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Abstract

Conflict-driven clause learning (CDCL) is at the core of the
success of modern SAT solvers. In terms of propositional
proof complexity, CDCL has been shown as strong as general
resolution. Improvements to SAT solvers can be realized ei-
ther by improving existing algorithms, or by exploiting proof
systems stronger than CDCL. Recent work proposed an ap-
proach for solving SAT by reduction to Horn MaxSAT. The
proposed reduction coupled with MaxSAT resolution repre-
sents a new proof system, DRMaxSAT, which was shown
to enable polynomial time refutations of pigeonhole formu-
las, in contrast with either CDCL or general resolution. This
paper investigates the DRMaxSAT proof system, and shows
that DRMaxSAT p-simulates general resolution, that AC0-
Frege+PHP p-simulates DRMaxSAT, and that DRMaxSAT
can not p-simulate AC0-Frege+PHP or the cutting planes
proof system.

Introduction
The practical success of Conflict-Driven Clause Learning
(CDCL) SAT solvers hinges on what can be construed as
a relatively weak proof system, at least when compared with
several others (Beame and Pitassi 2001; Buss 2012; Nord-
ström 2015). This proof system (CDCL) is as powerful as
general resolution (RES). One approach to improving SAT
solvers is to exploit proof systems stronger than CDCL/RES;
however, it is open whether a proof system stronger than
CDCL/RES can yield more efficient SAT solvers, as at-
tempts at exploiting extended resolution (Huang 2010; Au-
demard, Katsirelos, and Simon 2010) or cutting planes in
SAT solvers (Nordström 2015) have been so far largely un-
successful. Furthermore, a key issue from a practical per-
spective is whether stronger proof systems are automati-
zable (Bonet, Pitassi, and Raz 2000), and unfortunately,
most results regarding automatizability are negative (Bonet,
Pitassi, and Raz 2000).

Recent work (Ignatiev, Morgado, and Marques-Silva
2017) proposed a different take on SAT solving. Propo-
sitional formulas can be re-encoded, using a variant of
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the well-known dual rail encoding (Bryant et al. 1987;
Palopoli, Pirri, and Pizzuti 1999) and then refuted with
a MaxSAT solver, e.g. MaxSAT resolution (Larrosa and
Heras 2005; Bonet, Levy, and Manyà 2007) or core-guided
MaxSAT (Morgado et al. 2013). The re-encoded formu-
las are polynomial size (in fact linear). Somewhat surpris-
ingly, the propositional encoding of the pigeonhole princi-
ple (PHP), if reencoded with the modified dual rail encod-
ing, can be refuted in polynomial time, both with MaxSAT
resolution and with core-guided MaxSAT (Ignatiev, Mor-
gado, and Marques-Silva 2017)1. In contrast, the ordinary
(non-dual-rail encoded) PHP formulas have exponential
lower bounds for RES and CDCL (Haken 1985; Beame,
Kautz, and Sabharwal 2004), but also for MaxSAT resolu-
tion (Bonet, Levy, and Manyà 2007).

This paper begins the process of charting the relative
efficiency of the dual rail MaxSAT (DRMaxSAT) proof
system. The first result is that DRMaxSAT p-simulates
general resolution, and thus since DRMaxSAT has short
proofs of the PHP, it is a strictly stronger proof system
than either CDCL or RES. The paper also shows that
DRMaxSAT cannot p-simulate either of AC0-Frege+PHP
or cutting planes. Finally, the paper investigates a variant
of the pigeonhole principle (Biere 2013a). In practice, this
variant is much harder than plain PHP formula. Experi-
mental results on formulas encoding this variant of PHP
confirm that the practical implementation of DRMaxSAT
outperforms modern CDCL SAT solvers.

Preliminaries

MaxSAT and Weighted MaxSAT. MaxSAT is the prob-
lem of finding an assignment that minimizes the number
of falsified clauses of a CNF formula. MaxSAT has several
generalizations. To define them, we need to give weights to
clauses, with the weight indicating the “cost” of falsifying
the clause. A weighted clause is written (A,w) where A is a
clause and w ∈ {1, 2, 3, . . .} ∪ {�}. The value � is viewed

1Earlier work (Sabharwal 2005) showed that problem-specific
symmetry-breaking can serve to reduce refutations of PHP from
exponential to polynomial. In contrast, the results in (Ignatiev,
Morgado, and Marques-Silva 2017) exploit a general reduction to
Horn MaxSAT.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6565



as equaling infinity, but we write “�” instead of “∞”. A typ-
ical use of weighted clauses is for Partial MaxSAT, where
the clauses of Γ are partitioned into soft clauses and hard
clauses. Soft clauses may be falsified and have weight 1;
hard clauses may not be falsified and have weight �. So Par-
tial MaxSAT is the problem of finding an assignment that
satisfies all the hard clauses and minimizes the number of
falsified soft clauses. In Weighted Partial MaxSAT, the soft
clauses may have any (finite) weight ≥ 1. Weighted Par-
tial MaxSAT is the problem of finding an assignment that
satisfies all the hard clauses and minimizes the sum of the
weights of falsified soft clauses.

The MaxSAT resolution calculus is a sound and complete
calculus for MaxSAT based on resolution. This system was
first defined by (Larrosa and Heras 2005), and proven com-
plete by (Bonet, Levy, and Manyà 2007). A similar calcu-
lus can also be defined for Partial MaxSAT and Weighted
Partial MaxSAT. Like classical resolution, (Weighted) (Par-
tial) MaxSAT resolution is based on a unique inference rule.
In classical resolution, every application of the resolution
rule adds a new clause to the system. The inference rule
for (Weighted) (Partial) MaxSAT, however, replaces two
clauses by a different set of clauses. In other words, a clause
may be used only once as a hypothesis of a (Weighted) (Par-
tial) MaxSAT resolution inference.

The inference rule for clauses with finite weights is:

(x ∨A,w1)
(x ∨B,w2)

(A ∨B,min(w1, w2))
(x ∨A,w1 −min(w1, w2))
(x ∨B,w2 −min(w1, w2))
(x ∨A ∨B,min(w1, w2))
(x ∨A ∨B,min(w1, w2))

(1)

The notation x ∨ A ∨ B, where A = a1 ∨ · · · ∨ as and
B = b1 ∨ · · · ∨ bt with t > 0, is the abbreviation of the set
of clauses

x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

(2)

When t = 0, B is the constant true, so x ∨ A ∨ B denotes
the empty set of clauses. x ∨A ∨B is defined similarly.

In the rule, conclusion clauses with weight 0 are omitted;
e.g., at least one of the second or third conclusions is omit-
ted; both are omitted if w1 = w2. If one or both weights
are �, the following rules apply

(x ∨A,w)
(x ∨B,�)
(A ∨B,w)

(x ∨A ∨B,w)
(x ∨B,�)

and

(x ∨A,�)
(x ∨B,�)
(A ∨B,�)
(x ∨A,�)
(x ∨B,�)

for finite w. The second rule is just the ordinary resolution
inference, as the premises are still available as conclusions.

After applying the rule, we remove tautologies, and col-
lapse repeated occurrences of variables in clauses. As noted,

for MaxSAT inferences the premises are replaced with the
conclusions. Note that these inferences depend on the order-
ings of the literals a1, . . . , as and the literals b1, . . . , bt. This
means that, in general, there are multiple ways to apply the
rule to a given pair of clauses.

It is easy to check that if a truth assignment τ falsifies the
formula x∨A∨B, then it falsifies exactly one of the clauses
in (2), and similarly for x ∨ A ∨ B. Also, if τ makes one of
the premises of (1) with weight w false, then the sum of the
weights of the falsified conclusions is w. Likewise, if τ satis-
fies both premises of (1), then it satisfies all the conclusions.
Similar considerations apply to inferences on clauses with
weight �. The soundness of the Weighted MaxSAT rule fol-
lows immediately.

A (Weighted) (Partial) MaxSAT refutation starts with a
multiset Γ of clauses. After each inference, the multiset
of clauses is updated by removing the rule’s premises and
adding its conclusions. The MaxSAT refutation ends with a
multiset containing k > 0 occurrences of the empty clause
⊥, possibly with weights.

The rules give a sound and complete system for Weighted
Partial MaxSAT (Bonet, Levy, and Manyà 2007). Given a
set Γ of weighted clauses and a truth assignment τ , the cost
of τ is the sum of weights of the clauses that τ falsifies; the
cost is infinite if some hard clause is falsified. Soundness
means that if there is a derivation from Γ of empty clauses
with weights summing up to k, then there is no assignment
of cost < k. Completeness means that if k is the minimum
cost of an assignment for Γ, then there is a derivation from Γ
of empty clauses with weights adding up to k.

It is useful to also have the following two rules when deal-
ing with soft clauses with weights bigger than 1.

(A,w1+w2)
Extraction:

(A,w1) (A,w2)

(A,w1) (A,w2)
Contraction:

(A,w1+w2)

The MaxSAT system is unusual in that its rules have mul-
tiple conclusions. This can have unexpected consequences.
For example, one might expect that since soft clauses cannot
be reused, this means that the portion of a MaxSAT refuta-
tion that uses soft clauses is tree-like. This is not true how-
ever, because an inference may have multiple soft clauses
among its conclusions, which can be used at different points
in the refutation.

Dual Rail MaxSAT. We now define the dual rail MaxSAT
system (Ignatiev, Morgado, and Marques-Silva 2017) for re-
futing a set of clauses Γ. The dual rail MaxSAT system is
based on MaxSAT resolution, but as already mentioned is
strictly stronger than resolution.

Let Γ be a set of clauses (viewed as hard clauses) over
the variables {x1, . . . , xs}. The dual rail encoding Γdr of Γ,
uses 2s variables n1, . . . , ns and p1, . . . , ps in place of the
s variables xi. The intent is that pi is true if xi is true, and
that ni is true if xi is false. The dual rail encoding Cdr of
a clause C is defined by replacing each (unnegated) vari-
able xi in C with ni, and replacing each (negated) literal xi

6566



in C with pi. For example, if C is {x1, x3, x4}, then Cdr is
{n1, p3, n4}. Note that every literal in Cdr is negated.

The dual rail encoding Γdr of Γ contains the following
clauses: (1) the hard clause Cdr for each C ∈ Γ; (2) the
hard clauses pi ∨ ni for 1 ≤ i ≤ s; and (3) the soft clauses
pi and ni for 1 ≤ i ≤ s. Note that all clauses of Γ are
Horn: the hard clauses contain only negated literals and the
soft clauses are unit clauses. A dual rail MaxSAT refuta-
tion of Γ is defined as a MaxSAT derivation of a multiset
of clauses containing ≥ s+1 many copies of the empty
clause ⊥ from Γdr. This is based on the fact that Γ is sat-
isfiable if and only if there is a truth assignment τ which
makes all the hard clauses of Γdr true, and only s of the soft
clauses false (Ignatiev, Morgado, and Marques-Silva 2017).

Γdr is equivalently represented as a set of weighted
clauses:

(Cdr,�) for C ∈ Γ
(pi ∨ ni,�) for 1 ≤ i ≤ s

(pi, 1) for 1 ≤ i ≤ s
(ni, 1) for 1 ≤ i ≤ s.

More generally, given a set of finite positive weights
w1, . . . , ws, the weighted dual rail encoding Γwdr of Γ is
defined as the set of clauses

(Cdr,�) for C ∈ Γ
(pi ∨ ni,�) for 1 ≤ i ≤ s
(pi, wi) for 1 ≤ i ≤ s
(ni, wi) for 1 ≤ i ≤ s.

Letting k =
∑

i wi, a weighted dual rail MaxSAT refutation
is a MaxSAT derivation of a set of empty clauses with total
weight k+1, from Γwdr.

Note that each choice of weights w1, . . . , ws gives a dif-
ferent weighted dual rail encoding. What is important for the
refutations is that the weights are chosen sufficiently large:
any “extra” weight can be handled by using the fact that an
empty clause ⊥ can be derived from the hard clause pi ∨ ni

and the two soft clauses pi and ni.
When the weights wi are all small (i.e., polynomially

bounded), then it is convenient to work with the multiple
dual rail MaxSAT system. In this system, instead of in-
cluding the clauses (pi, wi) and (ni, wi) with weights wi

possibly larger than 1, we introduce wi many copies of
the soft clauses pi and ni, each of weight 1. The resulting
set of clauses is denoted by Γmdr. Any MaxSAT deriva-
tion from Γmdr is readily converted into a MaxSAT deriva-
tion from Γwdr. Conversely, if there is polynomial upper
bound on the values wi, then the size of a MaxSAT deriva-
tion from Γwdr can be converted into a MaxSAT derivation
from Γmdr with size only polynomially bigger. This means
that the weighted dual rail MaxSAT system is a strengthen-
ing of the multiple dual rail MaxSAT system. For the present
paper, the main advantage of working with the multiple dual
rail MaxSAT system instead of with the weighted dual rail
MaxSAT system is that it simplifies notation for the proof of
Theorem 1 by letting us discuss soft and hard clauses with-
out explicitly writing their weights.

An example. We present a very simple example of a DR-
MaxSAT refutation which refutes the three clauses x1 ∨ x2,

x1 and x2. This is almost the simplest possible example, but
still reveals interesting aspects. The dual rail encoding has
the five hard clauses

p1 ∨ n2 n1 p2 p1 ∨ n1 p2 ∨ n2,

plus the four soft unit clauses

p1 n1 p2 n2.

Since there are two variables, a DRMaxSAT refutation
must derive a multiset containing three copies of the empty
clause ⊥. The following four inferences will be used to form
the refutation (the weights 1 and � are used for soft and hard
clauses, respectively):

(n1, 1)
(n1,�)
(⊥, 1)
(n1,�)

(p2, 1)
(p2,�)
(⊥, 1)
(p2,�)

(p1, 1)
(p1 ∨ n2,�)

(n2, 1)
(p1 ∨ n2, 1)
(p1 ∨ n2,�)

(n2, 1)
(n2, 1)
(⊥, 1)

We describe a DRMaxSAT refutation using these four in-
ferences; its “lines” consist of five multisets of clauses
Γ0,Γ1,Γ2,Γ3,Γ4. The initial multiset Γ0 contains the nine
clauses given above. Since the set of hard clauses never
changes, each Γi has the form Γi = Si ∪ H where H is
the set of five hard clauses above, and Si is a multiset of soft
(weight 1) clauses. Namely,

S0 = {p1, n1, p2, n2}
S1 = {p1, ⊥, p2, n2}
S2 = {p1, ⊥, ⊥, n2}
S3 = {n2, p1 ∨ n2, ⊥, ⊥, n2}
S3 = {⊥, p1 ∨ n2, ⊥, ⊥}.

Here S0 is the four initial soft clauses; and S3 contains three
copies of ⊥ as needed for a valid DRMaxSAT refutation.

There is a couple interesting observations about even such
a simple derivation. First, it splits neatly into three indepen-
dent parts: one that uses n1 and n1 to derive ⊥, one that uses
p2 and p2 to derive ⊥, and one that uses the other clauses to
derive a third copy of ⊥. This splitting is part of the reason
that DRMaxSAT can give simpler proofs than ordinary res-
olution, say for PHP. Second, there is an extra soft clause
p1∨n2 that is derived but not used; this is a common feature
of DRMaxSAT refutations.

The Parity principle and Dual Rail encoding of Dou-
bled Pigeonhole principles. The present paper uses (un-
weighted) dual rail encodings of two combinatorial prin-
ciples. The first is the Parity Principle, expressing a kind
of mod 2 counting, which states that no graph on 2m + 1
nodes consists of a complete perfect matching (Ajtai 1990;
Beame et al. 1996; Beame and Pitassi 1996). The propo-
sitional version of the Parity Principle, for m ≥ 1, uses
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(
2m+1

2

)
variables xi,j , where i �= j and xi,j is identified

with xj,i. The intuitive meaning of xi,j is that there is an
edge between vertex i and vertex j. The Parity Principle,
Parity2m+1, has the following sets of clauses:

∨
j �=i xi,j for i ∈ [2m+1]

xi,j ∨ xk,j for i, j, k distinct members of [2m+1].
These clauses state that each vertex has degree one.

The second combinatorial principle is the Doubled Pi-
geonhole Principle, also called the “Two Pigeons Per Hole
Principle”, which states that if 2m+1 pigeons are mapped
to m holes then some hole contains at least three pi-
geons (Biere 2013b). This is encoded with the following
clauses 2PHP2m+1

m :
∨m

j=1 xi,j for i ∈ [2m+1]

xi,j ∨ xk,j ∨ x�,j for distinct i, k, � ∈ [2m+1].

The dual rail encoding, (2PHP2m+1)dr, of 2PHP2m+1
m con-

tains the hard clauses
∨m

j=1 ni,j for i ∈ [2m+1]

pi,j ∨ pk,j ∨ p�,j for j ∈ [m] and
distinct i, k, � ∈ [2m+1].

The soft clauses are the unit clauses ni,j and pi,j for
all i∈[2m+1] and j∈[m]. There are (2m+1)m positive
variables pi,j and likewise (2m+1)m negative variables
ni,j , for a total of 2(2m+1)m many soft clauses. A
dual rail MaxSAT refutation for 2PHP2m+1

m must pro-
duce (2m+1)m + 1 many empty clauses (⊥’s) from
(2PHP2m+1)dr.

AC0-Frege and Cutting Planes proof systems. To be
able to compare dual rail MaxSAT with resolution, AC0-
Frege and Cutting Planes, we need the following terminol-
ogy. Proof length is measured in terms of the total number
of symbols appearing in the proof. A proof system P is said
to simulate another proof system Q provided that there is a
polynomial p(n) so that any Q proof of size N can be trans-
formed (by a polynomial time construction) into a P-proof
of size ≤ p(N) of the same formula. For more informa-
tion on proof complexity, see e.g. the surveys (Buss 2012;
Pudlák 1999).

A Frege system is a textbook-style proof system, usu-
ally defined to have modus ponens as its only rule of infer-
ence (Cook and Reckhow 1979). For convenience in defin-
ing the depth of formulas, we can treat an implication A →
B as being an abbreviate for ¬A∨B. The depth of proposi-
tional formula is measured in terms of alternations: assume
a formula ϕ uses only the connectives ∨, ∧ and ¬. Using de-
Morgan’s rules, there is a canonical transformation of ϕ into
a formula ϕ′ in “negation normal form”, i.e., with negations
applied only to variables. Viewing ϕ′ as a tree, the depth of
ϕ is the maximum number of blocks of adjacent ∨’s and ad-
jacent ∧’s along any branch in the tree ϕ′. A depth d Frege
proof is a Frege proof in which every formula has depth ≤ d.
An AC0-Frege proof is a proof with a constant upper bound
on the depth of formulas appearing in the proof.

The cutting planes system is a pseudo-Boolean proposi-
tional proof system. It uses variables xi which take on 0/1
values, indicating Boolean values False and True. The lines
of a cutting planes proof are inequalities of the form

a1x1 + a2x2 + · · ·+ anxn ≥ an+1,

where the ai’s are integers. Logical axioms include xi ≥ 0
and −xi ≥ −1; inference rules include addition, multi-
plication by a integer, and a special division rule. A cut-
ting planes proof refuting a set Γ of clauses has axioms
expressing the truth of the clauses in Γ, and has 0 ≥ 1
as its last line. The cutting planes system CP uses inte-
gers ai written in binary; the system CP∗ uses the inte-
gers ai written in unary notation. The size of a CP or CP∗

proof is the total number of symbols in the proof, includ-
ing the bits used for representing the values of the coeffi-
cients ai. For more on cutting planes, see e.g. (Pudlák 1997;
Buss and Clote 1996).

Simulations of Resolution

Tree-like resolution

Theorem 1. Multiple dual rail MaxSAT simulates tree-like
resolution.

We start with a useful observation. The dual rail encod-
ings include soft unit clauses pi and ni and hard clauses
pi ∨ ni. Applying a MaxSAT inference to pi and pi ∨ ni

yields the two soft clauses ni and pi∨ni. Combining ni and
ni with a MaxSAT inference yields the clause ⊥. Thus, we
have used up the soft clauses pi and ni and obtained one in-
stance of ⊥ plus the clause pi ∨ ni. As shown next, the soft
clause pi ∨ ni will let MaxSAT simulate a resolution step.
Proof. (Sketch) Let R be a tree-like refutation of Γ over
the variables x1, . . . , xn. Let ki be the number of times that
xi is resolved on in R. We form Γmdr by adding the soft
clauses pi and ni with multiplicity ki, and the hard clauses
pi ∨ ni. (This is permitted as the values ki correspond to
the weights wi of a weighted DRMaxSAT refutation.) Set
K =

∑
i ki. By the above observation, from these clauses

there is a MaxSAT derivation of K many instances of ⊥,
plus the clauses pi ∨ ni with multiplicity ki.

We modify the derivation R. For each clause A in Γ, let
Adr be the result of replacing members xi with ni, and mem-
bers xi with pi. An inference in Γ resolving xi∨A and xi∨B
to obtain A ∨B becomes

ni ∨Adr pi ∨Bdr

Adr ∨Bdr

To make this a valid MaxSAT inference, first resolve ni ∨
Adr against an available soft clause pi ∨ ni to obtain the
soft clause pi ∨ A plus some additional clauses. A further
MaxSAT inference resolves this against pi ∨ Bdr to obtain
Adr∨Bdr plus some additional clauses. Continuing this pro-
cess yields a valid MaxSAT refutation of ⊥dr, i.e. of ⊥. This
gives a total of K + 1 clauses ⊥ as desired.

Note the proof works as long as ki is greater than or equal
to the number of times xi is resolved on. For applications,
this means it is only needed to have an upper bound on the
number of resolutions on xi; for instance, taking ki equal to
the total number of inferences in R certainly works.
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General resolution

Theorem 2. Weighted dual rail MaxSAT simulates general
resolution.
Proof. (Sketch) Let R be a resolution refutation of Γ con-
taining clauses C1, . . . , Cm. Each Ci is either an initial
clause from Γ or is derived from two clauses Cj1 and Cj2 ,
where j1 < j2 < i. We define a directed graph G =
([m], E) encoding the dependencies in the derivation. The
set of vertices of G is {1, . . . ,m} corresponding to the m
clauses of R. The edges are based on inference rules; E is
the set of directed edges (j, i) such that Cj is a hypothesis of
the resolution inference introducing Ci. Thus, the vertex m
(corresponding to Cm) is a sink of G. The sources in G cor-
respond to initial clauses in Γ. All other vertices in G have
in-degree two. Since R is not assumed to be tree-like, the
out-degrees can be greater than one.

We must assign to each clause Ci ∈ R a weight wi ∈
N. These weights give the weights ki needed for the soft
clauses ni and pi when we construct a weighted dual rail
MaxSAT refutation of Γ. The last (m-th) clause is the final
⊥ derived for the MaxSAT refutation: this clause has weight
one, wm = 1. For all j < m, define

wj =
∑

(j,i)∈E wi.

This is the same as defining wj to be the sum of the weights
of the clauses which are inferred directly from Cj .

Recall the Fibonacci numbers F1 = F2 = 1 and Fi =
Fi−1 + Fi−2 for i > 2. The next lemma depends only on
the fact that G = ([m], E) has indegree 0 or 2 at every node,
and that the directed edges respect the usual ordering of [m].
Lemma 3. wi ≤ Fm+1−i. Thus wi < φm/

√
5 where φ is

the golden ratio.
(The proof of the lemma is simple and is omitted here for

space reasons.) To finish the proof of Theorem 2, we also
need to fix weights ki for the variables xi. Set ki to be equal
(or be greater than) the sum of the weights wj of clauses Cj

which are introduced by a resolution on xi. By Lemma 3,
ki ≤ ∑m−2

i=1 φi < φm−1, so ki = 2m is always sufficient.
Now Theorem 2 can be proved with the essentially the same
construction as Theorem 1. A clause C� in R becomes the
weighted clause (Cdr

� , w�) in Rwdr. If C� is equal to A ∨B
and is derived from xi ∨ A and xi ∨ B, then in Rwdr, it
becomes the (not-yet-valid) inference

(ni ∨Adr, w�) (pi ∨Bdr, w�)

(Adr ∨Bdr, w�)
(3)

Note the weights of all three clauses are equal to w�. As
described below, this is arranged for the two hypotheses by
earlier extraction inferences. In Rwdr, the “inference” (3)
is replaced by two MaxSAT resolution inferences which re-
solve against the weighted soft clauses (ni, w�) and (pi, w�)
and the hard clauses (ni ∨ pi,�).
Rwdr needs inferences to fix up the weights. For i ≤ n, let

C�1 , . . . , C�s be the clauses which are inferred by resolving
on xi, so ki≥

∑
j w�j . At the start of Rwdr, from the initial

soft clauses (ni, ki) and (pi, ki), extraction rules are used
to derive all the clauses (ni, w�j ) and (pi, w�j ). Similarly,

let C�1 , . . . , C�s now denote clauses which are derived by
resolution using C�, so w�=

∑
j w�j . Extraction inferences

are used to derive all of the clauses (C�, w�j ) from (C�, w�).
These clauses are used as hypotheses of later inferences sim-
ilarly as was done for (3).

AC0-Frege+PHP simulates dual rail MaxSAT

This section proves that constant depth Frege augmented
with the schematic pigeonhole principle PHPn+1

n can poly-
nomially simulate the dual rail MaxSAT proof system.
Theorem 4. AC0-Frege+PHP p-simulates the dual rail
MaxSAT system. More precisely, there is a constant d0 and
a polynomial p(s) so that the following holds. If Γ is a
set of clauses and Γdr has a MaxSAT refutation of size s,
then Γ has a depth d0 Frege refutation from instances of the
PHPn+1

n of size p(s).
The value of d0 depends on the exact definitions of the

Frege system (e.g., with modus ponens, or with the sequent
calculus, etc.) and of depth; however, d0 is small, approx-
imately equal to 3. In particular, the Frege proof uses in-
stances of PHP which are obtained by substituting depth one
formulas (either conjunctions or disjunctions of literals) for
the variables zi,j of a pigeonhole formula.

It is open whether the theorem holds for the dual rail
MaxSAT system generalized to allow arbitrary (binary-
encoded) weights.
Corollary 5. MaxSAT refutations of the dual rail encoded
Parity Principle require exponential size 2n

ε

for some ε > 0.
Corollary 5 follows from Theorem 4 since (Beame and

Pitassi 1996) and (Riis 1993), building on (Ajtai 1990),
showed that AC0-Frege+PHP refutations of Parityn re-
quire size 2n

ε

for some ε > 0.
Corollary 6. The dual rail MaxSAT proof system does not
polynomially simulate CP or even CP∗.

Corollary 6 follows from Corollary 5 since it is easy to
give polynomial size CP∗ proofs of the parity principle.

Proof. We now prove Theorem 4. Let Γ be an unsatisfiable
set of clauses in the variables x1, . . . , xN . Its dual rail encod-
ing Γdr uses the variables ni and pi for i ∈ [N ]. By hypoth-
esis, there is a MaxSAT derivation D of N + 1 many empty
clauses ⊥ from Γdr. Our goal is to give a AC0-Frege+PHP
refutation of Γ; this refutation involves only the variables xi.
The intuition for forming the AC0-Frege proof is that we as-
sume that Γ is satisfied by x1, . . . , xN , and use the refuta-
tion D to define a contradiction to the pigeonhole principle.

The MaxSAT refutation D has size s and contains m < s
inferences. The j-th inference of D has the form

l ∨A l ∨B

A ∨B l ∨A ∨B l ∨A ∨B
(4)

for l a literal. Here, l ∨ A ∨ B and l ∨ A ∨ B denote a sets
of zero or more clauses, which depend on orderings of the
literals in A and in B.

Let Dj be the multiset of clauses which are available for
use in D after the j-th inference. Thus, D0 is the same as
Γdr. The multiset Dj+1 is obtained from Dj by removing
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the hypotheses of the j-th inference (4) and adding its con-
clusions. Since D is a valid MaxSAT refutation, the final set
Dm contains N + 1 many empty clauses ⊥. Two extra sets
D−1 and Dm+1 are defined by letting D−1 contain the N
clauses x1, . . . , xN and letting Dm+1 be the multiset con-
taining N + 1 copies of the empty clause ⊥.

Let D∗ denote the disjoint union of the multisets Dj for
−1 ≤ j ≤ m+1. Members of the multiset D∗ are denoted
(C, j) indicating that C is a member of Dj . If there are mul-
tiple occurrences of C in Dj , then there are multiple occur-
rences of (C, j) in D∗. We will assume that multiple oc-
currences are correctly tracked with each “C” labelled as to
which occurrence it is, but suppress this in the notation.

Let S be the cardinality of D∗, so S = sO(1). Define

T =
⋃

0≤i≤m+1 Di and U =
⋃
−1≤i≤m Di.

We have |T | = S−N and |U | = S−N−1, so |T | = |U |+1.
We wish to define a total and injective function f : T → U ,
based on the assumption that x1, . . . , xN specify a satisfying
assignment for Γ: this will contradict the pigeonhole princi-
ple. For this, it is necessary to define formulas Pα,β for each
α = (C, j) ∈ T and each β = (C ′, j′) ∈ U which define the
condition that f(α) = β. These formulas Pα,β will involve
the variables x1, . . . , xN .

If (C, j) ∈ U , then C is a clause (possibly empty) involv-
ing only the variables ni and pi. We wish to identify pi and
ni with xi and xi to evaluate the truth of C. Accordingly,
define X(C) to the the formula obtained by replacing the
literals pi and ni with xi, and the literals pi and ni with xi.
If C contains both pi and ni (or both pi and n1) for some i,
then X(C) becomes a tautologous clause and can be treated
as the constant �. Each C is a fixed clause in D, thus each
X(C) is also a fixed clause.

We next give the definition of the function f and define
the formulas Pα,β . Let α be (C, j) and β be (C ′, j′). The
intuition is that if C is true, then f(α) = α; and if C is false
then f(α) = β exactly when j′ = j − 1 and C ′ is the false
formula in Dj which corresponds to C under the application
of the j-th inference of D. More formally:
1. Suppose j = m + 1, so C is an empty clause ⊥ in the

“extra” set Dm+1. We arbitrarily order the members ⊥ of
Dm+1 and Dm. Suppose C is the �-th member of Dm+1.
We wish to assign f(α) to equal the �-th ⊥ in Dm. Ac-
cordingly, Pα,β is the constant � (true) if and only if
j′ = j−1 = m and C ′ is the �-th ⊥ in Dm. Otherwise,
Pα,β is the constant ⊥ (false).

2. Suppose j ≥ 1, and that C, as a member of Dj , is not a
clause in the conclusion of the j-th inference (4). The idea
is that if C is true, then f(α) = α, and if C is false, then
f(α) = β provided j′ = j − 1 and C ′ is the same for-
mula as C, namely the occurrence of the clause in Dj−1

which corresponds to C. More formally, Pα,α is the for-
mula X(C). And, if j′ = j−1 and C ′ ∈ Dj−1 is the
corresponding occurrence of the clause C in Dj−1, then
Pα,β is the formula ¬X(C). In all other cases, Pα,β is ⊥.

3. Suppose j ≥ 1, and C is one of the conclusions of
the j-th inference (4). The idea is that if C is true, then
f(α) = α, and if C is false, then f(α) = β provided

j′ = j− 1 and C ′ is the false hypothesis of (4). More for-
mally, Pα,α is the formula X(C). And, if j′ = j−1 and
C ′ ∈ Dj−1 is one of the hypotheses of (4), then Pα,β is
the formula ¬X(C)∧¬X(C ′), which is a conjunction of
literals. (This can make Pα,β false by virtue of containing
both � and �.) In all other cases, Pα,β is ⊥.

4. Suppose j = 0 and C is a hard clause of Γdr in D0.
Assuming Γ is satisfied by x1, . . . , xN , C is true; the idea
is that f(α) = α. Accordingly, Pα,α is the clause X(C).
For all other β, Pα,β is ⊥.

5. Finally suppose j = 0 and C is a soft unit clause in Γdr,
i.e. either pi or ni. The intuition is again that f(α) = α
if C is true. Otherwise f(α) = (xi,−1). Formally, Pα,α

is X(C). And, for β = (xi,−1), Pα,β is ¬X(C). For all
other β, Pα,β is ⊥.
The formulas Pα,β are linear size and depth one, either

conjunctions or disjunctions of literals. We must argue there
are constant depth Frege proofs of the injectivity conditions

¬Pα,β ∨ ¬Pα′,β for all α �= α′ ∈ T and all β

and of the totality conditions
∨

β∈U Pα,β for all α ∈ T .

The injectivity conditions are easy to check since so many
Pα,β’s are the constant ⊥. First, suppose that α = (C, j)
and α′ = (C ′, j) where C and C ′ are two of the conclusions
of the j-th inference (4). By inspection, C and C ′ contain
a clashing literal; thus they cannot both be false. It follows
that at least one of Pα,β or Pα′,β is false. A similar, even
simpler, argument works when α = (pi, 0) and α′ = (ni, 0).
The injectivity conditions for all other α, α′, β are trivial.

There are only a couple non-trivial cases to check for the
provability of the totality conditions. The first case is when
α = (C, j) is the conclusion of the j-th inference (4). For
this, we must argue that if X(C) is false, then (4) has a hy-
pothesis C ′ that has X(C ′) false. This is completely triv-
ial to prove with a constant depth Frege proof, since either
(a) one of the hypotheses is a subclause C ′ of C so X(C ′)
is a subclause of X(C) and thus X(C ′) is false, or (b) C
is A ∨ B in (4) and since X(�) is either false or true and
C ′ can be taken to be the first or second hypothesis (respec-
tively). The second non-trivial case to check for totality is
the case where α = (C, 0) with C one of the hard clauses in
Γdr. In this case, Pα,α holds only if X(C) is true. However,
X(C) is a member of Γ, and hence X(C) holds under the
assumption that x1, . . . , xN satisfy the clauses of Γ.

The above obtained a contradiction to the pigeonhole
principle from the assumption that the clauses of Γ are true.
The argument can be formalized in constant depth Frege;
hence AC0-Frege+PHP refutes Γ. By construction, the
AC0-Frege+PHP refutation is polynomial size in s.

Upper bound for the doubled PHP

This section discusses the “doubled” pigeonhole principle
which states that if 2m + 1 pigeons are mapped to m holes
then some hole contains at least three pigeons (Biere
2013b).
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Theorem 7. There are polynomial size MaxSAT refutations
of the dual rail encoding of the 2PHP2m+1

m clauses.
Proof sketch. The MaxSAT refutation first derives 2m+1
clauses ⊥, one for each pigeon i ∈ [2m+1], by resolving
the hard clause

∨m
j=1 ni,j against the soft unit clauses ni,j

to obtain the clause ⊥. These inferences derive other clauses
as well, but they are not needed for the refutation, so we
just ignore them. The remainder of the MaxSAT refutation
is more complex and derives 2m− 1 empty clauses for each
hole j ∈ [m]. This gives a total of (2m−1)m additional
⊥’s and, since 2m+1+(2m−1)m is equal to (2m+1)m+1,
suffices to complete the MaxSAT refutation.

Fix a hole j. We inductively construct MaxSAT deriva-
tions of 2m−1 empty clauses from the clauses involving lit-
erals pi,j . The construction is to be repeated (independently)
for each j ∈ [m]. The general idea is to derive I − 2 many
⊥’s from the first I pigeons, namely using only the literals
pi,j for i ≤ I .

The construction proceeds in stages, one for each value
I = 3, 4, . . . , 2m+1. The proof is involved, and we omit it
from this version for lack of space.

Experiments. Two sets of “doubled” pigeonhole formu-
las were considered encoding AtMost2 constraints by (1)
triplewise encoding as studied earlier in the paper and (2) se-
quential counters (Sinz 2005), i.e. with the use of auxiliary
variables (Tseitin 1968). The latter set contains PHP2m+1

m
formulas for m ∈ {5, . . . , 100} while the largest triplewise-
encoded formula is constructed for m = 25 (due to the
formula’s growth as m3 if triplewise-encoded). Our eval-
uation targets SAT and MaxSAT solvers. We tested two
CDCL SAT solvers: Glucose 3 (Audemard, Lagniez, and
Simon 2013) and lingeling2 (Biere 2013a; 2014). Also,
the MaxSAT solvers used are: MaxHS (Davies and Bac-
chus 2011; 2013a; 2013b), LMHS (Saikko, Berg, and
Järvisalo 2016), Eva500a (Narodytska and Bacchus 2014),
OpenWBO16 (Martins, Manquinho, and Lynce 2014), and
MSCG (Morgado, Ignatiev, and Marques-Silva 2015).

Figure 1 depicts the performance of the considered com-
petitors. As expected, SAT solvers can only deal with
PHP2m+1

m for m ≤ 7 given 1800s timeout, while MaxSAT
solvers do not perform much better being able to deal with
m ≤ 15. This can be attributed to the clauses of the dual
rail encoding, more precisely to clauses (pi ∨ ni,�), (pi, 1)
and (ni, 1) introduced for every variable xi of the original
CNF formula. Obviously, these clauses comprise unsatisfi-
able cores of the dual rail MaxSAT formula and these cores
are known to potentially confuse a MaxSAT solver and,
thus, be harmful, as observed in earlier work (Ignatiev, Mor-
gado, and Marques-Silva 2017). Indeed, our results confirm
this conjecture as the performance of all MaxSAT solvers
gets tremendously increased when clauses (pi ∨ ni,�) are
discarded3 (the corresponding configurations of MaxSAT
solvers in Figure 1 are marked with additional symbol ‘′’).

2Cardinality reasoning (Biere 2013a), which helps lingeling
deal with PHP formulas, was disabled.

3Note that the short proof for 2PHP2m+1
m provided in the previ-

ous section does not use clauses (pi ∨ ni,�).
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Figure 1: Performance of SAT and MaxSAT solvers on
“doubled” pigeonhole formulas.

In particular, MaxHS, LMHS, as well as MSCG can solve all
the considered instances (for m up to 100) with the “harm-
ful” clauses being discarded while Eva500a and Open-
WBO16 are a few instances behind. This suggests that re-
moving these clauses enables MaxSAT solvers to produce a
short proof when dealing with 2PHP2m+1

m .

Conclusions

This paper investigates the relative efficiency of the DR-
MaxSAT proof system (Ignatiev, Morgado, and Marques-
Silva 2017). The paper shows that DRMaxSAT p-simulates
general resolution. Given as earlier result of polynomial
time refutations of PHP formulas (Ignatiev, Morgado, and
Marques-Silva 2017), we conclude that DRMaxSAT is a
stronger proof system than either general resolution or
conflict-driven clause learning. The paper also compares
DRMaxSAT with AC0-Frege+PHP, and proves that AC0-
Frege+PHP p-simulates DRMaxSAT. Moreover, the pa-
per also proves that DRMaxSAT does not p-simulate AC0-
Frege+PHP or the cutting plane based proof systems CP
and CP∗. Finally, the paper investigates the formulas encod-
ing the doubled PHP principle, and derives polynomial size
refutations with the DRMaxSAT proof system.

The results in this paper motivate a number of research
lines. The first is to understand whether CP p-simulates DR-
MaxSAT. Another research line is to investigate whether the
weighted version is stronger than plain DRMaxSAT. One
line of research is to extend the results in this paper to
the case of core-guided algorithms (Ignatiev, Morgado, and
Marques-Silva 2017).
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