
Sweep-Based Propagation for String Constraint Solving

Roberto Amadini, Graeme Gange, Peter J. Stuckey
Department of Computing and Information Systems

The University of Melbourne, Australia
{roberto.amadini,gkgange,pstuckey}@unimelb.edu.au

Abstract

Solving constraints over strings is an emerging important
field. Recently, a Constraint Programming approach based
on dashed strings has been proposed to enable a compact
domain representation for potentially large bounded-length
string variables. In this paper, we present a more efficient
algorithm for propagating equality (and related constraints)
over dashed strings. We call this propagation sweep-based.
Experimental evidences show that sweep-based propagation
is able to significantly outperform state-of-the-art approaches
for string constraint solving.

Introduction

Constraint solving over strings is an important field, given
the ubiquity of strings in different domains such as, e.g.,
software verification and testing (Emmi, Majumdar, and Sen
2007; Bjørner, Tillmann, and Voronkov 2009), model check-
ing (Gange et al. 2013), and web security (Bisht et al. 2011;
Thomé et al. 2017).

Various approaches of disparate nature have been pro-
posed, based for instance on bit-vectors (Kiezun et al.
2012), automata (Hooimeijer and Weimer 2012; Li and
Ghosh 2013; Tateishi, Pistoia, and Tripp 2013), SMT exten-
sions (Berzish, Zheng, and Ganesh 2017; Liang et al. 2014;
Abdulla et al. 2015; Trinh, Chu, and Jaffar 2014; Yu, Alkha-
laf, and Bultan 2010; Saxena et al. 2010), and constraint pro-
gramming (Scott et al. 2017; Amadini et al. 2017).

Typically, we aim to solve problems with bounded-length
strings, i.e., strings having a maximum length. These prob-
lems are mainly addressed with some variant of unfolding:
a string s of length (up to) k is translated into a sequence of
single-character variables s1, . . . , sk, and string constraints
are imposed in terms of these variables. However, methods
which unfold eagerly face scalability problems when the up-
per bounds on string length becomes large, and committing
to absolute character positions makes it difficult to reason
precisely when combining strings of non-fixed length.

Dashed strings, an alternative representation for mod-
elling the domain of string variables through sub-sequences
of uncertain length, were described in (Amadini et al. 2017).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In a nutshell, given an alphabet Σ, a dashed string is a con-
catenation Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k of k blocks, where each
block Sli,ui

i represents the set of all the strings of Σ having
length in [li, ui] and characters in Si ⊆ Σ. Unfortunately,
the dynamic programming algorithm used in (Amadini et
al. 2017) for propagating equality, here referred as COVER,
suffers its own scalability troubles: its worst-case behaviour
is cubic in the number of blocks, so performance degrades
rapidly when dealing with long fixed strings.

In this paper, we introduce the SWEEP algorithm for prop-
agating equality between dashed strings. In essence, the al-
gorithm performs linear-time sweeps across a dashed string,
collecting the earliest and latest positions a given block
could be matched. The SWEEP algorithm provides weaker
propagation than COVER, but has much lower worst-case
complexity: as we shall see, this can dramatically improve
the resolution when the number of blocks becomes large.

We implemented the SWEEP algorithm by extending G-
STRINGS, a string solver introduced in (Amadini et al.
2017) which represents string variables with dashed strings,
and we compared its performance against the COVER algo-
rithm (already implemented in G-STRINGS) and other state-
of-the-art approaches such as: the CP-based string solver
GECODE+S (Scott et al. 2017); the CP solvers CHUFFED,
GECODE, IZPLUS (by mapping strings into array of in-
tegers); the SMT-based string solvers Z3STR3 (Berzish,
Zheng, and Ganesh 2017) and CVC4 (Liang et al. 2014).

To make the empirical evaluation more meaningful, we
extended the benchmarks used in (Amadini et al. 2017) by
generating new instances of the SQL problem introduced in
(Amadini et al. 2016). Empirical results indicate that sweep-
based propagation allows us to considerably outperform all
the aforementioned approaches.

Dashed Strings

In this Section we give some preliminary notions about
dashed strings, including the COVER algorithm introduced
in (Amadini et al. 2017) for equating dashed strings,1 and
the CP solver G-STRINGS, which implements COVER.

1In (Amadini et al. 2017) the COVER algorithm is actually
called EQUATE. Here we call it COVER to differentiate it from
the SWEEP algorithm, since both COVER and SWEEP are used for
equating dashed strings.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6557

B, b o o o o m ! ! !

Figure 1: Representation of {B,b}1,1{o}2,4{m}1,1{!}0,3.

Let us fix an alphabet Σ, a maximum string length � ∈ N,
and the universe S =

⋃�
i=0 Σi. A dashed string of length

k is defined by a concatenation of 0 < k ≤ � blocks
Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k , where Si ⊆ Σ and 0 ≤ li ≤ ui ≤ �

for i = 1, . . . , k, and Σk
i=1li ≤ �.

For each block Sli,ui

i , we call Si the base and (li, ui) the
cardinality. For brevity we will sometimes write a block
with singleton base {a}l,u as al,u. The i-th block of a dashed
string X is denoted by X[i], and |X| is the number of blocks
of X . We do not distinguish blocks from dashed strings of
unary length. For each pair of the form C = (l, u), we define
lb(C) = l and ub(C) = u.

Let γ(Sl,u) = {x ∈ S∗ | l ≤ |x| ≤ u} be the language
denoted by block Sl,u. In particular the null element ∅0,0
is such that γ(∅0,0) = {ε}. We extend γ to dashed strings:
γ(Sl1,u1

1 · · ·Slk,uk

k) = (γ(Sl1,u1

1) · · · γ(Slk,uk

k)) ∩ S.
A dashed string X is known if |γ(X)| = 1, i.e., it rep-

resents a single string. A dashed-string X is nullable if
ε ∈ γ(X); or equivalently, each of its blocks has minimum
cardinality 0. We assume normalised dashed strings, where
∅0,0 can occur at most once and adjacent blocks always have
distinct bases.

The size ‖Sl,u‖ of a block is the number of concrete
strings it denotes, i.e., ‖Sl,u‖ = |γ(Sl,u)|. The size of
dashed string X = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k is instead an over-
estimate of |γ(X)|, given by ‖X‖ = Πk

i=1‖Sli,ui

i ‖.
Given two dashed strings X and Y we define the relation

X � Y ⇐⇒ γ(X) ⊆ γ(Y). Intuitively, � models the
relation “is more precise than” between dashed strings. Un-
fortunately, the set of dashed strings does not form a lattice
according to �. This implies that some workarounds have
to be used to determine a reasonable lower/upper bound of
two dashed strings according to �.

For example, it is sometimes useful to over-approximate
a dashed string X = Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k into a single
block. We define an upper closure operator CRUSH such
that CRUSH(X) = Sl,u where S =

⋃k
i=1 Si, l =

∑k
i=1 li,

and u =
∑k

i=1 ui. Moreover, we also consider a restricted
version of CRUSH only crushing blocks in X that are com-
patible with a set of characters T , that is, CRUSHT (X) =
CRUSH([(Si ∩ T)li,ui | i ∈ {1, . . . , k}, Si ∩ T �= ∅]).

Intuitively, we can imagine each block Sli,ui

i of X =

Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k as a continuous segment of length li
followed by a dashed segment of length ui − li. The contin-
uous segment indicates that exactly li characters of Si must
occur in each concrete string of γ(X); the dashed segment
indicates that k characters of Si, with 0 ≤ k ≤ ui − li,
may occur. Consider Fig. 1, illustrating dashed string X =
{B,b}1,1{o}2,4{m}1,1{!}0,3. Each string of γ(X) starts
with B or b, followed by 2 to 4 os, one m, then 0 to 3 !s.

COVER Algorithm

Equating dashed strings X and Y requires determining, if
possible, two dashed strings X ′ and Y ′ such that: (i) X ′ �
X , Y ′ � Y ; (ii) γ(X ′) ∩ γ(Y ′) = γ(X) ∩ γ(Y).

Informally, we can see this problem as a semantic unifica-
tion where we want to find a refinement of X and Y includ-
ing all the strings of γ(X) ∩ γ(Y) and removing the most
values not belonging to γ(X) ∩ γ(Y) (note that there may
not exist a greatest lower bound for X , Y according to �).

In (Amadini et al. 2017) the authors propose a multiphase
equation algorithm for equating dashed strings. We now
call it COVER because it is based on the notion of cover-
able blocks, where block Sl,u is coverable by T l′,u′

if some
string in γ(Sl,u) is a prefix of a string in γ(T l′,u′

) (formally,
if l = 0∨ (l ≤ u′ ∧ S ∩ T �= ∅)). If block B is coverable by
B′, or B′ is coverable by B, then B and B′ are compatible;
otherwise, they are incompatible.

The COVER algorithm is difficult to summarize: we refer
the reader to (Amadini et al. 2017) for a full explanation.
In a nutshell, COVER first checks if dashed strings X and
Y are equatable. This is performed by a top-down dynamic
programming approach, recursively matching pairs of com-
patible blocks. This phase returns a directed acyclic graph
encoding a set of matchings, i.e., computations that success-
fully consume all the blocks of X and Y .

Then, all the matchings are processed and merged to-
gether (often by means of the CRUSH operation) to possibly
update X and Y with refined dashed strings X ′ and Y ′.

As an example, consider X = {a..c}0,30{d}5,5{c..f}0,2
and Y = {b..d}26,26{f}1,1. The COVER algorithm refines
X in X ′ = {b, c}20,21{d}5,5{c, d}0,1{f}1,1, while Y ′ = Y .
Note that COVER does not aim to find an optimal refinement,
since this requirement is too expensive to meet.

The main argument against COVER is its worst case com-
plexity O(nmmax(n,m)), where n = |X|,m = |Y |. In-
deed, despite having good results when the number of blocks
is small (regardless of the the maximum length a string may
have) COVER can be expensive when a string must be very
long (this naturally implies a large number of blocks).

G-STRINGS Solver

The COVER algorithm was implemented in G-STRINGS, an
extension of GECODE solver (Gecode 2017). G-STRINGS
is a copying solver, i.e., during the search the domains are
copied and possibly restored. In (Amadini et al. 2017)
the authors demonstrate that, despite being a prototype, G-
STRINGS already shows promising performance.

G-STRINGS implements the domain of every string vari-
able x with a dashed string D(x), and defines a propaga-
tor for each string constraint. Propagators take advantage of
COVER for refining the representations of the involved vari-
ables. For example, string equality x = y is simply propa-
gated by equating D(x) and D(y) with COVER.

Dashed strings naturally support concatenation: e.g., the
propagator for z = x · y is implemented by equating D(z)
and D(x) · D(y), where D(x) · D(y) is the concatenation of
the blocks of D(x) and D(y), taking care of properly pro-
jecting the narrowing of D(x) · D(y) on D(x) and D(y).

6558

G-STRINGS implements the following constraints: string
(dis-)equality, (half-)reified equality, (iterated) concatena-
tion, string domain, length, reverse, substring selection.

Since propagation is in general not complete, G-STRINGS
also defines a search strategy that first chooses the string
variable x with smallest domain size ‖D(x)‖ and then, if
the length of x is unknown, it branches on the first unknown
length block Sli,ui

i being equal to its minimal length or not
(i.e., Sli,li

i or Sli+1,ui

i). Otherwise, if the first non-nullable
block Sli,li

i is of length li > 1 it splits it into two fixed length
blocks S1,1

i Sli−1,li−1
i . If the first non-nullable block Sli,li

i is
of length 1 it branches on setting the block to its least value
a = min(Si) or not (i.e., {a} or Si − {a}).

Sweep-based Propagation

As noted in (Amadini et al. 2017), the dynamic program-
ming method for equality propagation performs poorly when
long fixed strings are interleaved with unknown regions.
In this section we present SWEEP: a more robust, though
weaker, approach for enforcing equality.

The core idea of SWEEP is similar to timetable reasoning
for CUMULATIVE (Aggoun and Beldiceanu 1993): to equate
X and Y , for each block X[i], we wish to find the earli-
est and latest positions in Y where X[i] could be matched.
Once these positions are computed, they are used to refine
the block: roughly, X[i] may only contain a content between
its earliest start and latest end, and any content between the
latest start and earliest end must be included in X[i]. This
process is repeated symmetrically to refine each block Y [j].

Given a dashed string X , we shall refer to positions (i, o),
where i refers to block X[i] and o is its offset, indicating
how many characters of X[i] have already been consumed.
Positive offsets denote positions relative to the beginning of
X[i], and negative offsets are relative to the end of X[i].

From an initial position pi in Y , we try to match X[i]
against the blocks of Y immediately following pi. If we suc-
ceed, pi is the earliest start time of X[i] denoted est(X[i]),
and the end of this match identifies the earliest end time of
X[i], denoted eet(X[i]). However, if while doing so we
reach a block Y [j] incompatible with X[i], then X[i] must
necessarily be matched somewhere after Y [j].

SWEEP uses two (pairs of) complementary operations,
PUSH and STRETCH. PUSH+(B, Y, (i, o)) attempts to find
the earliest possible match of B after o characters into Y [i]
(the ith block of Y), while STRETCH+(B, Y, (i, o)) finds the
latest position B could finish, assuming B begins at most o
characters into Y [i]. There are analogous versions PUSH−
and STRETCH− which work backwards across the blocks.
They simply invert the blocks of Y and then convert the re-
turned results back to the original offset descriptions.

The algorithm for PUSH+ is given in Figure 2, and ex-
plained in Example 1 with a running example.

Example 1 Consider finding the earliest matching of block
B = {a, b}3,4 into the dashed string Y = Y1 Y2 Y3 Y4 Y5 =
{a}2,3{c}1,2{b}1,1{c}0,2{a}3,4 given an initial offset of 1
into Y1, illustrated in Figure 3. We begin trying to fit as much
as possible of B into the remainder of {a}2,3. However the

function PUSH+(Sl,u, Y , (i, o))
(is, os) ← (i, o)
k ← l
while k > 0 ∧ i ≤ |Y | do

T l′,u′ ← Y [i]
if S ∩ T = ∅ then � Incompatible blocks

(i, o) ← (i+ 1, 0)
if l′ > o then � If not nullable,

(is, os) ← (i, o) � restart from here
k ← l

end if
else if k ≤ (u′ − o) then � Remainder fits in Y [i]

return (is, os), (i, o+ k)
else � Fill Y [i] and continue

k ← k − (u′ − o)
(i, o) ← (i+ 1, 0)

end if
end while
return (is, os), (i, o)

end function

Figure 2: PUSH+ searches for the earliest feasible location
to match Sl,u in Y , assuming it starts no earlier than (i, o).
The pair (is, os) tracks the candidate start position, while
(i, o) is the corresponding end.

a2,3 c1,2 b1,1 c0,2 a3,4

+1 | {a, b}3

Y1 Y2 Y3 Y4 Y5

a2,3 c1,2 b1,1 c0,2 a3,4

+1 +0 | {a, b}1

a2,3 c1,2 b1,1 c0,2 a3,4

+0 | {a, b}3

a2,3 c1,2 b1,1 c0,2 a3,4

+0 +0 | {a, b}2

a2,3 c1,2 b1,1 c0,2 a3,4

+0 +0 | {a, b}2

a2,3 c1,2 b1,1 c0,2 a3,4

+0 +2 | ε

Figure 3: Applying PUSH+ to find the earliest match for
{a, b}3,4, given initial offset of 1 into Y1. End-point mark-
ers show current offset, and characters yet to be consumed.
Incompatible blocks are in grey colour.

6559

function STRETCH+(Sl,u, Y , (i, o))
k ← u
while i ≤ |Y | do

T l′,u′ ← Y [i]
if (l′ ≤ o) then � Nothing to consume

(i, o) ← (i+ 1, 0)
else if S ∩ T = ∅ then � Incompatible blocks

return (i, o)
else if k < l′ − o then � No more characters

return (i, o+ k)
else � l′ − o characters consumed

k ← k − (l′ − o)
(i, o) ← (i+ 1, 0)

end if
end while
return (i, o)

end function

Figure 4: STRETCH+ attempts to find the latest end posi-
tion of Sl,u, assuming it starts no later than (i, o). It con-
sumes the minimum possible of each successive block, and
stops when it finds an incompatible non-nullable block or
has consumed all possible characters, or reaches the end.

current block only has 2 capacity remaining, which leaves 1
character to be matched in following blocks. However B is
incompatible with Y2. Since B cannot be placed before Y2,
it must be placed after; so we restart at the beginning of Y3.

After consuming Y3, we reach Y4 – another incompatible
block, but one with a lower bound of 0. In this case, B
may still cross Y4 (by setting Y4 to null), so we skip it and
continue matching Y5. Block Y5 consumes the remaining
characters, and we terminate.

From this, we conclude the earliest start for B is (3,+0),
and the earliest start of the following block is at least
(5,+2), corresponding to the earliest end of B. The earliest
start of B also gives us the earliest end of the predecessor
of B: namely (3,−1), or equivalently (2,−0).

As the matching may not contain gaps, the earliest start of
B also determines the earliest end of its predecessor in X .
So, for successive blocks in X , we may run PUSH+ from the
earliest end of its predecessor. However, we can do better by
observing that a start position is infeasible if its suffix cannot
reach the end of Y . Thus, we use the STRETCH+ procedure
to identify the earliest possible matching for the suffix.

STRETCH+ is in some sense a dual of PUSH+: where
PUSH+ attempts to squeeze as much of B into each block as
possible, STRETCH+ consumes only the minimum amount
before moving onto the next block of Y . STRETCH+ com-
putes a bound on the latest end time of block B, denoted
let(B), from which we may also infer the latest start time
of its successor. Analogously, we also define the latest start
time of block B as lst(B).

Pseudo-code for STRETCH+ is given in Figure 4, and ex-
plained in Example 2 with a running example.

Example 2 Recall the dashed string Y from Example 1. To
find initial bounds on the latest ends of blocks in X , we run

(a) a2,3 c1,2 b1,1 c0,2 a3,4

+1 | {a, b}4 +0 | {a, b}3

(b) a2,3 c1,2 b1,1 c0,2 a3,4

+1 | {a, b}4 +3 | ε

Y1 Y2 Y3 Y4 Y5

Figure 5: Applying STRETCH+ on {a, b}3,4 from two pos-
sible start positions in Y . End-point markers show current
offset, and characters still available..

STRETCH+ progressively from the beginning of Y .
Consider the case (a) shown in Figure 5, where the pre-

decessors of the current block B = {a, b}3,4 can only reach
position (1,+1). We have 4 characters available, and start
walking along successive blocks of Y , decreasing our bud-
get by the lower bound (i.e., the mandatory characters) of
each block we cross. As we start with offset +1 into Y1, its
effective lower bound is 2−1 = 1, so we reach the beginning
of Y2 with 3 characters remaining. However, Y2 is incom-
patible with {a, b}, and has a non-zero lower bound. In this
case we terminate immediately, concluding that X must end
before the beginning of Y2 – and accordingly, the successor
of X must begin no later than (2,+0).

For case (b), we start inside an incompatible block. How-
ever our starting offset is already at the lower bound; thus its
effective lower bound is 0, and we may continue unopposed.
We continue as before, reaching Y4 with 3 characters avail-
able. Y4 is again incompatible with {a, b}, but it is nullable
and it can be skipped. Our remaining budget is consumed in
Y5, yielding a final position of (5,+3).

Note that while (5,+3) remains ‘inside’ Y , it neverthe-
less denotes a feasible end position, as the remainder of the
dashed string is potentially null.

Running STRETCH− from the end of Y allows us to com-
pute initial (lower) bounds for the earliest starts of X-blocks.
If the corresponding earliest start of the first block X[1] is
strictly later than first position (1,+0), then we have de-
tected infeasibility: X and Y can not be equated.

The overall algorithm for computing the earliest starts
for X-blocks in Y is given in Figure 6. PROP-EST runs in
O(m+ n) time (assuming set operations are constant time).
The algorithm for computing the latest ends is analogous,
swapping the sign (i.e., direction) of STRETCH and PUSH.

Filtering from matches

Given the earliest and latest matchings for a block B = Sl,u,
we then attempt to tighten the base S and cardinality (l, u).
The range between est(B) and let(B) is the feasible region
– B must be fully contained in this region.

Similarly, the content between lst(B) and eet(B) forms a
sub-region of the feasible region that we call the mandatory
region.

6560

function PROP-EST([X1, . . . , Xn], Y = [Y1, . . . , Ym])
end ← (m,+ub(Ym))
for i ∈ {n, n− 1, . . . , 1} do � Scanning backwards

end ← STRETCH−(Xi, Y, end)
est(Xi) ← end

end for
if est(X1) > (1,+0) then

return FAIL � Suffix cannot reach
end if
end ← (1, 0)
for i ∈ {1, . . . , n} do � Scanning forwards

start ← MAX(end, est(Xi))
start, end ← PUSH+(Xi, Y, start)
if start > est(Xi) then

est(Xi) ← start
end if

end for
if est(Xn) > (m,+ub(Ym)) then

return FAIL � Prefix cannot fit
end if
return est � est is the array of earliest starts

end function

Figure 6: Algorithm for computing the earliest start position
in Y of each X-block. We run STRETCH backwards (from
the last block) to compute initial starting positions, then run
PUSH forward to eliminate infeasible positions.

From the feasible region, we can tighten upper bounds
on cardinality and the base characters. From the manda-
tory, we can update lower-bounds on block cardinality. We
cannot generally refine feasible values using the mandatory
region, as a base expresses only possible, rather than neces-
sary, characters.

Consider ranges in Figure 7 showing the earliest and lat-
est matchings of a block Sl,u into a dashed string Y . The
mandatory region starts one character into Y2, and reaches
the end of Y3: the minimum cardinality l is at least l′ =
max(0, lb(C2)− 1)+ lb(C3). We can use similar reasoning
over the feasible region to prune the upper bound of cardi-
nality, but we need to consider only those blocks which are

Y C1
1 Y C2

2 Y C3
3 Y C4

4 Y C5
5

Sl,u· · · · · ·
+2 −4

+1 −0

l′

u′, S′

Figure 7: Filtering a block using matching bounds. Feasible
bounds (est and let) are indicated with dashed lines, labelled
with the offset into the specified block. Mandatory bounds
(lst and eet) are indicated by solid lines.

Y 0,1
1 Y 0,1

2
· · · Y 0,1

n−1 Y 0,1
n

X0,1
i

· · · · · ·

Figure 8: Matching two long sequences of possibly null
blocks. As all X- and Y -blocks are nullable, the est and let
of the X-blocks are never forced to shift. As such, process-
ing the feasible region of Xi requires scanning all Y -blocks.

compatible with Sl,u. Similarly, we may intersect S with
the union S′ of all the bases of the blocks Yj in the feasible
region. But where the dashed strings contain many nullable
blocks, the feasible region of each Xi may cover all of Y
(see Fig. 8). In such cases, performing a complete sweep
of the feasible region for each block is too expensive. In-
stead, we maintain a cache of previously processed feasi-
ble regions; before scanning each region, we first check the
cache, and if present we re-use the previous result.

Rather than merely pruning a block B, we may instead re-
place it with the sequence of blocks constituting the feasible
region. However, as explained in Example 3, we must take
care when doing so not to lose any cardinality information;
otherwise, our propagation may inadvertently increase the
domain size.
Example 3 Consider matching B = {a, b, c}0,4 against
dashed string Y , and finding the corresponding match to be
Z = {a, c}0,2{b, c}3,4 (with mandatory and feasible regions
coinciding).

Replacing B with Z is tempting, as it provides more pre-
cise information about the sequencing of characters. How-
ever, the maximum cardinality of Z is greater than that of
B, so there are strings in γ(Z) which were not in γ(B).

In fact, in this case the search space would be larger after
the replacement (e.g., ccccc ∈ γ(Z) − γ(B)). Even if this
were not the case, non-monotonicity may cause problems –
e.g., constraints which were found to be satisfied (and thus
safe to deactivate) may no longer be so after this update.
We adopt a simple strategy to avoid this behaviour when
refining B = Sl,u. Let [l′, u′] be the lower and upper cardi-
nality bounds, derived respectively from the mandatory and
feasible regions, and S′ the union of all the blocks of the
feasible region. If l > l′ ∨ u′ > u, or the mandatory region
is empty (that is, eet(B) < lst(B)), we restrict ourselves to
refine B as we shall see later, without any replacement.

Otherwise, it is safe to replace B with the matching range
from Y (setting the lower bound of optional blocks to 0).
However, this is not necessarily beneficial: replacing S0,10

with S0,1 · · ·S0,1 preserves the set of models, but increases
the search space by introducing symmetries.

We therefore split the feasible region into three parts: the
mandatory region M = M1 · . . . · Mk, and a (possibly
empty) prefix/suffix on either side. From M we discard all
blocks incompatible with B, yielding MB , then use CRUSHS

to make the prefix and suffix into single blocks P and Q
(compatible with B), finally replacing B with P ·MB ·Q.

6561

match positions after CRUSH after CRUSH{a,b}

(a) a2,3 c1,2 b1,1 c0,2 a3,4

+0 −2 −0+0

{b, c}0,3 a1,2 a0,2 b0,1 a1,2 a0,2

(b) a2,3 c1,2 b1,1 c0,2 a3,4

+0 −2 −2+0

{b, c}0,3 a1,2 b0,1 a1,2

(c) a2,3 c1,2 b1,1 c0,2 a3,4

+0 −1 −1+0

b1,1 a2,3 b1,1 a2,3

Figure 9: Refining B = {a, b}3,4, given several possible matchings.

Example 4 Recall the earliest matching computed in Ex-
ample 1. Figure 9 illustrates several possible completions
of this matching. In each case, we show two versions of
the possible matching: using CRUSH, and the more pre-
cise CRUSH{a,b}. In case (a), the computed matches are too
weak to perform any filtering. In case (b), computing match
cardinality without considering B yields an upper bound of
5, which is too weak to allow filtering. However, discard-
ing blocks incompatible with B refines this to {b}0,1{a}1,2,
which allows us to reduce the maximum cardinality of B to
3. In case (c), the cardinality of the matching is at least as
precise as the original block. In this case, we replace B with
corresponding matching {b}1,1{a}2,3.

Note that this procedure does not exploit all possibilities
for propagation. In case (b), since the maximum cardinality
is now 3, we can replace block {a, b}3,4 by {b}1,1{a}2,2.

Evaluation

We implemented the SWEEP algorithm as an extension of G-
STRINGS solver. To distinguish this version of G-STRINGS
from that introduced in (Amadini et al. 2017), which uses
the COVER algorithm for propagating equality, we use the
notation G-SWEEP and G-COVER respectively.

We first evaluated the performance of G-COVER and
G-SWEEP approaches by using the same benchmarks of
(Amadini et al. 2017), consisting of six problems, namely:
anbn, ChunkSplit, HammingDistance, Levenshtein, SQLIn-
jection, StringReplace. For each of these problems we de-
rived 5 instances by varying the maximum string length
� ∈ {250, 500, 1000, 5000, 10000}.

In addition to G-COVER and G-SWEEP, we also evalu-
ated state-of-the-art string solvers such as: the SMT solvers
CVC4 (Liang et al. 2014) and Z3STR3 (Berzish, Zheng,
and Ganesh 2017),2 and the CP solver GECODE+S (Scott et
al. 2017). Furthermore, thanks to the MiniZinc translation
to integers defined in (Amadini et al. 2016) statically map-
ping string variables into arrays of integer variables, we were
able to evaluate state-of-the-art constraint solvers over inte-
gers such as: GECODE (Gecode 2017), a CP solver on Fi-
nite Domains; CHUFFED (Chu 2011), a CP solver with lazy

2We used the last stable releases Z3STR3 1.0.0 and CVC4 1.5.

clause generation (Ohrimenko, Stuckey, and Codish 2009);
and IZPLUS (Fujiwara 2016), a CP solver that also exploits
local search.

Average solving times over (Amadini et al. 2017) bench-
mark are shown in Table 1 (solving time is set to the timeout
T = 600 seconds if a solver can not solve a problem).3 We
ignore the model construction time, that for CP solvers us-
ing MiniZinc translations (the first three rows in the table)
can be too expensive.

On the left side of the table, we report the average times
by varying the maximum string length �. Clearly G-SWEEP
has the best performance, giving an instantaneous answer
for all the problems regardless of �. G-COVER still pro-
vides good results, although performance deteriorates as �
grows. The CP solver GECODE+S follows the same trend,
but with worse performance. Although the performance of
SMT solvers CVC4 and Z3STR3 is rather independent from
�, their effectiveness seems to be worse than the CP string
approaches. Unsurprisingly, CP solvers that statically trans-
late into arrays of integer variables are not very effective.
This is particularly true when � becomes big.

The right side of the table, where results are averaged
for each problem class, better explains the reasons for such
performance. Both G-COVER and G-SWEEP are instan-
taneous on all the problems from the NORN (Abdulla et
al. 2015) benchmarks, i.e., all the problems except SQLIn-
jection. This problem was introduced in (Amadini et al.
2016) and basically consists in solving the string equation
ω = p · e · b1 · = · b2 · e · s where:

• ω is a random-generated fixed string of parametric length
�, meant to be an input string;

• p, s are string variables representing the prefix and the suf-
fix of the right hand side of the equation;

• = is a fixed string of length 1, representing character ’=’;

• b1, b2 are string variables representing (possibly empty)
sequences of white spaces;

• e is a string variable representing a non-empty expression.

3We ran the experiments on Ubuntu 15.10 machines with 16 GB
of RAM and 2.60 GHz Intel R© i7 CPU. The source code is publicly
available at (G-Strings 2017)

6562

Table 1: Average results in seconds. Unsatisfiable problem are marked with *. Best performance in bold font.

� Problems
250 500 1000 5000 10000 anbn* Chunk. Leven. Hamm.* SQL. St.Rep.

CHUFFED 1.76 94.46 208.01 312.47 415.04 117.62 361.59 17.8 18.8 471.77 250.51
GECODE 0.63 21.04 89.07 403.14 406.38 269.57 243.14 6.21 5.59 335.25 244.55
IZPLUS 22.55 104.74 106.8 440.22 460.57 244.34 243.49 17.81 186.64 505.9 163.68
Z3STR3 200.83 202.54 200.78 200.65 204.29 600.0 0.28 3.24 0.01 600.0 7.38
CVC4 100.05 100.04 100.05 100.04 100.04 0.02 0.2 0.01 0.01 600.0 0.01

GECODE+S 0.29 2.9 35.66 269.22 371.24 246.23 279.78 28.28 0.0 66.1 194.79
G-COVER 0.01 1.94 5.63 5.22 100.0 0.0 0.0 0.0 0.0 135.35 0.0
G-SWEEP 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.02 0.0

Table 2: Average solving time, in seconds, on new SQL benchmarks. Best performance in bold font.

SAT UNS ALL
� 250 500 1000 5000 10000 250 500 1000 5000 10000 250 500 1000 5000 10000

GECODE+S 270.09 251.75 356.96 600.0 600.0 0.17 3.41 130.69 600.0 600.0 135.13 127.58 243.82 600.0 600.0
G-COVER 61.28 285.34 469.96 600.0 600.0 306.32 600.0 600.0 600.0 600.0 183.8 442.67 534.98 600.0 600.0
G-SWEEP 0.01 0.08 0.05 0.52 1.05 0.04 0.35 1.84 69.58 327.92 0.03 0.21 0.95 35.05 164.49

Table 3: Percentage of solved instances on new SQL benchmarks. Best performance in bold font.

SAT UNS ALL
� 250 500 1000 5000 10000 250 500 1000 5000 10000 250 500 1000 5000 10000

GECODE+S 55.0 60.0 45.0 0.0 0.0 100.0 100.0 90.0 0.0 0.0 77.5 80.0 67.5 0.0 0.0
G-COVER 90.0 55.0 25.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 70.0 27.5 12.5 0.0 0.0
G-SWEEP 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

As the name suggests, solving this problem means finding, if
there exists, a potentially dangerous pattern in a SQL query
(e.g., the ’classic’ string “OR 0=0” appended at the end of
the query). Note that this problem can not be solved with
regular expressions, since the language denoted by p · e · b1 ·
= · b2 · e · s is not even context free.

The main difficulty for the SQLInjection problem con-
sists in dealing with a potentially very long fixed string ω.
This means that ω is represented by a long sequence of
known blocks. As previously mentioned, this is the worst-
case scenario for COVER, and indeed its performance can
severely degrade when � = |ω| grows. Consequently, for
this problem COVER performs worse than both SWEEP and
GECODE+S. This behaviour was observed also in (Amadini
et al. 2017). Conversely, SWEEP performs very well even
for this problem since the sweep-based propagation is able
to scan the blocks of the dashed strings in linear time.

Unfortunately, as also pointed out in (Amadini et al. 2017;
2016; Scott et al. 2017), there is a lack of challenging string
benchmarks. As can be seen from Table 1, the most difficult
problem is SQLInjection. We then randomly generated 200
harder instances from this problem; in particular, for each
� ∈ {250, 500, 1000, 5000, 10000} we generated 20 satisfi-
able and 20 unsatisfiable instances.

Results are shown in Table 2 (average solving time, with
timeout T = 600 seconds) and Table 3 (percentage of solved
instances), where we only compare the three best solvers
from the first experiment.

These harder problems confirm the results of the ini-
tial experiments. Since these problem involve long strings
GECODE+S is actually better that G-COVER particularly on

unsatisfiable instances. But G-SWEEP is clearly superior to
both, particularly on satisfiable instances.

Conclusions

We examined the problem of string constraint solving over
bounded-length string variables. We started from a recently
introduced Constraint Programming approach, based on a
restricted class of regular expressions called dashed strings.

We improved on previous works by defining SWEEP, a
new sweep-based approach for propagating the equality be-
tween dashed strings. The strength of SWEEP does not re-
side in the amount of pruning it performs. Its effectiveness
is since it can check satisfiability in O(n + m), and while
filtering is more complex, in practice it is also linear. This
allows the approach to scale to dashed strings that consist of
a large number of blocks.

The SWEEP algorithm, that we implemented as an ex-
tension of the G-STRINGS solver, substantially outperforms
other state-of-the-art approaches for string constraint solv-
ing, whether based on dashed strings or not.

There are many future directions for interesting research.
Extending the set of constraints supported by the string
solver to include constraints such as regular, global cardi-
nality and lexicographic constraints is clearly of interest.
Exploring new kinds of search strategy is also important
because of the potentially huge search spaces that arise in
string problems. Also challenging is to add explanations to
dashed string constraint solving in order to make use of no-
good learning approaches.

6563

Acknowledgments

This work is supported by the Australian Research Coun-
cil (ARC) through Linkage Project Grant LP140100437 and
Discovery Early Career Researcher Award DE160100568.

References

Abdulla, P. A.; Atig, M. F.; Chen, Y.; Holı́k, L.; Rezine, A.;
Rümmer, P.; and Stenman, J. 2015. Norn: An SMT solver
for string constraints. In CAV, volume 9206 of LNCS, 462–
469. Springer.
Aggoun, A., and Beldiceanu, N. 1993. Extending CHIP in
order to solve complex scheduling and placement problems.
Mathematical and Computer Modelling 17(7):57–73.
Amadini, R.; Flener, P.; Pearson, J.; Scott, J. D.; Stuckey,
P. J.; and Tack, G. 2016. Minizinc with strings. In LOPSTR
2016, 41–57.
Amadini, R.; Gange, G.; Stuckey, P. J.; and Tack, G. 2017. A
novel approach to string constraint solving. In CP, Lecture
Notes in Computer Science, 3–20. Springer.
Berzish, M.; Zheng, Y.; and Ganesh, V. 2017. Z3str3:
A string solver with theory-aware branching. CoRR
abs/1704.07935.
Bisht, P.; Hinrichs, T. L.; Skrupsky, N.; and Venkatakrish-
nan, V. N. 2011. WAPTEC: Whitebox analysis of web ap-
plications for parameter tampering exploit construction. In
CCS, 575–586. ACM.
Bjørner, N.; Tillmann, N.; and Voronkov, A. 2009. Path
feasibility analysis for string-manipulating programs. In
TACAS, volume 5505 of LNCS, 307–321. Springer.
Chu, G. 2011. Improving Combinatorial Optimization.
Ph.D. Dissertation, Department of Computing and Informa-
tion Systems, University of Melbourne.
Emmi, M.; Majumdar, R.; and Sen, K. 2007. Dynamic test
input generation for database applications. In ISSTA, 151–
162. ACM.
Fujiwara, T. 2016. iZplus. http://www.minizinc.org/
challenge2016/description izplus.txt. Accessed Sept 2017.
G-Strings. 2017. Source code. Accessed November 2017.
https://bitbucket.org/robama/g-strings.
Gange, G.; Navas, J. A.; Stuckey, P. J.; Søndergaard, H.;
and Schachte, P. 2013. Unbounded model-checking with
interpolation for regular language constraints. In TACAS,
volume 7795 of LNCS, 277–291. Springer.
Gecode. 2017. Source code. www.gecode.org. Accessed
Sept 2017.
Hooimeijer, P., and Weimer, W. 2012. StrSolve: Solving
string constraints lazily. Automated Software Engineering
19(4):531–559.
Kiezun, A.; Ganesh, V.; Artzi, S.; Guo, P. J.; Hooimeijer,
P.; and Ernst, M. D. 2012. HAMPI: A solver for word
equations over strings, regular expressions, and context-free
grammars. ACM Trans. Softw. Eng. Methodol. 21(4):25:1–
25:28.

Li, G., and Ghosh, I. 2013. PASS: String solving with pa-
rameterized array and interval automaton. In HVC, volume
8244 of LNCS, 15–31. Springer.
Liang, T.; Reynolds, A.; Tinelli, C.; Barrett, C.; and Deters,
M. 2014. A DPLL(T) theory solver for a theory of strings
and regular expressions. In CAV, volume 8559 of LNCS,
646–662. Springer.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Prop-
agation via lazy clause generation. Constraints 14(3):357–
391.
Saxena, P.; Akhawe, D.; Hanna, S.; Mao, F.; McCamant, S.;
and Song, D. 2010. A symbolic execution framework for
JavaScript. In S&P, 513–528. IEEE Computer Society.
Scott, J. D.; Flener, P.; Pearson, J.; and Schulte, C. 2017. De-
sign and implementation of bounded-length sequence vari-
ables. In CPAIOR, volume 10335 of LNCS, 51–67. Springer.
Tateishi, T.; Pistoia, M.; and Tripp, O. 2013. Path- and
index-sensitive string analysis based on monadic second-
order logic. ACM Trans. Softw. Eng. Methodol. 22(4):33:1–
33:33.
Thomé, J.; Shar, L. K.; Bianculli, D.; and Briand, L. C.
2017. Search-driven string constraint solving for vulnerabil-
ity detection. In ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, 198–208.
Trinh, M.; Chu, D.; and Jaffar, J. 2014. S3: A symbolic
string solver for vulnerability detection in web applications.
In SIGSAC, 1232–1243. ACM.
Yu, F.; Alkhalaf, M.; and Bultan, T. 2010. Stranger: An
automata-based string analysis tool for PHP. In TACAS, vol-
ume 6015 of LNCS, 154–157. Springer.

6564

