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Abstract

Previous work in machine learning and statistics commonly
focuses on building models that capture the vast majority of
data, possibly ignoring a segment of the population as out-
liers. By contrast, we may be interested in finding a segment
of the population for which we can find a linear rule capable
of achieving more accurate predictions. We give an efficient
algorithm for the conditional linear regression task, which is
the joint task of identifying a significant segment of the popu-
lation, described by a k-DNF, along with its linear regression
fit.

Introduction

Linear regression, a model for understanding the relation-
ship among variables in a data set, is a standard tool widely
used in biological and social sciences to predict events and to
describe possible relationships between variables. When ad-
dressing the task of prediction, machine learning and statis-
tics commonly focus on capturing the vast majority of data,
occasionally ignoring a segment of the population as ”out-
liers” or ”noise,” which could be helpful to better understand
the data. Previous work by Juba (2016) gave an algorithm
to identify a significant segment of the population for which
there exists a highly sparse linear fit, along with a simple rule
that describes the subset. Even though sparsity is a desirable
feature to have in a linear regression, we might encounter
cases with solutions that are not sparse. In these cases, the
previous state of the art suffers a running time blow-up that
depends on the number of factors considered for the linear
prediction rule. To address this problem, Juba (2016) also
introduces an algorithm for the dense linear rule case, which
chooses the single best term, thus picking only a fraction of
the condition. We give an algorithm for conditional linear
regression that does not require constant sparsity and recov-
ers a condition of nearly optimal probability. Our algorithm
extends an approach introduced by Charikar et al. (2017),
which obtains a list of candidate parameter vectors that is
guaranteed to have a good set of parameters for any small
subset of the data.
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Problem Definition

Our input is defined in terms of accessing examples
from a joint distribution D over {0, 1}n × R

d ×R,
where a single example is denoted as (x(i), y(i), z(i)) =
(x1, . . . , xn, y1, . . . , yd, z)i. In this notation, x(i) represents
the Boolean attributes (which are described by a binary
string of length n whose j-th bit is the value of x(i)

j ), y(i)

represents the input vectors (attributes), and z(i) is the vari-
able we are interested in (label). For example, imagine we
want to estimate the price of a car. The label z ∈ R is the
price, the attributes y ∈ R

d are the Mileage, Year, and Num-
ber of accidents. The Boolean attributes x ∈ {0, 1}3 can be
“is American-made,” “is 4x4,” and “is Electric.” In this case,
the example (1,0,1,56000,2015,0) describes an American-
made, 4x2 electric car, with 56000 miles, from 2015, and
with no recorded accidents. In this case, we would be inter-
ested in identifying a segment of the population for which
a linear rule is highly predictive of the price of certain cars,
whereas this linear rule may not provide a good prediction
overall in the larger population. Let us imagine that for this
data set, and for a target fraction of the population, we found
a simple rule that describes the sub-population, along with
its linear fit. Recall that our Boolean attributes have the form
x ∈ {0, 1}3, and suppose that the example must satisfy the
condition “is American-made,” and “is Electric.” Now, if we
look at an example from the data set, we can verify if it sat-
isfies the condition, and if it does, we have an improvement
over a general prediction rule. To be specific, if we look at an
arbitrary example, say, (1,0,1,45568, 2016,2), we can make
a more approximate prediction of the price of the car. For-
mally, Juba proposed the following task:

Definition 1 (Conditional l2-linear regression) Suppose
that D is a joint distribution over x ∈ {0, 1}n, y ∈ H ⊂ R

d

and z ∈ R, where H has l2 radius r. If there exists an
optimal k-DNF condition c∗, and a∗ ∈ H ⊂ R

d:

ED[(〈a∗, y〉 − z)2|c∗(x) = 1] ≤ ε

Pr[c∗(x) = 1] ≥ μ

And the error (〈a∗, y〉 − z) follows σ-sub gaussian distri-
bution,
Then for δ, γ ∈ (0, 1), we want to find a k-DNF ĉ, and
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â ∈ R
d in polynoimal time, such that with probability

(1− δ):

ED[(〈â, y〉 − z)2|ĉ(x) = 1] ≤ poly(r, d, nk)ε

Pr[ĉ(x) = 1] ≥ μ

poly(r, d, nk)

Approach and Preliminary Results

Previous work by Charikar et al. gave an algorithm that out-
puts a list of parameter vectors by finding the best param-
eters for each individual example, and clustering the data
accordingly. They guarantee that for any subset of the data,
one of the candidate outputs will fit the subset well. Specifi-
cally, when we set the parameter to be the fit of linear regres-
sion problem, given any subset, ideally it should be able to
find a regression fit with low regression loss on that subset,
compared to the optimal. However, since individual points
provide trivial estimates of the regression parameters, this
algorithm is not appropriate for linear regression. Our con-
tribution is to modify the algorithm to consider the collection
of points that satisfy a term instead of individual points, ob-
taining an algorithm that finds a list of candidate regression
fits. From this list of candidate regression fits, we can a find
a linear fit that is near the best possible, and which obtains,
at most, polynomially larger loss.

Theorem 2 By applying the modified algorithm of Charikar
et al. on the conditional l2-linear regression problem, we
can find a solution (ĉ, â) that covers almost as much as the
optimal c∗, with Õ(n

3
2k) much more expected loss than the

error of the optimal.

The main difficulty with the approach of Charikar et al. is
that they are iteratively improving their estimates by reclus-
tering their data using their current estimates of the parame-
ters; they then can obtain a better estimate of the parameters
using such an improved clustering. The process cannot con-
tinue as long as they wish, because there is no guarantee on
an iteration that all of the points that should be included in an
ideal clustering will get good estimates of their parameters
on every iteration. They can only guarantee that most of the
points receive good estimates, and thus stay together during
reclustering. Thus, on each iteration, some points from the
ideal clustering are lost due to inaccurate estimates of the
parameters at those points, and this rate of loss bounds the
number of iterations they can safely execute. Finally, the ba-
sic per-point estimates of the regression parameters are not
adequately tight to obtain a nontrivial (informative) estimate
of the regression parameters at the end of this iterative pro-
cess.

By contrast, we compute estimates of the regression pa-
rameters per term rather than for individual points. Since,
without much loss of the overall size of the segment, we
can assume that each term picks up a significant number
of points. We observe that we can always get a sufficiently
good estimate of the regression parameters for every term
on every iteration. Therefore, we can iteratively re-cluster
and re-estimate the parameters as many times as we wish,
to obtain an arbitrarily precise estimate of the regression pa-
rameters.

Finally, as we mentioned earlier, the technique of
Charikar et al. only produces a list of candidate regression
parameters: each cluster of the data receives a different set
of parameters. But, given such a polynomially large list of
parameters, we can use the previous algorithm of Zhang
et al.(2017) to recover a condition describing a segment of
the population in which the regression parameters give a
pretty good fit. We simply modify their algorithm to add
weights, to solve a weighted version of their task—an anal-
ogous modification to obtain a weighted red-blue set cover
algorithm was given by Peleg(2007). We can use the error
incurred by a linear rule over a term as a weight for that
term, so that the algorithm indeed returns a k-DNF that ap-
proximately minimizes the error, as needed.

Future Work

When we apply Charikar et al by considering each term as
a point in their setting, we face a double counting problem
that each point is contained in multiple terms. Currently we
just treat a point as different points in different terms. The
duplication results in an Õ(nk) blow-up of the error. We be-
lieve we can address the double-counting problem inside the
algorithm rather than using simple duplication, which will
achieve an error of Õ(n

k
2 ) instead of Õ(n

3
2k). Any further

improvement will entail a better guarantee for the abduction
problem for Zhang et al.
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