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Abstract

This paper explores Community-Based Trip Sharing which
uses the structure of communities and commuting patterns to
optimize car or ride sharing for urban communities. It intro-
duces the Commuting Trip Sharing Problem (CTSP) and pro-
poses an optimization approach to maximize trip sharing. The
optimization method, which exploits trip clustering, share-
ability graphs, and mixed-integer programming, is applied to
a dataset of 9000 daily commuting trips from a mid-size city.
Experimental results show that community-based trip sharing
reduces daily car usage by up to 44%, thus producing signif-
icant environmental and traffic benefits and reducing parking
pressure. The results also indicate that daily flexibility in pair-
ing cars and passengers has significant impact on the benefits
of the approach, revealing new insights on commuting pat-
terns and trip sharing.

1 Introduction
Carpooling services provide an appealing alternative for ur-
ban mobility due to their potential benefits, be it in reduc-
ing traffic congestion, energy consumption, greenhouse gas
emissions, or parking utilization. For instance, a case study
on the CarLink carpooling program of about 50 people re-
vealed up to 43.5% reduction in the number of single occu-
pant vehicle trips, a 23 miles reduction in average commute
vehicle travel distance per day, and reduced parking utiliza-
tion (Shaheen and Rodier 2005). Private cars however have
remained as the primary choice for daily commuting due to
a number of challenges associated with carpooling. For in-
stance, a survey by (Li et al. 2007) indicated difficulty in
finding people with matching schedules and locations as the
primary reason for not carpooling. This highlights the poten-
tial for matching platforms which alleviate this burden and
automatically identify commuting groups based on factors
determined to be consequential to individuals’ commuting
decisions. A meta-analysis of related work reveals the fol-
lowing set of guiding principles that should ideally be sup-
ported by car-pooling and car-sharing platforms:

1. Spatial proximity of riders (Richardson and Young 1981;
Buliung et al. 2009);

2. Temporal proximity of riders (Tsao and Lin 1999; Buli-
ung et al. 2010; Poulenez-Donovan and Ulberg 1994);
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3. Guaranteed ride back home (Correia and Viegas 2011);

4. Low coordination costs (Arning, Ziefle, and Muehlhans
2013);

5. Low trust concerns (Arning, Ziefle, and Muehlhans 2013;
Correia and Viegas 2011);

6. Clear commuter roles (Buliung et al. 2010; Richardson
and Young 1981).

The first two principles reduce the per-trip costs by match-
ing commuters based on their schedules and locations. The
third principle highlights the importance of accounting for
the commute needs for the entire day–individuals who can-
not be matched for the return trip should not be matched
for the incoming one. Principles (4–6) account for various
psychological factors by limiting the perceived coordination
costs, by alleviating trust concerns, and by assigning clear
commuter roles to individuals.

To address these challenges, this paper explores the con-
cept of community-based trip sharing which uses the struc-
ture of communities and commuting patterns to optimize
trip sharing for urban communities. Community-based trip
sharing identifies matches according to the schedules and
locations of riders and guarantees a ride home and hence it
satisfies guiding Principles (1–3) by construction. The im-
plementation of community-based trip sharing first clusters
commuters by communities before applying an optimization
model to determine optimal trip-sharing solutions minimiz-
ing daily car usage. Community-based trip sharing can be
applied both to car pooling, where commuters use their own
cars, and to car sharing, where a community has at its dis-
posal a pool of cars for commuting purposes.

This paper also studies the cost of implementing Prin-
ciples (4–6). The implementation of each of these princi-
ples reduces the opportunities for trip sharing and the trade-
off between the effectiveness of a trip-sharing platform and
these guiding principles is largely unexplored. To provide
new insights on this issue, the paper proposes a series of
optimization models for community-based trip sharing that
incrementally enforce additional constraints to implement
these principles. For instance, Principle (6) forces a given
commuter to be either a driver or a passenger in all her trips,
which may minimize opportunities for trip sharing as her
schedule may vary on different days.
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This paper evaluates the potential and limitations of
community-based trip sharing on a large case study using
a dataset containing trip data from 15,000 commuters work-
ing downtown in the city of Ann Arbor (Michigan) over the
span of a month. Ann Arbor is facing significant pressure on
its downtown parking lots and congestion has been increas-
ing annually. The results indicate that community-based trip
sharing may reduce daily car usage by as much as 44%,
while implementing Principles (1–3). However, the benefits
continuously decrease as Principles (4–6) are implemented,
up to a point where they become negligible. This highlights
the trade-off between the effectiveness of trip sharing and
the (psychological) comfort of commuters.

The main contributions of this paper are as follows:

1. Community-based trip sharing is introduced and applied
to both car pooling and car sharing.

2. An effective implementation of community-based trip
sharing is proposed, which combines hierarchical cluster-
ing and optimization to minimize daily car usage.

3. Community-based trip sharing is evaluated with the first
large-scale, high-fidelity study of car pooling and car
sharing for commuting purposes.

4. The study provides compelling quantitative evidence for
the inherent trade-off between the benefits of trip sharing
and the psychological burden imposed on commuters.

2 Additional Related Work

Ride sharing has been widely studied in the literature,
and some implemented in the real world. (Alexander and
González 2015) found that ride-sharing services would have
a noticeable impact on congested travel time, and (Handke
and Jonuschat 2013) showed in a survey that 45% of respon-
dents were interested in ride sharing. Many current studies
are dedicated to the ride sharing of private vehicles. (He et
al. 2012) designed a route-mining algorithm that leverages
frequent user routes to provide ride-sharing recommenda-
tions. (Trasarti et al. 2011) used GPS traces to build mobil-
ity profiles and match users with similar profiles. (Bellemans
et al. 2012) designed a multi-agent based model to provide
online matching for those living and working in close ar-
eas. More recently, (Xia et al. 2015) developed optimal and
heuristic approaches for a carpool matching service and ap-
plied them on a real-world transportation network combined
with randomly generated trip data. Contrary to prior work,
this paper provides high-fidelity evaluation of the potential
of trip sharing based on a large-scale, real-world dataset and
detailed optimization models that impose various matching
constraints on the pooling platform.

Other related studies focused on ride sharing of public ve-
hicles. For example, a research on taxis in New York City by
(Santi et al. 2014) finds that ride sharing using a shareability
graph could reduce trip duration by 40% with low level of
discomfort. This research is further developed by (Alonso-
Mora et al. 2017) using a reactive anytime optimal method
that allows 3000 vehicles to serve 98% of the trip requests
originally served by 14,000 taxis with minimal discomfort.
In another study, (Zhu et al. 2016) designed a mixed-integer

programming (MIP) algorithm for dynamic ride sharing that
results in 90% reduction of cars used in the conventional ve-
hicle system and 57% reduction of cars used in Uber Pool.
Although the algorithms presented in this paper share some
concepts with those for shared public vehicles, they differ
in their focus on commuting and the constraints imposed by
pooling services, which leads to rather different models.

3 Notation and Preliminaries

A trip t =< o, st, d, at > consists of an origin o, a start time
st, a destination d, and an arrival time at. On day δ, com-
muter c makes two trips: a trip to the workplace (an inbound
trip) tc,i,δ and a trip back home (an outbound trip) tc,o,δ . A
roundtrip tc,rt,δ = (tc,i,δ, tc,o,δ) is the pair of inbound and
outbound trips taken by commuter c on day δ.

A trip-sharing route rT is a sequence of origin and des-
tination locations from a set of trips T in which each ori-
gin and destination from the set is visited exactly once.
For instance, given two trips t1 =< o1, st1, d1, at1 > and
t2 =< o2, st2, d2, at2 >, a possible trip-sharing route is
r{t1,t2} = o2 → o1 → d1 → d2. Each route r has a set of
commuters C(r) and a designated driver D(r) ∈ C(r). The
driver must be the commuter residing at the start location of
the route. For instance, commuter 2 must be the driver for
route r{t1,t2} shown earlier.
Definition 3.1 (Valid Trip-Sharing Route). A valid trip-
sharing route r visits oc before dc for every commuter c ∈
C(r) and starts at oD(r) and ends at dD(r).
A feasible trip-sharing route is a valid trip-sharing route that
can pickup and drop-off its commuters at their respective
origins and destinations within a given time window Δ. The
rationale is that commuters may be willing to shift their
pickup and drop-off times by at most ±Δ

2 .
Definition 3.2 (Feasible Trip-Sharing Route). A feasible
trip-sharing route r is a valid trip-sharing route that picks
up and drops off its commuters at their respective origins
and destinations such that

ptc ∈ [stc −
Δ

2
, stc +

Δ

2
] ∧ dtc ∈ [atc −

Δ

2
, atc +

Δ

2
]

for each commuter c ∈ C(r).
For example, route r{t1,t2} shown earlier is feasible if there
exist a pickup time ptc at oc and a drop-off time dtc at dc for
c ∈ {1, 2} that satisfy the following constraints:

pt1 ∈ [st1−
Δ

2
, st1+

Δ

2
]∧pt2 ∈ [st2−

Δ

2
, st2+

Δ

2
] (1)

dt1 ∈ [at1−
Δ

2
, at1+

Δ

2
]∧dt2 ∈ [at2−

Δ

2
, at2+

Δ

2
] (2)

For route r{t1,t2}, pt1, dt1, and dt2 can be represented in
terms of pt2 using the following relations:

pt1 = pt2 + tt(o2, o1) (3)

dt1 = pt2 + tt(o2, o1) + tt(o1, d1) (4)
dt2 = pt2 + tt(o2, o1) + tt(o1, d1) + tt(d1, d2) (5)

where tt(x, y) is the estimated travel time for the shortest
path between locations x and y. Therefore, the route is fea-
sible if there exists a pickup time pt2 that satisfies (1)–(5).
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Definition 3.3 (Feasible Roundtrip-Sharing Route). Let rTi

and rTo denote feasible trip-sharing routes for a set of in-
bound trips Ti and a set of outbound trips To respectively. A
feasible roundtrip-sharing route rTrt

= (rTi
, rTo

) is a pair
of feasible inbound and outbound trip-sharing routes serv-
ing the same set of commuters, i.e., C(rTi

) = C(rTo
), and

having the same driver, D(rTi
) = D(rTo

).
Given a set of commuters C, the sets of all feasible trip-
sharing routes for inbound, outbound, and round trips taken
by C on day δ are denoted by Ri,δ , Ro,δ , and Rrt,δ , and
the set of days under consideration is denoted by D. The
algorithms in this paper solve the Commuting Trip Sharing
Problem (CTSP) that minimizes the number of cars needed
daily to cover all commuting trips of C for all days δ ∈ D
subject to specific commuter-matching constraints.

4 Community-Based Trip-Sharing

The community-based trip-sharing algorithm solves (ver-
sions of the) CTSP using as input a dataset containing daily
roundtrips of commuters from an urban population. It pro-
ceeds in three major stages: (1) It clusters commuters based
on their home locations; (2) it identifies all feasible trip-
sharing routes using shareability graphs; and (3) it solves
an optimization model to obtain an optimal trip-sharing as-
signment. This section focuses on steps (1–2). The next two
sections present the optimization models.

Clustering Community-based trip sharing clusters com-
muters residing in close proximity to each other, implement-
ing Principle (1) from the introduction. Trip sharing is only
considered intra-cluster to foster intra-community interac-
tions and limit the distance traveled by drivers when picking
up or dropping off passengers. As a side-effect, community-
based trip sharing keeps the CTSP tractable by breaking it
down into many smaller subproblems.

The clustering algorithm imposes a limit on the diameter
of each cluster, where the diameter is defined as the maxi-
mum distance between any two points in a cluster. The clus-
tering algorithm is hierarchical and represents commuters
as points in 2D Euclidean space using the Cartesian coordi-
nates of their homes. The algorithm begins by treating each
point as its own cluster. A pair of clusters with the short-
est inter-cluster distance is then selected and merged. Inter-
cluster distance is measured by taking the largest distance
between points in the two clusters. Pairwise cluster selection
and merging is repeated until further merging causes the di-
ameter of the largest cluster σmax to exceed a limit σlimit, at
which point the algorithm is terminated. This algorithm per-
mits distance-based control of the size of all clusters, which
do not exceed σlimit.

Shareability Graph After the clustering step, the algo-
rithm computes the sets Ri,δ , Ro,δ , and Rrt,δ for each day
δ ∈ D and each cluster, using the concept of shareability
graphs (Santi et al. 2014). Without loss of generality, the
presentation focuses on a single cluster. A shareability graph
G = (T , E) is an undirected graph with nodes T consisting
of trips and edges E representing pairwise shareable trips.

Algorithm 1 Shareability Graph for Inbound Trips

Require: Ti,δ = {tc,i,δ | c ∈ C}
1: for each x ∈ C do
2: for each y ∈ C do
3: Rtemp ← {all feasible trip sharing routes for

(tx,i,δ, ty,i,δ)}
4: for each r ∈ Rtemp do
5: if ttr(r) ≥ 0 then
6: R{tx,i,δ,ty,i,δ} ← R{tx,i,δ,ty,i,δ} ∪ {r}
7: if R{tx,i,δ,ty,i,δ} �= Ø then

8: Store R{tx,i,δ,ty,i,δ} in edge (tx,i,δ, ty,i,δ)
9: E ← E ∪ {(tx,i,δ, ty,i,δ)}

10: return Gi,δ = (Ti,δ, E)

For a specified time window Δ, each edge (tx, ty) ∈ E con-
tains a set R{tx,ty} of feasible trip-sharing routes between
trips tx and ty . This work uses three types of shareability
graphs: Gi,δ , Go,δ , and Grt,δ respectively denote shareabil-
ity graphs for inbound, outbound, and round trips. More
precisely, let Ti,δ , To,δ , and Trt,δ denote the set of all in-
bound, outbound, and round trips taken by C on day δ,
i.e., Ti,δ = {tc,i,δ | c ∈ C}, To,δ = {tc,o,δ | c ∈ C}, and
Trt,δ = {tc,rt,δ | c ∈ C}. The graphs Gi,δ , Go,δ , and Grt,δ are
then constructed from Ti,δ , To,δ , and Trt,δ respectively.

For example, Gi,δ is constructed by first introducing a
node to represent each trip in Ti,δ . A shareability check is
then performed on every pair of trips in Ti,δ , i.e., for each
pair in {(tx,i,δ, ty,i,δ) |x ∈ C, y ∈ C}. The check first
searches for all feasible trip-sharing routes for the pair being
considered, e.g., by enumerating all valid route permutations
and checking if they satisfy constraints (1)–(5). Should fea-
sible routes exist, the algorithm only considers those with
a non-negative travel time reduction, where the travel time
reduction ttr(r) of a route r is the difference between the
time of the trip sharing route and the total duration of the
individual (unshared) trips. The rationale behind this restric-
tion is to consider trip sharing only if its route time is at
least as good as the total duration of the individual trips.
Edges store the feasible routes between pairs of trips satis-
fying the shareability check. The algorithm for constructing
Gi,δ is summarized in Algorithm 1.

Let Rk,i,δ denote the set of all feasible inbound trip-
sharing routes serving k commuters on day δ. R1,i,δ is sim-
ply given by the routes of all individual trips represented
by the nodes of Gi,δ , while R2,i,δ is obtained by taking the
union of all feasible routes stored in the edges of Gi,δ . To ob-
tain Rk,i,δ for k > 2, all k-cliques in Gi,δ are first identified.
A k-clique is the subset of k nodes of the graph such that
every two nodes in the set are connected. Let Qk,i,δ denote
the set of all k-cliques in Gi,δ . For each clique q ∈ Qk,i,δ ,
the algorithm searches for all feasible trip-sharing routes for
the set of trips in q with non-negative travel time reduction
and stores them in Rk,i,δ . Should there exist multiple feasi-
ble routes for q, the algorithm only stores the fastest route
for each driver. Since this work focuses on small vehicles,
it only considers sharing for up to 4 commuters and hence
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Algorithm 2 All Feasible Inbound Trip Sharing Routes

Require: Gi,δ = (Ti,δ, E)
1: for each tc,i,δ ∈ Ti,δ do
2: R1,i,δ ← R1,i,δ ∪R{tc,i,δ}

3: for each (tx,i,δ, ty,i,δ) ∈ E do
4: R2,i,δ ← R2,i,δ ∪R{tx,i,δ,ty,i,δ}

5: for each k ∈ {3, 4} do
6: Qk,i,δ ← {all k-cliques in Gi,δ}
7: for each q ∈ Qk,i,δ do
8: Rtemp ← {all feasible trip sharing routes for q}
9: for each r ∈ Rtemp do

10: if ttr(r) ≥ 0 then
11: Rk,i,δ ← Rk,i,δ ∪ {r}
12: Ri,δ ← R1,i,δ ∪R2,i,δ ∪R3,i,δ ∪R4,i,δ

13: return Ri,δ

Ri,δ is obtained from R1,i,δ∪R2,i,δ∪R3,i,δ∪R4,i,δ . How-
ever, the algorithm can be extended to vehicles with arbitrary
capacity. The algorithm for obtaining Ri,δ is summarized in
Algorithm 2. The same procedure of shareability-graph con-
struction and identification of all feasible trip-sharing routes
is repeated on To,δ and Trt,δ to obtain Ro,δ , and Rrt,δ .

Global Shareability with Travel Distance Constraint
While the clustering approach significantly improves the
tractability of the approach, it may preclude trip sharing
across cluster boundaries for commuters who live within a
short distance. An alternative to the clustering approach, that
still enforces close-proximity trip sharing, amounts to build-
ing global shareability graphs whose edges must have travel
distances less than σlimit. More formally, a route is feasible
in the global shareability graphs Gi,δ , Go,δ , and Grt,δ if it
satisfies (1)–(5) and the additional constraint:

td(o2, o1) ≤ σlimit ∧ td(d1, d2) ≤ σlimit (6)

where td(x, y) is the travel distance for the shortest path be-
tween locations x and y. Ri,δ , Ro,δ , and Rrt,δ can then be
obtained from the global shareability graphs using the algo-
rithm described in the previous section.

5 Optimization Models for Ride Sharing

This section presents optimization models for finding opti-
mal ride-sharing assignments for commuters for each clus-
ter and every day δ ∈ D. The models utilize the trip-sharing
routes from the shareability graphs. The names, high-level
constraints, and desirable properties of each model are sum-
marized in Table 1.

MIP-DD MIP-DD is the least-constrained optimization
model for ride sharing and satisfies Principles (1–3) from
the introduction. It minimizes the number of cars required
subject to the constraint that drivers are the same for the in-
bound and outbound routes. This ensures the cars leaving a
cluster returns to the cluster every day. The model optimizes
ride-sharing assignments for each day δ ∈ D independently.
As a result, drivers selected for different days do not need

to be the same. Passengers also do not need to be paired
with the same driver for inbound and outbound routes for
the same day or for different days.

The model is defined in terms of two binary variables:
variable xr indicates whether trip sharing route r ∈ Ri,δ ∪
Ro,δ is selected for the optimal assignment and variable yc
specifies whether commuter c ∈ C is selected as the driver
for a pair of inbound and outbound routes. In the following
formulation, R ∼ c denotes all routes from set R serving
commuter c, i.e., R ∼ c = {r ∈ R | c ∈ C(r)} and P (r) de-
notes the passengers of route r, i.e., P (r) = C(r)\{D(r)}.
The model for day δ is specified as follows:

min
∑

r∈Ri,δ∪Ro,δ

xr (7)

subject to
∑

r∈(Ri,δ∼c)

xr = 1 ∀c ∈ C (8)

∑

r̂∈(Ro,δ∼c)

xr̂ = 1 ∀c ∈ C (9)

yD(r) ≥ xr ∀r ∈ Ri,δ ∪Ro,δ (10)

yc ≤ 1− xr ∀r ∈ Ri,δ ∪Ro,δ, ∀c ∈ P (r) (11)
xr ∈ {0, 1} ∀r ∈ Ri,δ ∪Ro,δ (12)
yc ∈ {0, 1} ∀c ∈ C (13)

Objective function (7) minimizes the number of cars for in-
bound and outbound routes. Constraints (8) and (9) indicate
that exactly one inbound and one outbound route must be se-
lected for each commuter respectively. Constraints (10) as-
sign drivers of selected routes, while constraints (11) prevent
passengers of selected routes from being selected as drivers.

MIP-DD-DIO MIP-DD-DIO contains an additional re-
quirement compared to MIP-DD. It requires that commuters
for inbound and outbound routes must be the same. This
constraint reduces coordination costs and alleviates trust
concerns by reducing the maximum unique matches per
commuter from 2 to 1 per day. Hence the model can be
considered to satisfy Principles (1–5), although it does so
partially. To satisfy this constraint, the model utilizes Rrt,δ

since a roundtrip-sharing route already ensures commuters
of its inbound route are the same as those of its outbound
route. The model uses a single binary variable xr to indicate
whether roundtrip route r ∈ Rrt,δ is selected in the optimal
assignment. The model for day δ is specified as follows:

min
∑

r∈Rrt,δ

xr (14)

subject to
∑

r∈(Rrt,δ∼c)

xr = 1 ∀c ∈ C (15)

xr ∈ {0, 1} ∀r ∈ Rrt,δ (16)
Objective function (14) minimizes the number of cars used
for roundtrips and constraints (15) state that exactly one
roundtrip route must be selected for each commuter.
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Application Name Constraints Principles

Ride sharing

MIP-DD • Drivers of inbound and outbound routes consistent on any given day (1–3)
MIP-DD-DIO • Commuters of inbound and outbound routes consistent on any given day (1–5)
MIP-WD-DIO • Commuters of inbound and outbound routes the same on any given day

• Drivers are consistent every day
(1–6)

MIP-WD-WIO • Commuters of inbound and outbound routes consistent on any given day
• Drivers are consistent every day
• Passenger-driver pairings are consistent every day

(1–6)

Car sharing MIP-DC • Total number of inbound and outbound routes consistent on any given day (1–3)

Table 1: Summary of Optimization Models for Trip Sharing.

MIP-WD-DIO MIP-WD-DIO has the same objective and
constraints as MIP-DD-DIO, with an additional constraint
that drivers for every day δ ∈ D must be consistent. In other
words, a commuter is prohibited from being a driver on some
days and a passenger on others. This model satisfies Princi-
ples (1–6), since now drivers and passengers have a clearly
identified role. The model uses two binary variables: vari-
able xr is the same as in MIP-DD-DIO and variable yc to
indicate whether commuter c ∈ C is selected as the driver
for a roundtrip route. The model is specified as follows:

min
∑

δ∈D

∑

r∈Rrt,δ

xr (17)

subject to
∑

r∈(Rrt,δ∼c)

xr = 1 ∀δ ∈ D, ∀c ∈ C (18)

yD(r) ≥ xr ∀δ ∈ D, ∀r ∈ Rrt,δ (19)

yc ≤ 1− xr ∀δ ∈ D, ∀r ∈ Rrt,δ, ∀c ∈ P (r) (20)

xr ∈ {0, 1} ∀δ ∈ D, ∀r ∈ Rrt,δ (21)

yc ∈ {0, 1} ∀c ∈ C (22)

Objective function (17) globally minimizes the number of
cars for every day δ ∈ D. Constraints (18) ensure exactly
one roundtrip route is selected for each commuter every day,
constraints (19) assign drivers of selected roundtrip routes,
and constraints (20) ensure passengers of selected routes are
never assigned as drivers. The differences with MIP-DD-
DIO are quite subtle when formalized: The key is to rec-
ognize that the universal quantification in Constraints (19)
and (20) forces a driver to drive every day and a passenger
to never drive. Model MIP-DD-DIO in contrast is optimized
once for each day.

MIP-WD-WIO MIP-WD-WIO adds a final additional
constraint that passenger-driver pairings for every day δ ∈ D
must be consistent, i.e., a passenger always commutes with
the same driver. This is the most desirable model and it
strongly obeys all principles. Let Rrt denote the set of all
feasible roundtrip routes across all days, i.e. Rrt = {r ∈
Rrt,δ | δ ∈ D}, and W denote the set of all passenger-
driver pairs obtained from all feasible roundtrip routes, i.e.,
W = {(c,D(r)) | c ∈ P (r), r ∈ Rrt}. The model uses
three binary variables: xr and yc are the same as those used
in MIP-WD-DIO, and vw keeps track of each passenger-
driver pair w ∈ W selected in the optimal assignment. Let

Γ(c) denote the set of all routes where c is a passenger, i.e.,
Γ(c) = {r ∈ Rrt | c ∈ P (r)}, and Λ(c) denote the set of
all possible drivers for passenger c, i.e., Λ(c) = {D(r) | r ∈
Γ(c)}. The objective function of the model is given by (17),
subject to (18), (19), (20), (21), (22), and

v(c,D(r)) ≥ xr ∀δ ∈ D, ∀r ∈ Rrt,δ, ∀c ∈ P (r) (23)

v(c,p) ≤ 1− xr ∀δ ∈ D, ∀r ∈ Rrt,δ, ∀c ∈ P (r),

∀p ∈ Λ(c) \ {D(r)}
(24)

vw ∈ {0, 1} ∀w ∈ W (25)
Constraint (23) selects passenger-driver pairs according to
selected roundtrip routes, while constraint (24) prohibits se-
lection of passenger-driver pairs other than those from se-
lected roundtrip routes.

6 Optimization Model for Car Sharing

This section studies community-based car sharing and it as-
sumes that each cluster has a pool of cars that can be used
by anyone for commuting trips. Model MIP-DC minimizes
daily car usage for commuting trips subject to the constraint
that the number of inbound routes is equal to the number
of outbound routes on any given day. This constraint en-
sures that the number of cars shared in the cluster remains
the same day after day. The model approximates the number
of daily cars and routes required for a car-sharing model.1
Drivers for inbound and outbound trips for any given day do
not need to be the same, which makes the model even less
restrictive than MIP-DD. The model optimizes trip assign-
ments for each day independently. It uses binary variable xr

like in MIP-DD. Its objective function is given by (7) subject
to (8), (9), (12), and

∑

r∈Ri,δ

xr =
∑

r̂∈Ro,δ

xr̂ (26)

Constraint (26) ensures the total number of inbound and out-
bound routes are the same for any day δ. This model satisfies
the same set of principles as MIP-DD.

7 Experimental Results

The Dataset The dataset contains access information of
15 parking structures located in downtown Ann Arbor. Each

1For simplicity, we ignore where the cars are parked in the clus-
ter: They can be at a central point or with the drivers. We also ig-
nore how the drivers get to the car, which is not a major issue given
the small diameter of the clusters.
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Figure 1: Commuting Patterns on Week 2 (Busiest Week) of April 2017.
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Figure 2: Car Reduction Results for Clustering Approach.

entry contains the ID, access time, and direction (in/out) of
each customer throughout April 2017. This information was
joined with the home address of every customer to recon-
struct their daily trips. The dataset provides trip informa-
tion for 15,000 commuters within an area spanning 13,000
square miles. About 9000 people commute to these parking
lots on any given weekday. For more insights, we partition
the commuters into two sets; the 4,000 commuters living
within city limits (the Ann Arbor region bounded by high-
ways US-23, M-14, and I-94), and the 11,000 commuters
living outside that region. Results are given for the busi-
est week of the month (week 2), and focus on Monday–
Thursday, which are the busiest days. Figure 1 depicts the
commuting patterns of this population which are remarkably
predictable and consistent, a key property for effective car-
pooling (Buliung et al. 2010).

The Algorithms The values σlimit = 2 miles and Δ =
20 mins were used for most experiments. We also include
results for σlimit = 2 ± 1 miles and Δ = 20 ± 10 mins
to demonstrate the algorithm’s sensitivity to these param-
eters. The clustering stage converts all GPS coordinates
to local Cartesian coordinates before applying MATLAB
2016b’s clusterdata function. The rest of the algorithm
was implemented in C++, using GUROBI 6.5.2 for solving
the MIPs. The shortest paths, travel time, and travel dis-
tance estimates between any two locations were obtained
using GraphHopper’s Direction API and OpenStreetMap.
All models were executed on a high-performance comput-
ing cluster with 8 cores of a 2.5 GHz Intel Xeon E5-2680v3
processor, 64 GB of RAM, and a time limit of 120 hours.
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Figure 3: CPU Time as a Function of Cluster Size.
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Figure 4: Car Reduction Results for Global Shareability Ap-
proach.

Reduction in Car Usage Figure 2 summarizes results in
car reduction during the busiest week of the month with
σlimit = 2 miles and Δ = 20 mins. It shows the number
of cars for the first 4 weekdays under the various optimiza-
tion models and the clustering approach. It also displays the
required number of cars as a percentage of the number of
cars in the existing no-sharing conditions.

The first insight is that ride-sharing and car-sharing pro-
grams may bring substantial benefits for the city of Ann Ar-
bor. For both programs, the results show a potential reduc-
tion of about 44% in car utilization for community-based
ride sharing (MIP-DD) and 45% for community-based car
sharing (MIP-DC). This would substantially reduce pressure
on parking in the city and congestion during the morning and
evening commutes.

The second insight is that these benefits require flexibil-
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Location Day

MIP-DC CPU Time (s)
CPU Time (s) Duality Gap MIP-DD-DIO MIP-WD-DIO MIP-WD-WIO

Outside city limits

Monday 13513 0.07% 10

45 66
Tuesday 38516 0.08% 10
Wednesday 10695 0.08% 8
Thursday 11288 0.11% 9

Inside city limits

Monday 28635 0.97% 4275

1904 551
Tuesday 32235 0.47% 21
Wednesday 36848 0.99% 17
Thursday 66800 2.10% 21

Table 2: CPU Times of Global Shareability Approach with σlimit = 2 miles and Δ = 20 mins.
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Figure 5: Duality Gap Convergence of Global Shareability Optimization Models.

ity. As the models enforce additional constraints on driver
selection and the driver-passenger matching, the results sig-
nificantly deteriorate. When the matching must be the same
inbound and outbound on a given day (MIP-DD-DIO), the
potential reduction in car utilization is around 20%. This is
still significant but these results also highlight the challenge
of matching commuters in roundtrips versus one-way trips.
When the drivers and the driver-passenger matching are the
same every day (MIP-WD-WIO), the reduction falls to about
2%. It remains around 10% when the drivers are the same
every day, but the driver-passenger matching must only be
the same inbound and outbound each day (but may differ on
different days) (MIP-WD-DIO). It is particularly interest-
ing that desirable properties (4–6) for ride-sharing and car-
sharing platforms are extremely hard to enforce while reduc-
ing car utilization effectively. Any effective platform will re-
quire a different sharing pattern for every weekday, although
these schedules can be repeated week after week. As a result,
these platforms will necessarily impose some psychological
burden as commuters need to interact with different people
and may have different daily roles.

Figure 3 summarizes CPU times of each optimization

1
0

0
%

1
0

0
%

1
0
0
%

1
0
0
%

9
9

% 9
9
%

9
9

%

9
9
%

9
6

% 9
6

%

9
6
%

9
6
%

9
0
% 9
1
%

9
1

%

9
1

%

7
7

% 7
7
%

7
8
%

7
7
%

7
6

% 7
6

%

7
7

%

7
6

%

N
o

 S
h
ar

in
g

N
o

 S
h
ar

in
g

N
o

 S
h
ar

in
g

N
o

 S
h
ar

in
g

M
IP

-W
D

-W
IO

M
IP

-W
D

-W
IO

M
IP

-W
D

-W
IO

M
IP

-W
D

-W
IO

M
IP

-W
D

-D
IO

M
IP

-W
D

-D
IO

M
IP

-W
D

-D
IO

M
IP

-W
D

-D
IO

M
IP

-D
D

-D
IO

M
IP

-D
D

-D
IO

M
IP

-D
D

-D
IO

M
IP

-D
D

-D
IO

M
IP

-D
D

M
IP

-D
D

M
IP

-D
D

M
IP

-D
D

M
IP

-D
C

M
IP

-D
C

M
IP

-D
C

M
IP

-D
C

0

50000

100000

150000

200000

250000

300000

Monday Tuesday Wednesday Thursday

V
eh

ic
le

 m
ile

s t
ra

ve
le

d

Figure 6: Vehicle Miles Traveled During Trip Sharing.

model for various cluster sizes. CPU times increase expo-
nentially with cluster size for each model, with MIP-DD-
DIO consistently being the least expensive and MIP-DD be-
ing the most. The MIP-DD model cannot be solved to opti-
mality within the time limit when clusters are of size 150 or
more. In these cases, the figure reports the time to achieve
the smallest duality gap. The final duality gaps for these
clusters are also indicated in the figure.

Figure 4 summarizes car reduction results for each opti-
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Figure 7: Number of Cars for Trip Sharing of Commuters Living Outside City Limits When σlimit = {1, 2, 3} miles.
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Figure 8: Number of Cars for Trip Sharing of Commuters Living Outside City Limits When Δ = {10, 20, 30} mins.

mization model using the global shareability approach dur-
ing the same period (week 2) with the same parameters
(σlimit = 2 miles and Δ = 20 mins), Table 2 shows cor-
responding CPU times, and Figures 5a–5d show how the so-
lution quality of each model evolves over time in the worst
case. Since MIP-DD is intractable in this approach, its re-
sults are not shown. MIP-DC cannot be solved to optimality,
so the table reports the CPU times to achieve the smallest
duality gap (also included in Table 2). Comparison of the re-
sults with those from Figure 2 reveals that the global share-
ability approach consistently produces larger car reduction,
with improvements ranging from 1% for MIP-WD-WIO to
7% for MIP-DC. This improvement comes at a price how-
ever: The CPU times significantly increase and are 1 to 3
orders of magnitude higher than the clustering approach. It
is also worth mentioning that the clustering approach lends
itself very well to parallelization, since each cluster can be
optimized concurrently, whereas the global shareability ap-
proach does not. The trends with respect to flexibility ob-
served in Figure 2 remain present in the global approach,
where enforcement of additional selection and matching
constraints diminish trip shareability.

Reduction in Miles Traveled Figure 6 shows the total
travel distance of all routes for each model from the clus-
tering approach. The results show trends similar to daily
car reductions. However, the percentage reduction in daily
miles traveled is not as significant as in daily car usage.
Commuters living further from the city are less likely to
share trips due to the small size of their clusters, while their
travel distances account for more in the vehicle miles trav-
eled. Nevertheless, MIP-DD and MIP-DC reduce vehicle
miles traveled by an average of 23% and 24% a day which

amounts to approximately 58,000 miles a day or 6.5 miles
per commuter.

Sensitivity to the Cluster Diameter and Time Windows
Figure 7 shows the sensitivity of the algorithm to the clus-
ter diameter σlimit for the commuters outside the city limits.
The base value is modified by ±1 miles while keeping Δ
constant at 20 mins. The first observation is that the increase
in diameter does not fundamentally change the nature of the
prior conclusions: The reductions in car usage for MIP-WD-
WIO, MIP-WD-DIO, and MIP-DD-DIO range from 1 to
4% when the diameter is increased. Interestingly, MIP-DC
and MIP-DD are most affected by changes in diameters. In-
creasing (resp. decreasing) the diameter by 1 mile improves
(resp. degrades) trip sharing by 6% (resp. 13%) for MIP-DC
(MIP-DD is similar). MIP-DD-DIO, which is an interme-
diate model, have improvements and degradation by about
4%, which is not negligible, but does not bring the model
close to MIP-DC and MIP-DD.

Figure 8 shows the performance of each model for com-
muters living outside city limits as Δ is varied between
{10, 20, 30} mins while keeping σlimit equal to 2 miles. The
results show a stronger sensitivity to the time windows for
MIP-WD-WIO, MIP-WD-DIO, and MIP-DD-DIO. When
enlarging the time windows, the additional constraints are
easier to enforce, showing that the commuting schedule with
additional reduction of 3%, 8%, and 9% for these models.
MIP-DC and MIP-DD obtain similar benefits when enlarg-
ing the time windows and when expanding the diameters.

The Cost of Car Balancing All models ensure that the
cars leaving a cluster return to the cluster. Figure 9 shows
that the cost of this balancing constraint is relatively small. It
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Figure 9: The Cost of Car Balancing.

compares MIP-DD and MIP-DC on the commuters outside
the city limits with two models, MIP-I and MIP-O, that min-
imize the inbound routes and the outbound independently.
Balancing the cars induces a cost increase of about 2% for
MIP-DC and 4% for MIP-DD over MIP-O. Interestingly, the
outbound schedule MIP-O is more challenging due to the
less regular outbound patterns of commuters.

8 Conclusion

This paper explored the idea of community-based trip shar-
ing and its application to car pooling and car sharing. It stud-
ied the trade-off between the effectiveness of community-
based trip sharing in reducing daily car usage and the desir-
able principles for trip sharing platforms. These ideas were
explored on a large case study using a dataset of 15,000 com-
muters working in downtown Ann Arbor (Michigan).

The paper showed that a platform implementing the core
principles for trip sharing can reduce daily car usage by up to
44%, which amounts to approximately 4000 cars, and trav-
eled miles by 58,000 daily. However, as additional principles
are integrated, e.g., low coordination costs and clear com-
muter roles, the benefits progressively reduce and eventu-
ally disappear almost entirely. The paper also showed that
these results are robust with respect to the cluster sizes and
time windows, although more flexibility on both dimensions
help alleviate some of the trade-off, with temporal flexibil-
ity bringing the most benefits. The study thus indicated that
there are trade-offs between the principles themselves.

Future work will be devoted to the maximization of trip
sharing opportunities by exploring other clustering tech-
niques, integrating personalized matching constraints based
on individual commuter preferences, and scaling the algo-
rithms for applications in large metropolitan areas.

References
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