
A SAT+CAS Method for
Enumerating Williamson Matrices of Even Order

Curtis Bright
University of Waterloo

Ilias Kotsireas
Wilfrid Laurier University

Vijay Ganesh
University of Waterloo

Abstract

We present for the first time an exhaustive enumeration of
Williamson matrices of even order n < 65. The search
method relies on the novel SAT+CAS paradigm of coupling
SAT solvers with computer algebra systems so as to take ad-
vantage of the advances made in both the field of satisfia-
bility checking and the field of symbolic computation. Ad-
ditionally, we use a programmatic SAT solver which allows
conflict clauses to be learned programmatically, through a
piece of code specifically tailored to the domain area. Prior
to our work, Williamson matrices had only been enumerated
for odd orders n < 60, so our work increases the bounds that
Williamson matrices have been enumerated up to and pro-
vides the first enumeration of Williamson matrices of even
order. Our results show that Williamson matrices of even or-
der tend to be much more abundant than those of odd orders.
In particular, Williamson matrices exist for every even order
n < 65 but do not exist in orders 35, 47, 53, and 59.

1 Introduction

In 1944 the mathematician John Williamson introduced
the matrices which now bear his name in the process of
studying the Hadamard conjecture from combinatorial de-
sign theory (Williamson 1944). This conjecture states that
Hadamard matrices—square n × n matrices H with ±1
entries where HHT is the identity matrix times n—exist
for all orders n divisible by 4. Williamson defined a new
type of matrix which has been extensively used to construct
Hadamard matrices in many different orders n. Williamson
matrices have also found use in digital communication sys-
tems and this motivated mathematicians from NASA’s Jet
Propulsion Laboratory to construct Williamson matrices of
order 23 while developing codes allowing the transmission
of signals over a long range (Baumert, Golomb, and Hall
1962).

Although Williamson defined his matrices for both even
and odd orders (see Section 2), almost all subsequent work
has focused on the odd case. Williamson matrices were re-
cently constructed in all even orders up to 42 (Bright et
al. 2016; Zulkoski et al. 2017) but these works did not
contain a complete enumeration. We are not aware of any
other constructions of Williamson matrices in even orders,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

though generalizations of Williamson matrices have been
constructed in even orders (Wallis 1974). The algorithms
used for enumerating Williamson matrices prior to 2016
(e.g., (Baumert and Hall 1965; Sawade 1977; Koukouvinos
and Kounias 1988; Ðoković 1993; Holzmann, Kharaghani,
and Tayfeh-Rezaie 2008)) have all used properties only
available in odd orders. In light of this, it is interesting
to develop algorithms for enumerating Williamson matrices
which work in even orders.

Unfortunately, it would not be possible to resolve the
Hadamard conjecture by only studying Williamson matrices
of even order, since Hadamard matrices constructed using
Williamson matrices of even order have orders which are di-
visible by 8. However, it is still not even known if Hadamard
matrices exist for all orders divisible by 8, so nevertheless
studying Williamson matrices of even order has the poten-
tial to shed light on the Hadamard conjecture as well.

On the other hand, if it was possible to prove that
Williamson matrices exist for all odd orders this would re-
solve the Hadamard conjecture, leading to the related con-
jecture that Williamson matrices exist in all odd orders. As
the mathematician Richard Turyn wrote (Turyn 1972):

It has been conjectured that an Hadamard matrix of this
[Williamson] type might exist of every order 4t, at least
for t odd.

However, this conjecture was shown to be false by the math-
ematician Dragomir Ðoković who showed that such matri-
ces do not exist in order t = 35 (Ðoković 1993). Later, a
complete enumeration of Williamson matrices for odd or-
ders n < 60 was completed (Holzmann, Kharaghani, and
Tayfeh-Rezaie 2008). This showed that Williamson matri-
ces also do not exist for orders 47, 53, and 59 but exist for all
other odd orders under 65 since Turyn’s construction (Turyn
1972; Lang and Schneider 2012) works in orders 61 and 63.

In this paper we provide for the first time an enumeration
of Williamson matrices in orders which are not odd (prelim-
inary results originally appeared in the PhD thesis of the first
author (Bright 2017a)). In doing so, we uncover an interest-
ing but so far unexplained phenomenon that there tend to be
more Williamson matrices in even orders than there are in
odd orders. In fact, Williamson matrices exist for every even
order in which we performed a search. In light of this, Tu-
ryn’s remark stating that the Williamson conjecture should
apply “at least for t odd” seems unnecessary. This leads us to

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6573



propose what could be called the updated Williamson con-
jecture:
Conjecture 1. Williamson matrices of order t exist for all
even t.

By itself, enumerating Williamson matrices of even order
will never prove Conjecture 1. However, our enumeration
could potentially uncover structure in Williamson matrices
which might then be exploited to prove Conjecture 1, and if
Williamson matrices of even order turn out to be very plen-
tiful this gives some evidence for the truth of Conjecture 1.

The method we use to enumerate Williamson matrices
of even order is based on the recently proposed SAT+CAS
paradigm which uses the tools and techniques from the
fields of satisfiability checking and symbolic computation,
as described in Section 3. Such an approach was recently
presented at the conferences CADE and IJCAI (Zulkoski,
Ganesh, and Czarnecki 2015; 2016) and was used to im-
prove the best known bounds in certain graph theoretic con-
jectures. The approach was also independently proposed at
the conference ISSAC (Ábrahám 2015). More recently, it
has been argued by the SC2 project (Ábrahám et al. 2016)
that the fields of satisfiability checking and symbolic com-
putation are complementary and combining the tools of both
fields (i.e., SAT solvers and computer algebra systems) in
the right way can solve problems more efficiently than could
be done by applying the tools of either field in isolation, and
our work provides evidence for this view.

Furthermore, our method uses a SAT solver which can
learn conflict clauses programmatically, i.e., through a piece
of custom code supplied to the SAT solver. This code en-
codes domain-specific knowledge that an off-the-shelf SAT
solver would otherwise not be able to exploit. This general
framework is not limited to any specific domain; any ex-
ternal library or CAS function can be used as long as it is
callable by the SAT solver. As we will see in Section 3, the
clauses that are learned in this fashion can enormously cut
down the search space as well as the solver’s runtime.

Our method will be described in Section 4, followed by
our results in Section 5. In particular, our results include
the total number of Williamson matrices which exist in all
even orders n < 65. These counts are given up to an equiv-
alence which is described, along with many other prop-
erties of Williamson matrices, including a new version of
Williamson’s product theorem, in Section 2.

2 Background

In this section we give the background on Williamson ma-
trices and their properties which is necessary to understand
the remainder of the paper.

Williamson matrices and sequences

The definition of Williamson matrices is motivated by the
following theorem that Williamson used for constructing
Hadamard matrices (Williamson 1944):
Theorem 1. Let n ∈ N and let A, B, C, D ∈ {±1}n×n.
Further, suppose that

1. A, B, C, and D are symmetric;

2. A, B, C, and D commute pairwise (i.e., AB = BA,
AC = CA, etc.);

3. A2 + B2 + C2 + D2 = 4nIn, where In is the identity
matrix of order n.

Then ⎡
⎢⎣

A B C D
−B A −D C
−C D A −B
−D −C B A

⎤
⎥⎦

is a Hadamard matrix of order 4n.
To make the search for such matrices more tractable, and

in particular to make condition 2 trivial, Williamson also re-
quired the matrices A, B, C, D to be circulant matrices, as
defined below.
Definition 1. An n × n matrix A = (aij) is circulant if
aij = a0,(j−i) mod n for all i and j ∈ {0, . . . , n− 1}.

Circulant matrices A, B, C, D which satisfy the con-
ditions of Theorem 1 are known as Williamson matri-
ces in honor of Williamson. Since Williamson matrices
are circulant they are defined in terms of their first row
[x0, . . . , xn−1] and since they are symmetric this row must
be a symmetric sequence, i.e., satisfy xi = xn−i for 1 ≤ i <
n. Given these facts, it is often convenient to work in terms
of sequences rather than matrices. When working with se-
quences in this context the following function becomes very
useful.
Definition 2. The periodic autocorrelation function of the
sequence A = [a0, . . . , an−1] is the function given by

PAFA(s) :=
n−1∑
k=0

aka(k+s) mod n.

We also use PAFA to refer to a sequence containing the
values of the above function (which has period n), i.e.,

PAFA :=
[
PAFA(0), . . . ,PAFA(n− 1)

]
.

This function allows us to easily give a definition of
Williamson matrices in terms of sequences.
Definition 3. Four symmetric sequences A, B, C, D ∈
{±1}n are called Williamson sequences if they satisfy

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 0

for s = 1, . . . , �n/2�.
It is straightforward to see that there is an equivalence be-

tween such sequences and Williamson matrices (Bright et al.
2016, §3.4) and so for the remainder of this paper we will
work directly with these sequences instead of Williamson
matrices.

Williamson equivalences

Given a Williamson sequence A, B, C, D of even order n,
there are four types of invertible operations which can be ap-
plied to produce another Williamson sequence. These oper-
ations allow us to define equivalence classes of Williamson
sequences. If a single Williamson sequence is known it
is easy to generate all Williamson sequences in the same
equivalence class, so it suffices to search for Williamson se-
quences up to these equivalence operations.

6574



1. (Reorder) Reorder the sequences A, B, C, D in any way.

2. (Negate) Negate all the entries of any of A, B, C, or D.

3. (Shift) Cyclically shift all the entries in any of A, B, C,
or D by an offset of n/2.

4. (Permute entries) Apply an automorphism of the cyclic
group Cn to all the entries of each of A, B, C, and D
simultaneously.

These equivalence operations are well known (Holzmann,
Kharaghani, and Tayfeh-Rezaie 2008) except for the shift
operation which has not traditionally been used because it
only applies when n is even. In fact, it was overlooked until
our enumeration method produced many sequences which
were cyclic shifts of each other with an offset of n/2.

Fourier analysis

We now give an alternative definition of Williamson se-
quences using concepts from Fourier analysis. First, we de-
fine the power spectral density of a sequence.

Definition 4. The power spectral density of the sequence
A = [a0, . . . , an−1] is the function

PSDA(s) :=
∣∣DFTA(s)

∣∣2

where DFTA is the discrete Fourier transform of A, i.e.,
DFTA(s) :=

∑n−1
k=0 ake

2πiks/n. Equivalently, we may also
consider the power spectral density to be a sequence con-
taining the values of the above function, i.e.,

PSDA :=
[
PSDA(0), . . . ,PSDA(n− 1)

]
.

It now follows by (Ðoković and Kotsireas 2015, Theo-
rem 2) that Williamson sequences have the following alter-
native definition.

Theorem 2. Four symmetric sequences A, B, C, D ∈
{±1}n are Williamson sequences if and only if

PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n (∗)

for s = 0, . . . , �n/2�.

Corollary 1. If PSDA(s) > 4n for any value s then A
cannot be part of a Williamson sequence.

Proof. Since PSD values are nonnegative, if PSDA(s) >
4n then the relationship (∗) cannot hold and thus A cannot
be part of a Williamson sequence.

Similarly, one can extend this so-called PSD test in Corol-
lary 1 to apply to more than one sequence at a time:

Corollary 2. If PSDA(s) + PSDB(s) > 4n for any value
of s then A and B do not occur together in a Williamson
sequence and if PSDA(s) + PSDB(s) + PSDC(s) > 4n
for any value of s then A, B, and C do not occur together
in a Williamson sequence.

Compression

As in the work (Ðoković and Kotsireas 2015) we now intro-
duce the notion of compression.

Definition 5. Let A = [a0, a1, . . . , an−1] be a sequence of
length n = dm and set

a
(d)
j = aj +aj+d+ · · ·+aj+(m−1)d, j = 0, . . . , d−1.

Then we say that the sequence A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1]

is the m-compression of A.

From (Ðoković and Kotsireas 2015, Theorem 3) we have
the following result.

Theorem 3. If A, B, C, D is a Williamson sequence of
order n then

PAFA′ +PAFB′ +PAFC′ +PAFD′ = [4n, 0, . . . , 0]

and

PSDA′ +PSDB′ +PSDC′ +PSDD′ = [4n, . . . , 4n]

for any compression A′, B′, C ′, D′ of that Williamson se-
quence.

Corollary 3. If A, B, C, D is a Williamson sequence of
order n then

R2
A +R2

B +R2
C +R2

D = 4n (∗∗)

where RX denotes the rowsum of X .

Proof. Let X ′ be the n-compression of X ∈ {±1}n, i.e., X ′
is a sequence with one entry whose value is RX . Note that
PSDX′ = [R2

X ], so the result follows by Theorem 3.

Williamson’s product theorem

Williamson (Williamson 1944) proved the following theo-
rem:

Theorem 4. If A, B, C, D is a Williamson sequence of odd
order n then aibicidi = −a0b0c0d0 for 1 ≤ i < n/2.

We prove a version of this theorem for even n:

Theorem 5. If A, B, C, D is a Williamson sequence of
even order n = 2m then aibicidi = ai+mbi+mci+mdi+m

for 0 ≤ i < m.

Although this theorem is not an essential part of our algo-
rithm it improves its efficiency by allowing us to cut down
the size of the search space. Our algorithm uses the theorem
in the following form:

Corollary 4. If A′, B′, C ′, D′ is a 2-compression of a
Williamson sequence then A′ + B′ + C ′ +D′ ≡ [0, . . . , 0]
(mod 4).

Proofs of Theorem 5 and Corollary 4 are available on the
arXiv (Bright 2017b).

6575



3 The SAT+CAS paradigm

The idea of combining SAT solvers with computer alge-
bra systems originated independently in two works pub-
lished in 2015: In a paper at the conference CADE enti-
tled “MATHCHECK: A Math Assistant via a Combination
of Computer Algebra Systems and SAT Solvers” (Zulkoski,
Ganesh, and Czarnecki 2015) and in an invited talk at the
conference ISSAC entitled “Building Bridges between Sym-
bolic Computation and Satisfiability Checking” (Ábrahám
2015).

The CADE paper describes a tool called MATHCHECK
which combines the general-purpose search capability of
SAT solvers with the domain-specific knowledge of com-
puter algebra systems. The paper made the case that MATH-
CHECK

. . . combines the efficient search routines of modern
SAT solvers, with the expressive power of CAS, thus
complementing both.

As evidence for the power of this paradigm, they used
MATHCHECK to improve the best known bounds in two
conjectures in graph theory.

Independently, the computer scientist Erika Ábrahám ob-
served that the fields of satisfiability checking and sym-
bolic computation share many common aims but in practice
are quite separated, with little communication between the
fields:

. . . collaboration between symbolic computation and
SMT [SAT modulo theories] solving is still (surpris-
ingly) quite restricted. . .

Furthermore, she outlined reasons why combining the in-
sights from both fields had the potential to solve certain
problems more efficiently than would be otherwise possi-
ble. To this end, the SC2 project (Ábrahám et al. 2016) was
started with the aim of fostering collaboration between the
two communities.

Programmatic SAT

The idea of a programmatic SAT solver was introduced in
the paper (Ganesh et al. 2012). A programmatic SAT solver
can generate conflict clauses programmatically, i.e., by a
piece of code which runs as the SAT solver carries out its
search. Such a SAT solver can learn clauses which are more
useful than the conflict clauses which it learns by default.
Not only can this make the SAT solver’s search more ef-
ficient, it allows for increased expressiveness as many types
of constraints which are awkward to express in a conjunctive
normal form format can naturally be expressed using code.
Additionally, it allows one to compile instance-specific SAT
solvers which are tailored to solving one specific type of in-
stance. In this framework instances no longer have to solely
consist of a set of clauses in conjunctive normal form. In-
stead, instances can consist of both a set of CNF clauses
and a piece of code which encodes constraints which are too
cumbersome to be written in CNF format.

As an example of this, consider the case of searching for
Williamson sequences using a SAT solver. One could encode
Definition 3 in CNF format by using Boolean variables to

represent the entries in the Williamson sequences and by us-
ing binary adders to encode the summations; such a method
was used in (Bright et al. 2016). However, one could also
use the equivalent definition given in Theorem 2. This alter-
nate definition has the advantage that it becomes easy to ap-
ply Corollaries 1 and 2, which allows one to filter many se-
quences from consideration and greatly speed up the search.
Because of this, our method will use the constraints (∗) from
Theorem 2 to encode the definition of Williamson sequences
in our SAT instances.

However, encoding the equations in (∗) would be ex-
tremely cumbersome to do using CNF clauses, because of
the involved nature of computing the PSD values. However,
the equations (∗) are easy to express programmatically—
as long as one has a method of computing the PSD values.
This can be done efficiently using the fast Fourier transform
which is available in many computer algebra systems and
mathematical libraries.

Thus, our SAT instances will not use CNF clauses to en-
code the defining property of Williamson sequences but in-
stead encode those clauses programmatically. This is done
by writing a callback function which is compiled with the
SAT solver and programmatically expresses the constraints
in Theorem 2 and the filtering criteria of Corollaries 1 and 2.

Programmatic Williamson encoding

We now describe in detail our programmatic encoding of
Williamson sequences. The encoding takes the form of a
piece of code which examines a partial assignment to the
Boolean variables defining the sequences A, B, C, and D
(where true encodes 1 and false encodes −1). In the case
when the partial assignment can be ruled out using Corollar-
ies 1 or 2, a conflict clause is returned which encodes a rea-
son why the partial assignment no longer needs to be consid-
ered. If the sequences actually form a Williamson sequence
then they are recorded in an auxiliary file; at this point the
solver can return SAT and stop, though our implementation
continues the search because we want to do a complete enu-
meration of the space.

The programmatic callback function does the following:

1. Initialize S := ∅. This variable will be a set which con-
tains the sequences whose entries are all currently as-
signed.

2. Check if all the variables encoding the entries in se-
quence A have been assigned; if so, add A to the set S and
compute PSDA, otherwise skip to the next step. When
PSDA(s) > 4n for some value of s then learn a clause
prohibiting the entries of A from being assigned the way
they currently are, i.e., learn the clause

¬(acur
0 ∧acur

1 ∧ · · ·∧acur
n−1) ≡ ¬acur

0 ∨¬acur
1 ∨ · · ·∨¬acur

n−1

where acur
i is the literal ai when ai is currently assigned

to true and is the literal ¬ai when ai is currently assigned
to false.

3. Check if all the variables encoding the entries in se-
quence B have been assigned; if so, add B to the set S
and compute PSDB . When there is some s such that∑

X∈S PSDX(s) > 4n then learn a clause prohibiting

6576



the values of the sequences in S from being assigned the
way they currently are.

4. Repeat the last step again twice, once with B replaced
with C and then again with B replaced with D.

5. If all the variables in sequences A, B, C, and D are as-
signed then record the sequences in an auxiliary file and
learn a clause prohibiting the values of the sequences from
being assigned the way they currently are so that this as-
signment is not examined again.
After the search is completed the auxiliary file will con-

tain all sequences which passed the PSD tests and thus all
Williamson sequences will be in this list (verifying a se-
quence is in fact Williamson can be done using Definition 3).
Note that the clauses learned by this function allow the SAT
solver to execute the search significantly faster than would
be possible using a brute-force technique. As a rough esti-
mate of the benefit, note that there are approximately 2n/2

possibilities for each member A, B, C, D in a Williamson
sequence. If no clauses are learned in steps 2–4 then the
SAT solver will examine all 24(n/2) total possibilities. Con-
versely, if a clause is always learned in step 2 then the SAT
solver will only need to examine the 2n/2 possibilities for A.
Of course, one will not always learn a clause in steps 2–4 but
in practice such a clause is learned quite frequently and this
more than makes up for the overhead of computing the PSD
values (this accounted for about 20% of the SAT solver’s
runtime in our experiments). The programmatic approach
was essential for the largest orders which we were able to
solve; see Table 2 in Section 5 for a comparision between
the running times of a SAT solver using the CNF and pro-
grammatic encodings. However, it was much too slow to be
able perform the enumeration by itself.

4 Our enumeration algorithm

We now give a complete description of our method which
enumerates all Williamson sequences of a given even or-
der n.

Step 1: Generate possible sum-of-squares
decompositions

First, note that by Corollary 3 every Williamson sequence
gives rise to a decomposition of 4n into a sum of four
squares. We query a computer algebra system such as
MAPLE or MATHEMATICA to get all possible solutions of
the Diophantine equation (∗∗). Because we only care about
Williamson sequences up to equivalence, we add the in-
equalities

0 ≤ RA ≤ RB ≤ RC ≤ RD

to the Diophantine equation; it is clear that any Williamson
sequence can be transformed into another Williamson se-
quence which satisfies these inequalities by applying the re-
order and/or negate equivalence operations.

Step 2: Generate possible Williamson sequence
members

Next, we form a list of the sequences which could possi-
bly appear as a member of a Williamson sequence of or-

der n. To do this, we examine every symmetric sequence
X ∈ {±1}n. For all such X we compute PSDX and ig-
nore those which satisfy PSDX(s) > 4n for some s. We
also ignore those X whose rowsum does not appear in any
possible solution (RA, RB , RC , RD) of the sum-of-squares
Diophantine equation (∗∗). The sequences X which remain
after this process form a list of the sequences which could
possibly appear as a member of a Williamson sequence.
At this stage we could generate all Williamson sequences
of order n by trying all ways of grouping the possible se-
quences X into quadruples and filtering those which are not
Williamson. However, because of the large number of ways
in which this grouping into quadruples can be done this is
not feasible to do except in the case when n is very small.

Step 3: Perform compression

In order to reduce the size of the problem so that the possible
sequences generated in Step 2 can be grouped into quadru-
ples we first compress the sequences using the process de-
scribed in Section 2. For each solution (RA, RB , RC , RD)
of the sum-of-squares Diophantine equation (∗∗) we form
four lists LA, LB , LC , and LD. The list LA will contain
the 2-compressions of the sequences X generated in Step 2
which have rowsum RA (and the other lists will be defined
in a similar manner). Note that the sequences in these lists
will be {±2, 0}-sequences since they are 2-compressions of
the sequences X which are {±1}-sequences.

Step 4: Match the compressions

By construction, the lists LA, LB , LC , and LD contain
all possible 2-compressions of the members of Williamson
sequences whose sum-of-squares decomposition is R2

A +
R2

B+R2
C+R2

D. Thus, by trying all possible sum-of-squares
decompositions and all ways of matching together the se-
quences from the lists LA, LB , LC , LD we can find all
2-compressions of Williamson sequences of order n. By
Theorem 3, a necessary condition for A, B, C, D to be a
Williamson sequence is that

PSDA′ +PSDB′ +PSDC′ +PSDD′ = [4n, . . . , 4n]

where A′, B′, C ′, D′ are the 2-compressions of A, B, C,
D. Therefore, one could perform this step by enumerating
all (A′, B′, C ′, D′) ∈ LA × LB × LC × LD and out-
putting those whose PSDs sum to [4n, . . . , 4n] as a potential
2-compression of a Williamson sequence. However, there
will typically be far too many elements of LA×LB ×LC ×
LD to try in a reasonable amount of time.

Instead, we will enumerate all (A′, B′) ∈ LA × LB

and (C ′, D′) ∈ LC × LD and use a string sorting tech-
nique (Kotsireas, Koukouvinos, and Pardalos 2010) to find
which (A′, B′) and (C ′, D′) can be matched together to
form potential 2-compressions of Williamson sequences. To
determine which pairs can be matched together we use the
necessary condition from Theorem 3 in a slightly rewritten
form,
PAFA′ +PAFB′ = [4n, 0, . . . , 0]− (PAFC′ +PAFD′).

Our matching procedure outputs a list of the (A′, B′, C ′, D′)
which satisfy this condition, and therefore output a list of
potential 2-compressions of Williamson sequences.

6577



In detail, our matching procedure performs the following
steps:

1: initialize LAB and LCD to empty lists
2: for (A′, B′) ∈ LA × LB do
3: if PSDA′(s) + PSDB′(s) < 4n for all s then
4: add PAFA′ +PAFB′ to LAB

5: for (C ′, D′) ∈ LC × LD do
6: if PSDC′(s) + PSDD′(s) < 4n for all s then
7: add [4n, 0, . . . , 0]−(PAFC′ +PAFD′) to LCD

8: for each X common to both LAB and LCD do
9: output (A′, B′) and (C ′, D′) which X was gener-

ated from in an auxiliary file

Line 8 can be done efficiently by sorting the lists LAB and
LCD and then performing a linear scan through the sorted
lists to find the elements common to both lists. Line 9 can
be done efficiently if with each element in the lists LAB

and LCD we also keep track of a pointer to the sequences
(A′, B′) or (C ′, D′) that the element was generated from
in line 4 or 7. Also in line 9 we only output sequences for
which A′ + B′ + C ′ + D′ is the zero vector mod 4 as this
is an invariant of all 2-compressed Williamson sequences by
Corollary 4.

Step 5: Uncompress the matched compressions

It is now necessary to find the Williamson sequences, if any,
which when compressed by a factor of 2 produce one of the
sequences generated in Step 4. In other words, we want to
find a way to perform uncompression on the matched com-
pressions which we generated. To do this, we formulate the
uncompression problem as a Boolean SAT instance and use
a SAT solver’s fine-tuned search facilities to search for solu-
tions to the uncompression problem.

We will use Boolean variables to represent the entries of
the uncompressed Williamson sequences, with true repre-
senting the value of 1 and false representing the value of
−1. Since Williamson sequences consist of four sequences
of length n they contain a total of 4n entries, namely,

a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1, d0, . . . , dn−1.

However, because Williamson sequences are symmetric we
actually only need to define the 2n+ 4 distinct variables

a0, . . . , an/2, b0, . . . , bn/2, c0, . . . , cn/2, d0, . . . , dn/2.

Any variable xi with i > n/2 can simply be replaced with
the equivalent variable xn−i; in what follows we implic-
itly use this substitution when necessary. Thus, the SAT in-
stances which we generate will contain 2n+ 4 variables.

Say that (A′, B′, C ′, D′) is one of the 2-compressions
generated in Step 4. By the definition of 2-compression, we
have that a′i = ai + ai+n/2 and similarly for the entries of
B′, C ′, and D′. Since a′i ∈ {±2, 0} there are three possibil-
ities we must consider for each a′i.

Case 1. If a′i = 2 then we must have ai = 1 and ai+n/2 =
1. Thinking of the entries as Boolean variables, we add the
clauses

ai ∧ ai+n/2

to our SAT instance.

Case 2. If a′i = −2 then we must have ai = −1 and
ai+n/2 = −1. Thinking of the entries as Boolean variables,
we add the clauses

¬ai ∧ ¬ai+n/2

to our SAT instance.
Case 3. If a′i = 0 then we must have ai = 1 and

ai+n/2 = −1 or vice versa. Thinking of the entries as
Boolean variables, we add the clauses

(ai ∨ ai+n/2) ∧ (¬ai ∨ ¬ai+n/2)

to our SAT instance. Note that these clauses specify in con-
junctive normal form that exactly one of the variables ai and
ai+n/2 is true.

For each entry a′i in A′ we add the clauses from the appro-
priate case to the SAT instance, as well as add clauses from
a similar case analysis for the entries from B′, C ′, and D′.
A satisfying assignment to the generated SAT instance pro-
vides an uncompression (A,B,C,D) of (A′, B′, C ′, D′).
However, the uncompression need not be a Williamson se-
quence. To ensure that the solutions produced by the SAT
solver are in fact Williamson sequences we additionally use
the programmatic SAT Williamson encoding as described in
Section 3.

For each (A′, B′, C ′, D′) generated in Step 4 we generate
a SAT instance which contains the clauses specified above.
We then solve the SAT instances with a programmatic
SAT solver whose programmatic clause generator speci-
fies that any satisfying assignment of the instance encodes
a Williamson sequence and performs an exhaustive search
to find all solutions. By construction, every Williamson se-
quence of order n will have its 2-compression generated in
Step 4, making this search totally exhaustive (up to the dis-
carded equivalences).

Step 6: Remove equivalent Williamson sequences

After Step 5 we have produced a list of all the Williamson
sequences of order n which have a certain sum-of-squares
decompositions. We chose the decompositions in such a way
that every Williamson sequence will be equivalent to one
decomposition but this does not cover all possible equiva-
lences, so some Williamson sequences which we generate
may be equivalent to each other.

For the purpose of counting the total number of inequiv-
alent Williamson sequences which exist in order n it is nec-
essary to examine each Williamson sequence in the list and
determine if it is equivalent to another Williamson sequence
in the list. This can be done by repeatedly applying the
equivalence operations from Section 2 on the Williamson
sequences in the list and discarding those which are equiva-
lent to a previously found Williamson sequence.

Optimizations

While the procedure just described will correctly enumerate
all Williamson sequences of a given even order n, there are
a few optimizations which can be used to improve the effi-
ciency of the search. Note that in Step 3 we have not gener-
ated all possible 2-compression quadruples; we only gener-
ate those quadruples that have rowsums (RA, RB , RC , RD)

6578



which correspond to solutions of (∗∗), and we use the nega-
tion and reordering equivalence operations to cut down the
number of possible rowsums necessary to check. However,
there still remain equivalences which can be removed; if φ is
an automorphism of Cn then (A,B,C,D) is a Williamson
quadruple if and only if (φ(A), φ(B), φ(C), φ(D)) is a
Williamson quadruple. Thus if both A and φ(A) are in the
list X generated in Step 2 we can remove one from consid-
eration. Unfortunately, we cannot do the same in the lists for
B, C, and D, since it is not possible to know which repre-
sentatives for B, C, and D to keep, as the representatives
must match with the A that was kept.

Similarly, in Step 5 one can ignore any SAT instance
which can be transformed into another SAT instance using
the equivalence operations from Section 2. In this case the
solutions in the ignored SAT instance will be equivalent to
those in the SAT instance associated to it through the equiv-
alence transformation.

5 Results

We implemented the algorithm described in Section 4 (in-
cluding all optimizations) and ran it on even orders n < 65.
Step 1 was completed using the computer algebra system
MAPLE. Steps 2–4 and 6 were completed using C++ code
which used the library FFTW (Frigo and Johnson 2005)
for computing PSD values. Step 5 was completed using
MAPLESAT (Liang et al. 2016) modified to support a pro-
grammatic interface and also used FFTW for computing
PSD values. Since FFTW provides no guarantee on the ac-
curacy of the values it returns, the PSD values which were
used to remove sequences from consideration were double-
checked using Definition 4 in high precision.

Our computations were performed on a cluster of 64-bit
AMD Opteron 2.2 GHz processors limited to 6 GB of mem-
ory and running CentOS 6.7. Timings for running our entire
algorithm (in hours) are given in Table 1, and timings for
the running of the SAT solver alone are given in Table 2.
The bottleneck of our method for large n was the matching
procedure described in Step 4, which requires enumerating
and then sorting a very large number of vectors. For exam-
ple, when n = 64 and RA = RB = 8 there were over
26.6 billion vectors added to LAB . Table 1 also includes the
number of SAT instances which we generated in each or-
der, as well as the total number of Williamson sequences
which were found up to equivalence (denoted by #Wn). An
explicit enumeration of these Williamson sequences is avail-
able online at doi.org/10.5281/zenodo.825339.

6 Conclusion

In this paper we have shown the power of the SAT+CAS
paradigm (i.e., the technique applying the tools from the
fields of satisfiability checking and symbolic computation)
as well as the power and flexibility of the programmatic SAT
approach. We have done this by developing a programmatic
SAT+CAS method to solve the long-standing problem of
generating Williamson matrices of even order. This problem
has been well-studied since 1944 in the odd order case and
counts for the number of Williamson matrices up to equiv-

n Time (h) # inst. #Wn

2 0.00 1 1
4 0.00 1 1
6 0.00 1 1
8 0.00 1 1

10 0.00 2 2
12 0.00 3 3
14 0.00 3 7
16 0.00 5 6
18 0.00 22 40
20 0.00 14 27
22 0.00 22 27
24 0.00 40 80
26 0.00 24 38
28 0.00 78 99
30 0.00 281 268
32 0.00 70 200
34 0.01 214 160
36 0.01 1013 691
38 0.00 360 87
40 0.02 4032 1898
42 0.03 2945 561
44 0.02 1163 378
46 0.11 1538 97
48 0.20 4008 12528
50 1.04 3715 500
52 2.24 4535 1071
54 6.30 25798 979
56 2.19 18840 40502
58 33.19 9908 140
60 55.00 256820 7235
62 159.95 19418 117
64 149.57 34974 95504

Table 1: A summary of the running time, number of SAT
instances used, and number of inequivalent Williamson se-
quences generated in each even order 2 ≤ n ≤ 64.

alence have been published for all odd orders up to 59 but
prior to our work such counts were unavailable in the even
case.

Our work reveals that there are typically many more
Williamson matrices in even orders than there are in odd
orders. In fact, every odd order n in which a search has been
carried out has #Wn ≤ 10, while we have shown that every
even order 18 ≤ n ≤ 64 has #Wn > 10 and there are some
orders which contain thousands of inequivalent Williamson
matrices. A theoretical reason which could explain this di-
chotomy would be interesting, though we currently know of
no such reason. We hope that our work brings attention to
this problem which could lead to a better understanding of
the behaviour of Williamson matrices of even order.

Acknowledgements

We thank the anonymous reviewers for their detailed com-
ments which improved the exposition of this paper. This
work was made possible by the facilities of SHARCNET, the

6579



SAT Solving Time (h)
n CNF encoding Programmatic
34 0.04 0.00
36 0.55 0.00
38 0.19 0.00
40 3.00 0.02
42 6.69 0.01
44 9.00 0.01
46 14.57 0.01
48 33.64 0.03
50 98.44 0.03
52 − 0.08
54 − 0.31
56 − 0.29
58 − 0.24
60 − 16.47
62 − 0.83
64 − 1.62

Table 2: The total time spent running MAPLESAT in each
order 34 ≤ n ≤ 64 using the CNF encoding and the pro-
grammatic encoding. A timeout of 100 hours was used.

Shared Hierarchical Academic Research Computing Net-
work and Compute/Calcul Canada.

References

Ábrahám, E.; Abbott, J.; Becker, B.; Bigatti, A. M.; Brain,
M.; Buchberger, B.; Cimatti, A.; Davenport, J. H.; Eng-
land, M.; Fontaine, P.; Forrest, S.; Griggio, A.; Kroening,
D.; Seiler, W. M.; and Sturm, T. 2016. SC2: Satisfiabil-
ity checking meets symbolic computation. Intelligent Com-
puter Mathematics: Proceedings CICM 28–43.

Ábrahám, E. 2015. Building bridges between symbolic
computation and satisfiability checking. In Proceedings of
the 2015 International Symposium on Symbolic and Alge-
braic Computation, 1–6. New York: ACM.
Baumert, L., and Hall, M. 1965. Hadamard matrices of the
Williamson type. Mathematics of Computation 19(91):442–
447.
Baumert, L.; Golomb, S. W.; and Hall, M. 1962. Discovery
of an Hadamard matrix of order 92. Bull. Amer. Math. Soc.
68(3):237–238.
Bright, C.; Ganesh, V.; Heinle, A.; Kotsireas, I. S.; Nejati,
S.; and Czarnecki, K. 2016. MATHCHECK2: A SAT+CAS
verifier for combinatorial conjectures. In Computer Alge-
bra in Scientific Computing - 18th International Workshop,
CASC 2016, Bucharest, Romania, September 19–23, 2016,
Proceedings, 117–133.
Bright, C. 2017a. Computational Methods for Combina-
torial and Number Theoretic Problems. Ph.D. Dissertation,
University of Waterloo.
Bright, C. 2017b. A new form of Williamson’s product
theorem. https://arxiv.org/abs/1711.07056.

Ðoković, D. Ž., and Kotsireas, I. S. 2015. Compression

of periodic complementary sequences and applications. De-
signs, Codes and Cryptography 74(2):365–377.
Ðoković, D. Ž. 1993. Williamson matrices of order 4n for
n = 33, 35, 39. Discrete mathematics 115(1):267–271.
Frigo, M., and Johnson, S. G. 2005. The design and imple-
mentation of FFTW3. Proceedings of the IEEE 93(2):216–
231.
Ganesh, V.; O’Donnell, C. W.; Soos, M.; Devadas, S.; Ri-
nard, M. C.; and Solar-Lezama, A. 2012. LYNX: A pro-
grammatic SAT solver for the RNA-folding problem. In
Theory and Applications of Satisfiability Testing–SAT 2012.
Springer. 143–156.
Holzmann, W. H.; Kharaghani, H.; and Tayfeh-Rezaie, B.
2008. Williamson matrices up to order 59. Designs, Codes
and Cryptography 46(3):343–352.
Kotsireas, I. S.; Koukouvinos, C.; and Pardalos, P. M. 2010.
An efficient string sorting algorithm for weighing matrices
of small weight. Optimization Letters 4(1):29–36.
Koukouvinos, C., and Kounias, S. 1988. Hadamard matrices
of the Williamson type of order 4·m, m = p·q an exhaustive
search for m = 33. Discrete mathematics 68(1):45–57.
Lang, W., and Schneider, E. 2012. Turyn type Williamson
matrices up to order 99. Designs, Codes and Cryptography
62(1):79–84.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K.
2016. Exponential recency weighted average branching
heuristic for SAT solvers. In Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence, AAAI’16,
3434–3440. AAAI Press.
Sawade, K. 1977. Hadamard matrices of order 100 and 108.
Bulletin of Nagoya Institute of Technology (29):147–153.
Turyn, R. J. 1972. An infinite class of Williamson matrices.
Journal of Combinatorial Theory, Series A 12(3):319–321.
Wallis, J. S. 1974. Williamson matrices of even order. In
Holton, D. A., ed., Combinatorial Mathematics: Proceed-
ings of the Second Australian Conference. Berlin, Heidel-
berg: Springer Berlin Heidelberg. 132–142.
Williamson, J. 1944. Hadamard’s determinant theorem and
the sum of four squares. Duke Math. J 11(1):65–81.
Zulkoski, E.; Bright, C.; Heinle, A.; Kotsireas, I.; Czarnecki,
K.; and Ganesh, V. 2017. Combining SAT solvers with com-
puter algebra systems to verify combinatorial conjectures.
Journal of Automated Reasoning 58(3):313–339.
Zulkoski, E.; Ganesh, V.; and Czarnecki, K. 2015. MATH-
CHECK: A math assistant via a combination of computer
algebra systems and SAT solvers. In Felty, A. P., and Mid-
deldorp, A., eds., Automated Deduction - CADE-25, volume
9195 of Lecture Notes in Computer Science. Springer Inter-
national Publishing. 607–622.
Zulkoski, E.; Ganesh, V.; and Czarnecki, K. 2016. MATH-
CHECK: A math assistant via a combination of computer
algebra systems and SAT solvers. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
4228–4233.

6580


