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Abstract

We consider the MAP-inference problem for graphical models,
which is a valued constraint satisfaction problem defined on
real numbers with a natural summation operation. We propose
a family of relaxations (different from the famous Sherali-
Adams hierarchy), which naturally define lower bounds for its
optimum. This family always contains a tight relaxation and
we give an algorithm able to find it and therefore, solve the
initial non-relaxed NP-hard problem.
The relaxations we consider decompose the original problem
into two non-overlapping parts: an easy LP-tight part and a
difficult one. For the latter part a combinatorial solver must be
used. As we show in our experiments, in a number of applica-
tions the second, difficult part constitutes only a small fraction
of the whole problem. This property allows to significantly
reduce the computational time of the combinatorial solver and
therefore solve problems which were out of reach before.

Introduction

This paper focuses on energy minimization or maximum a
posteriori (MAP) inference for undirected graphical mod-
els. This problem is closely related to weighted and valued
constraint satisfaction. In the most common pairwise case it
amounts to minimizing a partially separable function EG tak-
ing real values on a discrete set of finite-valued vectors XV 1

min
x∈XV

[
EG(θ, x) :=

∑
u∈V

θu(xu) +
∑
uv∈E

θuv(xu, xv)

]
. (1)

The problem is known to be NP-hard (e. g. Li, Shekhovtsov,
and Huber 2016), and therefore a number of approximate al-
gorithms were proposed to this end. In contrast, our goal
is an efficient method able to solve large-scale, but mostly
simple problem instances exactly. Such instances typically
arise in computer vision, machine learning and other areas of
artificial intelligence. Although approximate methods often
provide reasonable solutions, having an exact solver can be
quite critical at the modeling stage, when one has to differ-
entiate between modeling and optimization errors. In this
case one usually resorts to either specialized combinatorial
solvers (see references in Kappes et al. 2015; Hurley et al.
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1We rigorously define notation in Section “Preliminaries”.

2016) or off-the-shelf integer linear program (ILP) solvers
like CPLEX (CPLEX, IBM 2014) or Gurobi (Gurobi Op-
timization 2016). However, neither specialized nor off-the-
shelf solvers scale well, as the problem instances get larger.
Our method is able to use the fact that a linear program (LP)
relaxation of the problem is “almost” tight, i. e. the obtained
solution is close to the optimal one. It restricts application of
an exact solver to a small fraction of the problem, where the
LP relaxation is not tight and yet obtains a provably optimal
solution to the whole problem. This allows to solve problems
for which no efficient solving technique was available.
Related work LP relaxations are an important building
block for a number of algorithms addressing the MAP-
inference problem (1). It was probably first considered
in (Shlezinger 1976; see Werner 2007 for the recent review)
both in its primal and dual form. The notion of reparametri-
zation (known also as equivalent transformations or equiva-
lence preserving transformations) was introduced in the same
work as well. Although the bound provided by the LP relax-
ation is often good, the class of problems, where it is tight,
is limited (see Kolmogorov, Thapper, and Zivny 2015). Prac-
tically important problems from this class are mainly those
having acyclic structure or submodular costs. Therefore a
number of works were devoted to cutting plane techniques to
tighten the relaxation (e. g. Koster, Van Hoesel, and Kolen
1998; Sontag 2007; de Givry and Katsirelos 2017). Some-
times the tightening itself may lead to an exact solution, how-
ever, in general it is accomplished with branch-and-bound
or A∗ algorithms. The most prominent representative of the
first class are the DAOOPT (Marinescu and Dechter 2005;
Otten and Dechter 2010) and Toulbar2 (Cooper et al. 2010)
solvers. The latter has recently shown impressive results on
a number of benchmarks (Hurley et al. 2016). In contrast,
the A∗ algorithm so far was mainly used in specific applica-
tions (e. g. Bergtholdt et al. 2010).

Recently developed LP-relaxation-based partial optimal-
ity methods (e. g. Shekhovtsov 2014; Shekhovtsov, Swoboda,
and Savchynskyy 2015; Swoboda et al. 2016) can find opti-
mal labels for a significant part of variables without solving
the combinatorial problem (1). Afterwards, a combinatorial
solver can be applied to the rest of the variables to obtain
a complete solution. These methods work well if the pair-
wise costs θuv play the role of a “smoothing regularizer” by
slightly penalizing differences in values in neighboring vari-
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ables u and v. However, they struggle as the pairwise costs
get more weight and move towards “hard constraints”, when
some pairs of variable values are strongly penalized or even
forbidden.

The CombiLP method (Savchynskyy et al. 2013) is the
closest to our work. It iteratively splits the problem into a
“simple” and a “difficult” part based on consistency of re-
parametrized unary and pairwise costs, known as (virtual)
arc-consistency (see Werner 2007), and checks for agreement
of their solutions. The “simple” part is addressed with a dedi-
cated LP solver, whereas the “difficult” one is solved with an
ILP method. Although CombiLP has shown promising results
on the OpenGM benchmark (Kappes et al. 2015), its usage is
beneficial for sparse graphical models only, when |E| � |V|2.
Contribution Based on CombiLP, we propose a method,
which is not restricted to sparse models. Similar to CombiLP,
we split the problem into LP and ILP parts based on local
consistency properties. Our new consistency criterion guar-
antees that the concatenation of the obtained LP and ILP
solutions is optimal for the whole problem, given that the
criterion is satisfied. When the criterion is not satisfied, we
increase the ILP subproblem and correspondingly decrease
the LP one, like it is done in CombiLP. There are several
crucial differences to the CombiLP approach, however:
• Our “difficult” ILP subproblem is kept much more com-

pact, which is critical for densely-connected graphs. This
leads to substantial computational savings.

• Our optimality criterion is stronger than those of CombiLP:
Satisfaction of CombiLP’s criterion for a given splitting
implies satisfaction of ours.
Additionally, we treat the problem of an initial reparame-

trization suitable for the used splitting criterion and propose a
method, which allows to use arbitrary dual LP solvers within
our algorithm, whereas the CombiLP implementation has a
fixed dedicated LP solver. This allowed us to choose a more
efficient LP solver and to significantly (up to 18 times) speed
up the original CombiLP implementation.

Finally, our criterion and implementation2 are also able
to deal with higher order models, which intrinsically have a
higher connectivity. We show efficacy of our method on pub-
licly available benchmarks from computer vision, machine
learning and bio-imaging.

Preliminaries

Graphical Models and MAP-inference Let G = (V, E)
be an undirected graph with the set of nodes V and the
set of edges E . The neighborhood of u ∈ V is defined as
Nb(u) := {v ∈ V | uv ∈ E}. Each node v ∈ V is associ-
ated with a finite set of labels Xv. For any subset V ′ ⊆ V
of graph nodes the Cartesian product XV′ =

∏
v∈V′ Xv de-

fines the set of labelings of the subset V ′ ⊆ V , when each
node from V ′ is assigned a label. This includes also the spe-
cial cases V ′ = {u, v} ∈ E and V ′ = V denoted as Xuv

and XV respectively. We assume that argmin stands for
the set of minimal elements. At the same time, when used

2Code is available at github.com/fgrsnau/combilp.

with “=” or “:=” operators, it returns some element from
this set.

Let I = {s ∈ Xu | u ∈ V} ∪ {(s, t) ∈ Xuv | uv ∈ E} be
the set of indices enumerating all labels and label pairs in
neighboring graph nodes. For each node and edge the cost
functions θu : Xu → R, u ∈ V and θuv : Xuv → R, uv ∈ E
assign a cost to a label or label pair respectively. The vector
θ ∈ R

I contains all values of the functions θu and θuv as its
coordinates.
ILP formulation and LP relaxation One way to address
the MAP-inference problem (1) is to consider its ILP formu-
lation (see e. g. Shlezinger 1976; Werner 2007)

minμ≥0〈θ, μ〉∑
s∈Xu

μu(s) = 1, u ∈ V (2)∑
s∈Xu

μuv(s, t) = μv(t), uv ∈ E , t ∈ Xv

μ ∈ {0, 1}I (3)

A natural LP relaxation is obtained by omitting the integrality
constraints (3). The resulting LP (2) is known as a local
polytope (Werner 2007) or simply an LP relaxation of (1).
We will call the problem (1) LP-tight, if the optimal values
of (1) and its LP relaxation (2) coincide. This also implies
that there is an integer solution to the relaxed problem (2).
We will say that the LP relaxation has an integer solution
in a node u if there is s ∈ Xu such that μu(s) = 1. Due to
constraints of (2) it implies that μu(s

′) = 0 for s′ ∈ Xu \{s}.
Linear programs of the form (2) are as difficult as linear

programs in general (Prusa and Werner 2013) and therefore
obtaining exact solutions for large-scale instances may re-
quire significant time. However, there are fast specialized
solvers (e. g. Kolmogorov 2006; Cooper et al. 2008) return-
ing approximate dual solutions of (2).
Partial Optimality Observation Practical importance of
the LP relaxation (2) is based on the fact that often most
coordinates of its (approximate) relaxed solution are as-
signed integer values. The non-integer coordinates can be
rounded (Ravikumar, Agarwal, and Wainwright 2010) and
the resulting labeling can be used as if it was a solution of
the non-relaxed problem. A number of problems have been
successfully addressed with this type of methods (Kappes
et al. 2015). However, apart from special cases (e. g. Boros
and Hammer 2002; Rother et al. 2007) there is no guarantee
that the integer coordinates keep their values in an optimal
solution of the non-relaxed problem.

Even though there is no guarantee that the rounded in-
teger solution is a sensible approximation for the optimal
solution, empirical tests have shown that usually many inte-
ger coordinates coincide with the ones found in the optimal
solution. This is a purely practical observation with little the-
oretical background. Nevertheless, this observation can be
used to address the non-relaxed problem efficiently and it is
a basis of our method. An alternative, the partial optimality
approach was pursued by e. g. Shekhovtsov, Swoboda, and
Savchynskyy 2015; Swoboda et al. 2016. We will provide a
corresponding empirical comparison later in the paper.
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Idea of the Algorithm

Graph partition A subgraph G′ = (V ′, E ′) of the graph
G = (V, E) is called induced by the set of its nodes V ′, if
E ′ = {uv ∈ E | u, v ∈ V ′}, i. e. the set E ′ of its edges
contains all edges from E connecting nodes from V ′.

The subgraphs A = (VA, EA) and B = (VB, EB) are
called partition of the graph G, if VA ∪ VB = V , VA ∩
VB = ∅ and A and B are induced by VA and VB respectively.
The subgraph B as complement to A will be denoted as
G \A. The other way around, G \B stands for A, if A,B is a
partition of G. Notation EAB will be used for the set of edges
connecting VA and VB: EAB = {uv ∈ E | u ∈ VA, v ∈ VB}.

In the following, we will show how to partition the problem
graph G into (i) an easy part with subgraph A, which can be
solved exactly with approximate LP solvers and (ii) a difficult
part with subgraph B, which will require an ILP solver.
Lower bound induced by partition Till the end of this
section we will assume A, B are a partition of a graph G.
For the sake of notation, when considering different sub-
graphs of G we will nevertheless use a cost vector θ corre-
sponding to the master graph G, i. e. EA(θ, x) will stand for∑

u∈VA θu(xu) +
∑

uv∈EA θuv(xu, xv), where θ ∈ R
I .

Additionally, for x′ ∈ XA and x′′ ∈ XB, their concatena-
tion x′ ◦ x′′ ∈ XG will be defined as

(x′ ◦ x′′)v =

{
x′
v , v ∈ VA ,

x′′
v , v ∈ VB .

(4)

Note that the energy function EG can be decomposed into
subproblems on A and B and it holds

EG(θ, x′ ◦x′′) = EA(θ, x′)+EB(θ, x′′)+
∑

uv∈EAB

θuv(x
′
u, x

′′
v)

(5)
and therefore,

EG(θ, x′ ◦ x′′) ≥ EA(θ, x′) + EB(θ, x′′) +

+
∑

uv∈EAB

min
(s,t)∈Xuv

θuv(s, t) (6)

constitutes a lower bound for the energy function EG .
Proposition 1 (Sufficient optimality condition). The lower
bound specified in (6) is tight if for all uv ∈ EAB it
holds that (x′

u, x
′′
v) ∈ argmin(s,t)∈Xuv

θuv(s, t), where
x′ ∈ argminx∈XA EA(θ, x), x′′ ∈ argminx∈XB EB(θ, x).

It is trivial to show that the labeling x′ ◦ x′′ is optimal for
EG if the lower bound (6) is tight.

When considering the set of all possible partitions of G into
A and B there is always at least one that leads to a tight lower
bound (6). It corresponds to a trivial partition, where either
the subgraph A or B is empty. The first case corresponds to
solving the whole problem with an ILP method, whereas the
second one corresponds to the case when the LP relaxation
is tight, i. e. all coordinates of an LP solution are integer.

However, as our experimental evaluation shows, there exist
often tight non-trivial partitions, with a large subgraph A and
a small subgraph B.
Conceptual Algorithm These partitions can be obtained
for example by a conceptual Algorithm 1, which assigns

Algorithm 1 Conceptual Dense-CombiLP Algorithm
1: Solve LP relaxation (2)
2: Assign all nodes with integer solution to A
3: repeat
4: Set B := (G \ A)
5: Compute optimal labelings x′ and x′′ on A and B

respectively. Use LP solver for A and ILP for B.
6: if (Prop. 1 holds for x′ and x′′) then
7: return (x′ ◦ x′′)
8: else
9: Move those u from A to B, where Prop. 1 fails

10: end if
11: until B = G

all nodes of the graph having an integer solution to A and
all others to B. After solving both subproblems one checks
fulfillment of the sufficient optimality condition defined by
Proposition 1. Should the condition hold, the problem is
solved. Otherwise one increases the subproblem B (and re-
spectively decreases A) by including those nodes u ∈ VA,
where the condition (x′

u, x
′′
v) ∈ argmin(s,t)∈Xuv

θuv(s, t)
does not hold for at least one v ∈ VB, in terms of Proposi-
tion 1.

Relation to CombiLP Algorithm 1 differs from Com-
biLP (Savchynskyy et al. 2013) in one very important aspect.
Namely, the subgraphs used in CombiLP are overlapping,
whereas ours are not. This substantially improves perfor-
mance of the method in cases when the graph G has a high
connectivity. In later sections of this paper we will give a
detailed theoretical and empirical comparison of the methods.

In the following, we will turn the conceptual algorithm
into a working one. In order to do so, we will give positive
answers to a number of important questions:
• Why and when is the subproblem on A LP-tight? This is

critical, since we assume A to be close to G in its size and
therefore it must be solvable by a (polynomial) LP method.

• Can we avoid running an LP solver for A in each iteration?
• Can we use (fast specialized) approximate LP solvers on

A instead of (slow off-the-shelf) exact ones?
• How to encourage conditions of Proposition 1 to be ful-

filled for a possibly small B?
Although our construction mostly follows the one given

in (Savchynskyy et al. 2013), we repeat it here to keep the
paper self-contained.

Theoretical Background

Reparametrization Decompositions of the energy function
EG(θ, x) into unary and pairwise costs are not unique, which
is, there exist other costs θ′ ∈ R

I such that EG(θ, x) =
EG(θ′, x) for all labelings x ∈ XV . It is known (see
e. g. Werner 2007) and straightforward to check that such
equivalent costs can be obtained with an arbitrary vec-
tor φ = (φu,v(s) ∈ R | u ∈ V, v ∈ Nb(u), s ∈ Xu)
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as follows:
θ′u(s) ≡ θφu(s) := θu(s)−

∑
v∈Nb(u)

φu,v(s) (7)

θ′uv(s, t) ≡ θφuv(s, t) := θφuv(s, t) + φu,v(s) + φv,u(t) .

The costs θφ are called reparametrized and the vector φ is
known as a reparametrization. Costs related by (7) are also
called equivalent. In this sense, all vectors θ ∈ R

I can be
split into equivalence classes according to (7). Other estab-
lished terms for reparametrizations are equivalence preserv-
ing transformations (Cooper and Schiex 2004) and equivalent
transformations (Shlezinger 1976).
Dual Problem By swapping the min and

∑
operations

in (1) one obtains a lower bound D(θ) ≤ EG(θ, x) to the
energy3, which reads as

D(θ) :=
∑
u∈V

min
s∈Xu

θu(s) +
∑
uv∈E

min
(s,t)∈Xuv

θuv(s, t) . (8)

Although the energy EG(θ, x) remains the same for all
cost vectors from a given equivalence class (EG(θ, x) =
EG(θφ, x)), the lower bound D(θ) is dependent on the repa-
rametrization (D(θ) �= D(θφ)). Therefore, a natural maxi-
mization problem arises as maximization of the lower bound
over all equivalent costs: maxφ D(θφ). It is known (e. g.
Werner 2007) that this maximization problem is equiva-
lent to the Lagrangian dual to the LP relaxation (2). In
turn, this implies that the minimum of (2) coincides with
the maximum of D(θφ). Therefore, one speaks about op-
timal reparametrizations as those φ, where the maximum
is attained. Apart from its lower bound property the func-
tion D(θφ) is important because (i) function D(θφ) is con-
cave w. r. t. φ as a sum of minima of linear functions;
(ii) there exist many of scalable and efficient algorithms for
its (approximate) maximization, e. g. (Kolmogorov 2006;
Cooper et al. 2008).
Strict Arc-Consistency From a practical point of view it is
important how an optimal reparametrization φ can be trans-
lated into a labeling, i. e. into an (approximate) solution of the
energy minimization problem (1). The following definition
plays a crucial role for this question in general and for our
method in particular:
Definition 1 (Strict arc-consistency). The node u ∈ V is
called strictly arc-consistent w. r. t. the costs θ if there exists
a label xu ∈ Xu and labels xv ∈ Xv for all v ∈ Nb(u), such
that it holds (i) θu(xu) < θu(s) for all s ∈ Xu \ {xu}; and
(ii) θuv(xu, xv) < θuv(s, t) for all (s, t) ∈ Xuv \{(xu, xv)}.

The set of strictly arc-consistent nodes is denoted by
S(θ) := {v ∈ V | v is strictly arc-consistent} .

If all nodes are strictly arc-consistent w. r. t. the repara-
metrized costs θφ, then it is straightforward to check that
D(θφ) = EG(θφ, x∗) = EG(θ, x∗), where

x∗
u = argmin

s∈Xu

θφu(s) . (9)

In turn, this implies that φ is an optimal reparametrization
and x∗ is an exact solution of the energy minimization prob-
lem (1).

3It can be shown that this bound is in general less tight than (6).

Reconstructing labeling from reparametrization Al-
though there is no guarantee that the strict arc-consistency
property holds for all nodes even with an optimal reparametri-
zation, the rule (9) is still used to obtain an approximate min-
imizer for (1) with arbitrary, also non-optimal reparametriza-
tions φ (although, a number of more sophisticated rules were
proposed, they are based on (9) and reduce to it if the strict
arc-consistency holds for all nodes, see e. g. Ravikumar, Agar-
wal, and Wainwright 2010). Moreover, for an optimal repa-
rametrization φ, when the strict arc-consistency holds for a
node u, the complementary slackness conditions imply (e. g.
Werner 2007) that strict arc-consistency of a node u guaran-
tees an integer solution of the LP relaxation in u.

From the application point of view, an (approximate) so-
lution (9) is typically considered as good, if most of the
nodes u ∈ V satisfy the strict arc-consistency property. At
the same time, unless the strict arc-consistency holds for all
nodes, there is in general no theoretical guarantee that x∗

u
obtained as (9) coincide with the corresponding coordinate
yu of an optimal solution y = argminx∈XV EG(θ, x), even
if the node u is strictly arc-consistent.

Algorithm 2 described in the next section, provides such
guarantees by solving the non-relaxed minimization prob-
lem (1).

Detailed Algorithm Description

Let us consider Algorithm 2. It differs from Algorithm 1
provided above in several aspects: Instead of solving the
relaxed problem (2) in the primal domain, it solves its dual
formulation and resorts to the optimally reparametrized costs.
Strict arc-consistency is used in place of integrality to form
the initial set A, which is justified by the fact that strict arc-
consistency is sufficient for integrality.

The reparametrization step in line 2 plays a crucial role for
the whole method. Due to this step, solving the energy mini-
mization problem on A becomes trivial because of its strict
arc-consistency. It can be performed by selecting the best
label in each node independently, according to (9). Therefore,
there is no computational overhead of resolving the problem
on A in each iteration. Also, as more and more nodes from
the initial subgraph A move over to the subgraph B their
strict arc-consistency encourages solution on B to coincide
with the locally optimal labels. Moreover, instead of an op-
timal dual solution φ any, also approximate, non-optimal
reparametrization can be used. According to Proposition 1,
this does not affect correctness of Algorithm 2. Therefore,
approximate solvers can be used in line 1 of the algorithm.
However, the better the dual solution is, the larger the set of
strictly arc-consistent nodes S(θ) is and therefore, the lower
computational complexity of the ILP phase of the algorithm.
Finally, reparametrization of the costs typically speeds up the
ILP solver in line 6, as it serves as preprocessing.

Analysis of the Method

Family of Tight Partitions The proposition below that if the
sufficient optimality criterion (Proposition 1) of Algorithm 2
is fulfilled for a partition A,B, then for any other partition
A′,B′ such that B′ ⊇ B the criterion holds as well:
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Algorithm 2 Dense-CombiLP Algorithm
1: Maximize the dual (8) φ := argmaxψ D(θψ)

2: Switch to the reparametrized costs: θ := θφ

3: Induce A from VA := S(θ) and get optimum on A:
x′
u := argmin

s∈Xu

θu(s), u ∈ VA

4: repeat
5: Set B := (G \ A)
6: Compute an optimal labeling x′′ on B with ILP solver
7: Ouv := argmin

(s,t)∈Xuv

θuv(s, t), see Prop. 1

8: if ∀uv ∈ EAB : (x′
u, x

′′
v) ∈ Ouv then

9: return (x′ ◦ x′′)
10: else
11: VA := VA \ {u | ∃uv ∈ EAB : (x′

u, x
′′
v) /∈ Ouv}

12: Induce A from VA
13: end if
14: until B = G

Proposition 2. Let A, B and A′, B′ be partitions of G
s. t. B ⊆ B′. Let also VA ⊆ S(θ). Let x′, x′′ be the solu-
tions of the MAP-inference problem (1) on A respectively B
and y′, y′′ analogously for A′ and B′. If x′ ◦x′′ is the unique
optimal assignment and it fulfills requirements of Proposi-
tion 1, then they are fulfilled for y′ ◦ y′′ as well.

This property shows that there are potentially many par-
titions, which results in a tight bound and allows to apply
a greedy strategy for growing the subgraph B by adding all
inconsistent nodes (violating Proposition 1) at once, as it is
done in line 11 of Algorithm 2.
Comparison to CombiLP As mentioned above, the
CombiLP-method is very similar to ours, but uses a differ-
ent optimality criterion. Below we show that our criterion is
in a certain sense stronger than theirs. To this end, follow-
ing (Savchynskyy et al. 2013), we introduce the notion of a
boundary complement subgraph:
Definition 2 (Savchynskyy et al. 2013). Let A be an induced
subgraph of G. A subgraph B is called boundary complement
to A w. r. t. G if it is induced by the set (VG \ VA) ∪ V∂A,
where V∂A = {v ∈ VA | ∃uv ∈ EG : u ∈ VG \ VA} is the
set of nodes in A incident to nodes outside A.

The optimality criterion used in CombiLP reads:
Theorem 1 (Savchynskyy et al. 2013). Let A be a subgraph
of G and B be its boundary complement w. r. t. A. Let xA and
x′
B be labelings minimizing EA and EB respectively and let

all nodes v ∈ VA be strictly arc-consistent. Then from

xv = x′
v for all v ∈ V∂A (10)

it follows that the labeling x∗ with coordinates

x∗
v =

{
xv, v ∈ A
x′
v, v ∈ B \ A , v ∈ VG , is optimal on G.

As can be seen from comparing Proposition 1 and The-
orem 1, the main difference between the methods is that
we use a partition of the graph G, i. e. non-intersecting sub-
graphs, whereas the subgraphs in CombiLP are boundary
complement and therefore intersect.

(a) cnd1threeL1_1229063

(b) unc54L1_0123071

Figure 1: Visualization of the maximal ILP subproblem for
worms, where dots correspond to cell nuclei. Red dots are
part of the ILP subproblem (• ∈ VB) and for blue dots the
solution of the LP-relaxation is used (• ∈ VA). For both
instances, the upper image shows the result for clp and
the lower one corresponds to dclp, see the experimental
evaluation section for information about the solvers.

The following proposition states that the bounds produced
by our method are at least as tight as those of CombiLP:

Proposition 3. Let A,B be a partition of a graph G and
A′,B be boundary complement for G and A ⊆ A′ ⊆ S(θ).
Let also x′, x′′ be optimal labelings on A′ and B. If the
condition (10) holds for x′ and x′′, i. e. x′

v = x′′
v for all

v ∈ V∂A′ , then Proposition 1 holds for x′
A and x′′ as well,

where x′
A is the restriction of x′ to the set VA. In other words,

for the same subgraph B fulfillment of Theorem 1 implies
fulfillment of Proposition 1.

Technical Details

Post-Processing of Reparametrization The maximum of
the dual objective D(θφ) is typically non-unique. Since D
is a concave function, the set of its maxima is convex and
therefore it contains either a unique element or a continuum.
Unfortunately, not all optimal (or suboptimal ones, corre-
sponding to the same value of D) reparametrizations are
equally good for our method. Moreover, different dual al-
gorithms return different reparametrizations and the fastest
algorithm may not return an appropriate one.

Therefore, we developed a post-processing algorithm to
turn an arbitrary reparametrization into a suitable one without
decreasing the value of D. This algorithm consists of two
steps: (i) several iterations of a message passing (dual block-
coordinate ascent) algorithm, which accumulates weights
in unary costs and (ii) partial redistribution of unary costs
between incident pairwise cost functions. This two-step pro-
cedure empirically turns most of the nodes, where the LP re-
laxation (2) has an integer solution, into strictly arc-consistent
ones. The details of both steps are described in the supple-
ment.
Higher Order Extensions All discussed techniques are
easily extended to the higher-order MAP-inference problem

min
x∈XV

[
EG(θ, x) :=

∑
c∈C

θc(xc)

]
. (11)
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dataset (avg. |V |) popt clp dclp

worms (558) 100% 69.30% 26.08%
protein-folding (37) 79.22% 100% 71.03%
color-seg (79k) 12.10% 0.16% 0.06%
mrf-stereo (138k) 45.19% 33.58% 33.49%

(53.30%) (0.45%) (0.20%)

OnCallRostering (948) — 98.80% 65.68%

Table 1: Average size of the final ILP subproblem (smaller is
better). The table shows the percentage of labels that reside
in the ILP subproblem. The measure makes comparable clp
and dclp, which work nodewise, and popt working label-
wise. See supplement for details. Values in parentheses for
mrf-stereo show the percentage only for the two problem
instances, which were solved by clp and dclp.

where the cliques c ∈ C ⊆ 2V in the decomposition of the
energy function EG(θ, x) may contain terms dependent on
3, 4 and more nodes. The bound (6) in the higher-order case
reads as

EG(θ, x′ ◦ x′′) ≥ EA(θ, x′)+

+ EB(θ, x′′) +
∑

c∈CAB

min
yc∈Xc

θc(xc) , (12)

where CAB := {c ∈ C | ∃u ∈ VA, v ∈ VB : u, v ∈ c}
similar to EAB in the pairwise case. Proposition 1 for the
higher-order case turns into:
Proposition 4. Let x′ ∈ argminx∈XA EA(θ, x) and x′′ ∈
argminx∈XB EB(θ, x). The lower bound (12) is tight if for

all c ∈ CAB and v ∈ c it holds that y∗v =

{
x′
v , v ∈ VA

x′′
v , v ∈ VB

where y∗ ∈ argminy∈XC θc(y).
The proof follows the same reasoning as the proof of Propo-

sition 1 and is omitted here.

Experimental Evaluation

Algorithms In this section we compare our proposed
algorithm with other related methods. As baselines we
use CPLEX 12.6.2 (CPLEX, IBM 2014) and ToulBar2
0.9.8.0 (Cooper et al. 2010) where the first is the well-known
commercial optimizer and the latter is one of the best ded-
icated branch-and-bound solvers for (1), see comparison
in (Hurley et al. 2016). We used comparable parameters
and settings like the ones used in (Hurley et al. 2016). They
are denoted by cpx or tb2 respectively. The original Com-
biLP (Savchynskyy et al. 2013) implementation is referred
as clp-orig. For a fair comparison, we modified it to make
it compatible with arbitrary LP and ILP solvers, in partic-
ular, by applying the reparametrization post-processing al-
gorithm described above. The modified method referred as
clp is up to an order of magnitude faster than the original
one clp-orig (see Table 2). For the experiments with clp
and dclp we used both CPLEX and ToulBar2 as ILP-solvers.
The corresponding variants of clp are denoted as clp-cpx
and clp-tb2 respectively and similarly for dclp. Since the
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Figure 2: Primal and dual bound progress for worms. All
values are averaged over instances where at least one of
the solvers returned the optimal solution (25 instances). To
improve clarity only the three best solvers are shown.

ToulBar2 variants (clp-tb2 and dclp-tb2) were superior
to the CPLEX variants in all our tests, we will mainly discuss
the former here (see supplement for all results). TRW-S (Kol-
mogorov 2006) is used as fast block-coordinate-descend LP-
solver everywhere except higher-order models. We used a fast
implementation of the solver from the work (Shekhovtsov,
Swoboda, and Savchynskyy 2015). Only for higher-order
examples we resort to SRMP (Kolmogorov 2015) using the
minimal or basic LP relaxation (for details see Kolmogorov
2015). We set the maximum number of TRW-S/SRMP iter-
ations to 2000. Furthermore we tested the performance of a
recent partial optimality technique (Shekhovtsov, Swoboda,
and Savchynskyy 2015) which is denoted by popt. As this
approach does not solve the whole problem, we run Toul-
Bar2 on the reduced model and measure the total running
time (popt-tb2). We set the maximal running time for all
methods to 1 hour.
Datasets We verify performance of the algorithms on
the following publicly available datasets: worms (Kain-
mueller et al. 2017), color-seg (Lellmann and Schnörr
2011), mrf-stereo (Scharstein and Szeliski 2002) and
OnCallRostering (Stuckey et al. 2014), protein-
folding (Yanover, Schueler-Furman, and Weiss 2008).
Each of these datasets is included to highlight specific
strengths and weaknesses of the competing methods. The
worms dataset (30 instances) serves as a prime example for
our algorithm due to its relatively densely connected graph
structure and a small duality gap. The mrf-stereo (3 in-
stances) and color-seg (19 instances) datasets consist of
sparsely connected grid-models and are used to compare
performance to the CombiLP method clp. The protein-
folding dataset can be split into easy problems (many
nodes, sparsely connected) and hard problems (only around
33-40 nodes, fully connected). In the following, we only
consider the hard problems (11 instances in total). Last but
not least, the dataset OnCallRostering (3 instances) is
included as an example of higher-order models, which in-
clude cliques of order four. Unfortunately, we were unable
to convert other instances of this dataset from the bench-
mark (Hurley et al. 2016) because of a memory bottlenecks
in the conversion process. Apart from OnCallRostering
and worms, all other problem instances were taken from the
OpenGM benchmark (Kappes et al. 2015).
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dataset (#instances) density cpx tb2 popt-tb2 clp-orig clp-tb2 dclp-tb2

worms (30) 10.6 % 1 54.7 13 8.3 13 8.0 15 14.2 17 6.9 25 5.8
(17) (3.1)

protein-folding (11) 100 % 2 48.5 11 1.1 11 1.7 10 16.8 11 0.9 11 0.8

color-seg (19) 0.007 % 5 4.9 15 22.1 18 0.3 18 7.6 18 1.1 18 1.4
mrf-stereo (3) 0.003 % 0 — 0 — 1 0.9 2 46.9 2 3.2 2 2.3

OnCallRostering (3) 0.9 % 2 0.9 2 0.1 — — — — 3 2.3 3 1.1

Table 2: Overview of benchmark results. For each method the left number displays the number of solved instances and the right
one the average runtime in minutes for solved instances. We computed the graph density as 2|E|

|V|(|V|−1) for pairwise models and

as |{(u,v)∈V2|∃c∈C : u∈c,v∈c,u �=v}|
|V|(|V|−1) for OnCallRostering. Values in parentheses for dclp-tb2 show the average running time

on the 17 problem instances solved by the best competitor clp-tb2.

Results We compare and analyse performance of our method
in the following three settings: (i) targeted dense problems
like the worms and protein-folding datasets; (ii) sparse
problems (mrf-stereo and color-seg), and (iii) exem-
plary higher-order problems (OnCallRostering).

(i) dense models: On the worms dataset our method
dclp-tb2 clearly outperforms competitors, as Table 2 shows.
dclp-tb2 solves 25 instances out of 30, the next competitor
clp-tb2 – only 17. Moreover, our solver is also more than 2
times faster than clp-tb2 in average. This is due to the fact
that the resulting ILP subproblem of dclp is much smaller
that those of clp, see Figure 1 for visual comparison. The
partial optimality method is unable to reduce the problem
(see Table 1) because of infinite pairwise costs to disallow
assigning the same label to different nodes. Figure 2 shows
primal and dual bounds as a function of computational time
for this dataset.

Although on the protein-folding dataset dclp-tb2
also outperforms all its competitors, the improvement over
clp-tb2 and tb2 is not that pronouncing as for the worms
dataset. This is because the final ILP subproblem of dclp
covers a significant part of the whole graph (over 71% in
average). To satisfy its optimality criterion, dclp performs
up to 5 iterations with smaller ILP subproblems. In contrast,
clp considers the whole graph as an ILP subproblem right
at the very first iteration. Interestingly that even under this
circumstances clp-tb2 outperforms tb2 and clp-cpx out-
performs cpx (see supplement for details). The latter solves
only 2 problem instances out of 11, whereas clp-cpx is able
to cope with 9. We attribute it to the reparametrization, which
is performed by clp prior to passing the problem to cpx or
tb2 and plays a role of an efficient presolving.

(ii) sparse models: Sparse (grid-structured) datasets mrf-
stereo and color-seg with about 105 graph nodes each
are very well suitable for both clp and dclp methods and
are difficult for cpx and tb2. Both clp and dclp are able
to solve all the problems except the largest one (teddy from
mrf-stereo dataset with over 1.6 × 105 nodes and 60 la-
bels) in similar time. On color-seg the method clp-tb2
is somewhat faster, whereas dclp-tb2 requires less time on
mrf-stereo. This is due to the fact that dclp consistently
produces smaller ILP subproblems (see Table 1 for compar-
ison), but clp may require less iterations due to the start

with a larger ILP subproblem. Partial optimality popt-tb2
is the winner for the color-seg dataset: Although its ILP
subproblems are larger than those of clp and dclp, it runs
an ILP solver only once. However, results of popt-tb2 on
mrf-stereo are useful only up to a limited extend: They are
sufficient to solve only a single, the simplest problem from
that dataset (tsukuba). dclp-tb2 and clp-tb2 in contrast
solve two problem instances each.

(iii) higher-order models: The dataset OnCallRostering
is included mainly to show applicability of our method to
higher-order models. Generally, higher-order models pose
additional difficulties to solvers because they are intrinsically
dense and the size of an ILP formulation of the problem
grows exponentially with the problem order, therefore even
small problems may not fit into memory of an ILP solver.
The dclp method again shows its advantage over clp as
similarly as in the case of the worms dataset: Since the prob-
lems are intrinsically dense, the ILP subproblem for dclp is
smaller, which results in 2× speed-up compared to clp. We
also found tb2 and cpx to be quite efficient on this dataset,
although they were able to solve only 2 problems out of 3.

Conclusions

We presented a new method, suitable to solve efficiently
large-scale MAP-inference problems. The prerequisites for
efficiency is the “almost” tight LP relaxation, i. e. the non-
strict-arc-consistent subset of nodes should constitute only
a small portion of the problem. In this case, it isnot the size
of the problem which important, but only the size of its
non-strict-arc-consistent subproblem. Comparing to previous
works, our method is able to further reduce this size, which
is especially notable if the underlying graph structure of the
model is non-sparse. In the future, we plan to extend the
method to a broader class of combinatorial problems.
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