametric models for its series of (po-
tentially unique) tasks. The network topology imposes com-
munication constraints among the agents. The agents share
their knowledge bases with their neighbors, update them to
incorporate the learned knowledge representations of their
neighboring agents, and come to a local consensus. We
use techniques from distributed optimization to solve this
global optimization problem. This allows for transferring the
learned local knowledge bases without sharing the specific
learned model parameters among neighboring agents.

Problem Formulation
We consider a network of N collaborating LML agent,
where each agent receives a series of sequential tasks over
time, t. There is also some true underlying hidden knowl-
edge base for all tasks, and each agent learns a local view
of this knowledge base based on its own task distribution.
We represent the communication mode of these agents by an
undirected graph G = (V , E), where the set of static nodes
V = {1, . . . , N} denotes the agents and the set of potentially
dynamic edges Et ⊂ V × V , with |Et| = et, specifies pos-
sibility of communication between the agents. We assume
for each edge (i, j) ∈ Et, the nodes i and j are connected or
they can communicate information. The neighborhood N (i)
of node i is the set of all nodes that are connected to it. We
use the graph structure to formulate an LML problem on this
network. Although each agents learns its knowledge base
locally, we assume local knowledge bases of neighboring
nodes to be similar to encourage collaboration.

Each agent in the network is an LML agent that re-
ceives a set of T related (but different) supervised regres-
sion or classification tasks, each with training data, i.e.
{Z(t)

i = (X
(t)
i ,y

(t)
i )}Tt=1, where X

(t)
i ∈ R

d×M is task data
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and y
(t)
i ∈ YM is the corresponding targets. The mapping

from each data point xm to the corresponding target can be
parametrized as ym = f(xm;θ(t)), where θ(t) ∈ R

d. The
goal for each agent is to learn θ(t) for all of its tasks.

To model task relations, the GO-MTL algorithm (Kumar
and Daume III 2012) uses classic Empirical Risk Minimiza-
tion (ERM) and formulates a problem by assuming that the
task parameters for a single agent can be decomposed into
a shared knowledge dictionary base Li ∈ R

d×u to facili-
tate knowledge transfer and task-specific sparse coefficients
s
(t)
i ∈ R

u, such that θ(t)
i = Lis

(t)
i . Following these nota-

tions, We formulate the following learning problem on G:

minLi
{ 1
T

∑T
t=1

∑N
i=1 min

s
(t)
i
(‖α(t)

i −Lis
(t)
i ‖2

Γ
(t)
i

μ‖s(t)i ‖1) + λ‖Li‖2F}, s.t. Li = Lj , ∀(i, j) ∈ Et , (1)

where ‖x‖2A = x�Ax, α(t) ∈ R
d is the single task ridge es-

timator, and Γ(t) is the Hessian of the loss function which
measure the data fidelity. More details on derivation of
eq. (1) are explained in (Rostami et al. 2017).

In order to deal with the dynamic nature and time-
dependency of the objective (1), we restrict our investiga-
tion to static networks, i.e. Et = E . We also assume that
the agents are synchronous and at each time step t, each
agent receives a task and solve the inner optimization on
s
(t)
i locally using local task data. Then, through informa-

tion exchanges during that time step, the local dictionaries
are updated such that the agents reach consensus. To split
the constrained objective (1) into a sequence of local uncon-
strained agent-level problems, we use the extended ADMM
algorithm (Han and Yuan 2012). As a result, the agents can
learn tasks in an online sequential manner, enabling lifelong
learning, and meanwhile share their learned knowledge with
the neighboring agent. We call our approach the Collective
Lifelong Learning Algorithm (CoLLA).

Experimental Results
We compared our approach against: 1) Single task learn-
ing (STL), a lower-bound to measure the effect of posi-
tive transfer among the tasks, 2) ELLA (Ruvolo and Eaton
2013) as single agent LML algorithm, to demonstrate that
collaboration between the agents improves overall perfor-
mance, 3) offline CoLLA, as an upper-bound to our online
distributed algorithm, and finally 4) GO-MTL, as an abso-
lute upper-bound. We used computer survey dataset in our
experiments (Lenk et al. 1996). The goal in this dataset is to
predict the likelihood of purchasing one of 20 different com-
puters by 190 subjects. Each subject is assumed to be a task
and its ratings determines the task data points. We consid-
ered 19 agents and randomly allocated ten tasks to each. We
randomly split the data for each task evenly into training and
testing sets. We used root mean-squared error on the testing
set to measure performance of the algorithms. We used the
improvement in the initial performance on a new task due
to transfer (“jumpstart”) as our comparison criterion against
STL. We used this metric because collaboration is most ef-
fective in initial tasks. Both ELLA and CoLLA converge to

��������
Method

Structure
LT CP ST RD

CoLLA 43.09 46.05 42.09 44.78
ELLA 37.99 - - -

Offline CoLLA 61.71 - - -
GO-MTL 61.81 - - -

Table 1: Jumpstart comparison (improvement in percentage)
on the Computer Survey dataset given various graph struc-
ture: LT (linear tree), CP (complete), ST (star), RD (random)

the same asymptotic solution and hence the jumpstart is an
informative metric for our framework.

For a connected graph, ADMM guarantees asymptotic
convergence of our algorithm to the solution of central-
ized learning. Thus, for further investigation, we also
studied the effect of the graph structure. We performed
experiments on four graph structures: linear tree (LT)
(E = {(i, i+ 1)|1 ≤ i < N}), star graph (ST), complete
graph (CP), and random graph (RD). The star graph struc-
ture connects all agents through a central server, and the ran-
dom graph was formed by randomly selected half of the
edges of a complete graph. Performance results for these
structures are presented in Table 1. From the table, we can
conclude COLLA’s effectiveness in collaboratively learn-
ing knowledge bases suitable for transfer when compared
to ELLA and as expected it is upper-bounded by centralized
schemes (Offline version of CoLLA and GO-MTL). The re-
sults also indicate that network structures with more edges
have faster learning rate is faster (note that the complete
graph structures outperforms other structures). This result
signals that more communication and collaboration between
the agents can increase learning speed.

We conclude that collaboration among the agents not only
can lead to the asymptotic performance on the learned tasks
comparable to centralized scheme, but enables the agent to
learn faster using less amount of data in initial tasks. Our
future plan is to investigate LML in dynamic networks with
asynchronous agents to improve our framework.
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