
Enhancing Constraint-Based
Multi-Objective Combinatorial Optimization

Miguel Terra-Neves, Inês Lynce, Vasco Manquinho
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal

{neves, ines, vmm}@sat.inesc-id.pt

Abstract

Minimal Correction Subsets (MCSs) have been successfully
applied to find approximate solutions to several real-world
single-objective optimization problems. However, only re-
cently have MCSs been used to solve Multi-Objective Com-
binatorial Optimization (MOCO) problems. In particular, it
has been shown that all optimal solutions of MOCO prob-
lems with linear objective functions can be found by an MCS
enumeration procedure.
In this paper, we show that the approach of MCS enumer-
ation can also be applied to MOCO problems where objec-
tive functions are divisions of linear expressions. Hence, it is
not necessary to use a linear approximation of these objec-
tive functions. Additionally, we also propose the integration
of diversification techniques on the MCS enumeration pro-
cess in order to find better approximations of the Pareto front
of MOCO problems. Finally, experimental results on the Vir-
tual Machine Consolidation (VMC) problem show the effec-
tiveness of the proposed techniques.

1 Introduction

The integration of propositional satisfiabilty (SAT) solvers
in algorithms to solve optimization problems such as Maxi-
mum Satisfiability (MaxSAT) or Pseudo-Boolean Optimiza-
tion (PBO) resulted in a new generation of highly effective
tools to solve optimization problems. Nevertheless, there
are still a wide variety of problems where state of the art
MaxSAT or PBO solvers cannot find an optimal solution in
useful time. A well-known approach to approximate optimal
solutions for these optimization problems is by enumerating
Minimal Correction Subsets.

A Minimal Correction Subset (MCS) of an unsatisfi-
able set of constraints F is a minimal subset C such that
if all constraints in C are removed from F , then F be-
comes satisfiable. Recently, several algorithms for effective
MCS enumeration have been proposed (Bacchus et al. 2014;
Felfernig, Schubert, and Zehentner 2012; Grégoire, Lagniez,
and Mazure 2014; Marques-Silva et al. 2013) and success-
fully applied to obtain good quality solutions for problems
where complete algorithms are unable to do it.

In many real-world applications, such as scheduling (Itur-
riaga, Dorronsoro, and Nesmachnow 2017) or green com-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

puting (Zheng et al. 2016), there is more than one objec-
tive (also known as cost function) to be optimized. In Multi-
Objective Combinatorial Optimization (MOCO), there may
exist multiple optimal solutions, known as Pareto optimal
solutions, each of them favoring certain objectives at the ex-
pense of others. Furthermore, finding the Pareto front, i.e.
all Pareto optimal solutions, is well-known to be very hard.
Hence, for large MOCO problem instances, current algo-
rithms are usually just able to approximate the Pareto front.

There is a wide variety of algorithms to solve MOCO
problems, ranging from evolutionary algorithms that ap-
proximate the Pareto front (Deb et al. 2000; Xu and Fortes
2010) to exact methods (Jackson et al. 2009). Neverthe-
less, despite all its success in optimization with a single cost
function, only very recently have constraint-based methods
been proposed to solve MOCO. For instance, the Guided
Improvement Algorithm (GIA) (Jackson et al. 2009), is im-
plemented in the optimization engine of solver Z3 for find-
ing Pareto optimal solutions of Satisfiability Modulo Theo-
ries (SMT) instances with multiple cost functions. Recently,
it has been shown that one can find the Pareto front of a
MOCO instance by enumerating the set of MCSs (Terra-
Neves, Lynce, and Man qui nho 2017) or the P -minimal
models (Soh et al. 2017) of a propositional formula.

This paper enhances constraint-based approaches for sol-
ving MOCO with the following contributions: (1) a proof
that enumeration of MCSs can be used even when the cost
functions in MOCO are defined as divisions of linear expres-
sions; (2) two new diversification methods for enumerating
MCSs in order to quickly find better approximations of the
Pareto front; (3) an extensive experimental evaluation on in-
stances of the virtual machine consolidation (VMC) problem
taken from the Google Cluster Data project that show the
impact of the proposed ideas in solving MOCO instances.

The paper is organized as follows. Section 2 introduces
several basic definitions, including a formal definition of
MOCO. In section 3, a constraint-based method is proposed
for solving MOCO problem instances containing cost func-
tions that are divisions of linear expressions. Section 4 pro-
poses MCS sampling and path-based enumeration to obtain
a wider diversification of MCS, resulting in an improved ap-
proximation of the Pareto front. Section 5 shows the effec-
tiveness of the proposed techniques in a MOCO formulation
of the VMC problem, and section 6 concludes the paper.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6649

2 Preliminaries

This section introduces the necessary definitions and nota-
tions that will be used in the reminder of the paper. First,
Pseudo-Boolean Optimization (PBO) and Minimal Correc-
tion Subsets (MCSs) are defined. Next, the ClauseD (CLD)
algorithm for MCS enumeration is reviewed. Finally, Multi-
Objective Combinatorial Optimization (MOCO) is defined.

2.1 Pseudo-Boolean Optimization

Let X = {x1, x2, . . . , xn} be a set of n Boolean variables.
A literal is either a variable xi or its complement ¬xi. Given
a set of m literals l1, l2, . . . , lm and their respective coeffi-
cients ω1, ω2, . . . , ωm ∈ Z, a Pseudo-Boolean (PB) expres-
sion has the following form:∑

ωi · li. (1)

Given an integer k ∈ Z, a PB constraint is a linear inequality
with the form:∑

ωi · li �� k, �� ∈ {≤,≥,=}. (2)

Given a set F = {c1, c2, . . . , ck} of k PB constraints de-
fined over a set of X Boolean variables, the Pseudo-Boolean
Satisfiability (PBS) problem consists of deciding if there ex-
ists a complete assignment α : X → {0, 1}, such that all
PB constraints in F are satisfied. If that is the case, we say
that F is satisfiable and α satisfies F , denoted α(F) = 1.
Otherwise, we say that F is unsatisfiable and α(F) = 0
for any assignment α. Analogously, given a PB constraint
c, α(c) = 1 (α(c) = 0) denotes that α satisfies (does not
satisfy) c. In PBO (Boros and Hammer 2002), given a set of
PB constraints F and a cost function f defined as a linear
PB expression over a set of Boolean variables X , the goal is
to compute a complete assignment to the variables in X that
satisfies all of the constraints in F and minimizes the value
of f . Given a complete assignment α, we denote as f(α) the
cost of α.
Example 2.1. Let F = {(x1 + x2 + x3 ≥ 2)} be the set of
PB constraints and f(X) = 4 · x1 + 2 · x2 + 3 · x3 the cost
function of a PBO instance. α1 = {(x1, 0), (x2, 1), (x3, 1)}
is an optimal assignment and has a cost of 5. α2 =
{(x1, 1), (x2, 0), (x3, 1)} is not an optimal assignment be-
cause it has a cost of 7. α3 = {(x1, 0), (x2, 1), (x3, 0)} is
an invalid assignment because it does not satisfy F .

For simplicity reasons, given p PB constraints c1, c2, . . . ,
cp, the disjunction operator ∨ is used to represent the con-
straint that at least one of the PB constraints must be satis-
fied (e.g. c1 ∨ c2 ∨ · · · ∨ cp). Note that such disjunctions can
be easily converted to sets of PB constraints using auxiliary
variables. Finally, note that propositional clauses are special
cases of PB constraints. For example, l1 ∨ . . .∨ lm is equiv-
alent to

∑m
j=1 lj ≥ 1. Hence, for ease of notation, in some

cases, the usual clause notation is used.

2.2 Minimal Correction Subsets

Given an unsatisfiable set of PB constraints F , a Minimal
Correction Subset (MCS) is a minimal subset C ⊆ F such
that F \ C is satisfiable.

Algorithm 1: CLD algorithm for computing an MCS
Input: FH , FS

1 S ← FH

2 C ← FS

3 status ← SAT
4 while status = SAT do
5 D ← ∨

c∈C c
6 (status, α) ← PBS(S ∪ {D})
7 if status = SAT then
8 S ← S ∪⋃

c∈C,α(c)=1{c}
9 C ← FS \ S

10 return C

Definition 2.1. Let F be an unsatisfiable set of PB con-
straints. A subset C ⊆ F is an MCS of F if, and only if,
F \C is satisfiable and (F \C)∪{c} is unsatisfiable for all
c ∈ C.

Example 2.2. Consider the unsatisfiable set of PB con-
straints F = {(x1 + x2 = 1), (x1 ≥ 1), (x2 ≥ 1)}. F has
three MCSs C1 = {(x1 ≥ 1)}, C2 = {(x2 ≥ 1)} and
C3 = {(x1 + x2 = 1)}.

Several algorithms exist for finding MCSs (Bailey and
Stuckey 2005; Felfernig, Schubert, and Zehentner 2012;
Marques-Silva et al. 2013; Mencı́a, Previti, and Marques-
Silva 2015). For the purpose of this work, the state-of-the-art
CLD algorithm is used (Marques-Silva et al. 2013). CLD’s
pseudo-code is presented in algorithm 1. It receives as ar-
gument a set of hard constraints FH that must be satisfied,
and a set FS of soft constraints for which we want to find an
MCS C ⊆ FS . If looking for an MCS of a PBS F , we have
FH = ∅ and FS = F . For simplicity, we assume that FH is
always satisfiable (this can be checked using a single call to
a PBS solver). The CLD algorithm starts by initializing the
sets S and C of satisfied and not satisfied PB constraints re-
spectively (lines 1 and 2). Initially, all constraints in FS are
not satisfied. Then, it repeatedly checks if it is possible to
satisfy at least one of the constraints in C, while satisfying
all constraints in S (lines 5 and 6). If so, then sets S and C
are updated accordingly (lines 8 and 9). If not, then C is an
MCS and is returned by the algorithm (line 10).

Algorithm 1 computes a single MCS C, but it can be
used to find another MCS by incorporating the constraint∨

c∈C c in FH and re-executing the algorithm. Such a con-
straint blocks MCS C from being identified again by the al-
gorithm. Hence, the CLD algorithm can be used to enumer-
ate all MCSs of FS by blocking previous MCSs in subse-
quent invocations of the algorithm.

MCSs can be used to find approximate solutions of PBO
instances as follows. Let F be the set of PB constraints and
f(X) =

∑
ωi · li the cost function of a PBO formula.

Let L(f) be the set of all literals in f and L¬(f) the set
of clauses built from the negation of the literals in L(f),
i.e., L¬(f) =

⋃
li∈L(f){(¬li)}. Applying algorithm 1 with

FH = F and FS = L¬(f), produces an MCS C of L¬(f).
We abuse notation and denote as f(C) the cost of C, thus

6650

Table 1: Possible assignments and respective costs for the
instance in example 2.4.

x1 x2 x1 + 2 · ¬x2 ¬x1

0 0 2 1
0 1 0 1
1 0 3 0
1 1 - -

f(C) being given by

f(C) =
∑

(¬li)∈C

ωi. (3)

Any assignment that satisfies F ∪ L¬(f) \ C will have a
cost of f(C), which provides an approximation of the opti-
mum of the PBO instance. Actually, the PBO problem can
be reduced to finding the MCS C ⊆ L¬(f) that minimizes
f(C) (Birnbaum and Lozinskii 2003).

Example 2.3. Consider again example 2.1 where F =
{(x1 + x2 + x3 ≥ 2)} and f(X) = 4 · x1 + 2 · x2 + 3 · x3

We have L¬(f) = {(¬x1), (¬x2), (¬x3)}. Hence, there are
three MCSs C1 = {(¬x2), (¬x3)}, C2 = {(¬x1), (¬x3)}
and C3 = {(¬x1), (¬x2)}, with costs 5, 7 and 6 respec-
tively. C1 is the minimum cost MCS. Therefore, any assign-
ment that satisfies {(x1+x2+x3 ≥ 2), (¬x1)} is an optimal
solution of the PBO instance.

2.3 Multi-Objective Combinatorial Optimization

A Multi-Objective Combinatorial Optimization (MOCO)
(Ulungu and Teghem 1994) instance is composed of two
sets: a set F = {c1, c2, . . . , ck} of constraints that must be
satisfied and a set O = {f1, f2, . . . , fl} of cost functions to
minimize. In this work, we focus on the special case where
c1, c2, . . . , ck are PB constraints and f1, f2, . . . , fl are PB
expressions over a set X of Boolean variables.

Definition 2.2. Let M = (F,O) be a MOCO instance,
where F and O are the constraint and cost function sets,
respectively. Let α, α′ : X → {0, 1} be two complete as-
signments such that α �= α′ and α(F) = α′(F) = 1. We
say that α dominates α′, written α ≺ α′, if, and only if,
∀f∈Of(α) ≤ f(α′) and ∃f ′∈Of

′(α) < f ′(α′).

Definition 2.3. Let M = (F,O) be a MOCO instance and
α : X → {0, 1} a complete assignment. α is said to be
Pareto optimal if, and only if, α(F) = 1 and no other com-
plete assignment α′ exists such that α′(F) = 1 and α′ ≺ α.

In MOCO, the goal is to find the set of Pareto optimal so-
lutions, also referred to as solution set. Terra-Neves, Lynce,
and Man qui nho(2017) proved that finding all Pareto opti-
mal solutions can be reduced to enumerating all MCSs of
L¬(O) =

⋃
f∈O L¬(f) and filtering out the ones that corre-

spond to dominated assignments.

Example 2.4. Let F = {(x1 + x2 ≤ 1)} be the set of PB
constraints and O = {(x1+2·¬x2), (¬x1)} the set of objec-
tive functions of a MOCO instance. Table 1 shows the costs
for each possible assignment. The lines that correspond to
Pareto optimal solutions are highlighted in bold. Note that

{(x1, 1), (x2, 1)} violates the constraint in F . Hence, it is
not a valid assignment. {(x1, 0), (x2, 0)} is not Pareto opti-
mal because it is dominated by {(x1, 0), (x2, 1)}. However,
{(x1, 0), (x2, 1)} and {(x1, 1), (x2, 0)} are Pareto optimal
solutions because they are not dominated by any other as-
signment that satisfies F .

3 Handling Cost Function with Divisions
This section describes a new method to handle cost functions
that are divisions of PB expressions, i.e., cost functions with
the following form: ∑

ωi · li∑
ωj · lj . (4)

Note that these objective functions occur frequently in
scheduling and timetabling problems where one of the goals
is to optimize the ratio of occupancy of the selected re-
sources. Our method is based on the observation that, un-
der certain conditions, the minimization of a cost function
f(X) = g(X)

h(X) can be reduced to finding the Pareto optimal
solutions of the multi-objective problem with cost functions
O = {g,−h} and choosing the one that minimizes f .
Proposition 1. Consider a set of Boolean variables X and
let F be the set of PB constraints and f the cost function to
optimize defined as f(X) = g(X)

h(X) . If g(X) ≥ 0 and h(X) >

0, then an assignment α which satisfies F and minimizes f
is a Pareto optimal solution of the multi-objective problem
with constraint set F and cost function set O = {g,−h}.

Proof. Let α be an assignment that satisfies F and mini-
mizes f . Therefore, no α′ exists such that α′ satisfies F
and f(α′) < f(α). Considering the multi-objective prob-
lem with constraint set F and O = {g,−h}, let α′ be an
assignment such that α′ ≺ α. There are two possible sce-
narios: (1) g(α′) < g(α) and −h(α′) ≤ −h(α); or (2)
g(α′) ≤ g(α) and −h(α′) < −h(α). In the first scenario,
because g(X) ≥ 0 and h(X) > 0, we have

f(α′) =
g(α′)
h(α′)

≤ g(α′)
h(α)

<
g(α)

h(α)
= f(α), (5)

which is a contradiction. The same occurs in the second sce-
nario. Therefore, α′ cannot exist and α must be a Pareto op-
timal solution of the multi-objective problem.

Corollary 1. Let (F,O) be a MOCO problem with con-
straint set F and cost function set O, defined over a set of
Boolean variables X . Let f ∈ O be a cost function of the
form f(X) = g(X)

h(X) . Let A and A′ be the Pareto optimal
solution sets of (F,O) and (F,O \ {f} ∪ {g,−h}), respec-
tively. If g(X) ≥ 0 and h(X) > 0, then A ⊆ A′.

Proof. Let A be the solution set of (F,O) and α ∈ A
some Pareto optimal solution. Let f ∈ O be a cost func-
tion of the form f(X) = g(X)

h(X) . Consider the single-
objective optimization problem with constraint set F ′ =
F∪⋃f ′∈O,f ′ �=f{f ′(X) = f ′(α)} and cost function f . From
proposition 1, it follows that α is a Pareto optimal solu-
tion of (F ′, {g,−h}) and, consequently, of (F,O \ {f} ∪
{g,−h}).

6651

Let (F,O) be a MOCO problem with cost functions com-
posed of divisions of PB expressions. Corollary 1 entails that
(F,O) can be reduced to a linear MOCO as follows: (1) for
each f ∈ O with the form f(X) = g(X)

h(X) , replace f in O

with g and −h, producing a cost function set O′; (2) find
the solution set A′ of (F,O′); (3) build the solution set of
(F,O) from A′ by filtering out dominated solutions accord-
ing to the original cost function set O.

It may be the case that f is not a division but a sum
of divisions, i.e., f(X) = g1(X)

h1(X) + g2(X)
h2(X) + · · · + gk(X)

hk(X) .
In this scenario, we can replace f with 2k cost functions
g1, g2, . . . , gk,−h1,−h2, . . . ,−hk, as long as gi(X) ≥ 0
and hi(X) > 0 for all i ∈ {1, 2, . . . , k}. The proof for this
is very similar to the proofs of proposition 1 and corollary 1,
and is omitted due to space restrictions.

4 Diversification

In this section, two diversification mechanisms to improve
diversity of MCSs are introduced. Several techniques have
already been proposed to generate diverse solutions in pro-
positional formulas (Nadel 2011). In this work, first we
propose a technique that makes use of XOR hash func-
tions (Gomes, Sabharwal, and Selman 2006; Chakraborty,
Meel, and Vardi 2013) in order to sample MCSs instead
of enumerating them. The second technique partitions the
search tree based on the literals with the largest coefficients
in each cost function. Then, CLD algorithm is used to search
for an MCS in each partition.

4.1 MCS Sampling

Given positive integers n and m, we consider the family
Hxor(n,m) of hash functions, which is defined as follows:

Hxor(n,m) =

{
h : h(y)[i] = ai,0 ⊕

(
n⊕

k=1

ai,k ∧ y[k]

)
,

ai,k ∈ {0, 1}, 1 ≤ i ≤ m

}

(6)

where ⊕ denotes the XOR Boolean operator. Observe that a
hash function h ∈ Hxor(n,m) maps a bit-string of length
n to another of length m. (Gomes, Sabharwal, and Sel-
man 2006) proved that Hxor(n,m) is 3-universal. Conse-
quently, Hxor(n,m) is also 2-universal, which guarantees
that, given h ∈ Hxor(n,m) and x, y ∈ {0, 1}n such that
x �= y, the probability that h(x) = h(y) is 2−m (Carter and
Wegman 1977). One can choose a random hash function in
Hxor(n,m) by uniformly and independently choosing the
values of the ai,k coefficients in equation (6).

In algorithm 2, we present the SampleMCS algorithm
for sampling a single MCS of a MOCO instance. Sam-
pleMCS has a single configuration parameter: the bit-string
length m. It starts by randomly choosing a hash function
h ∈ Hxor(|X| ,m) (line 1) and a sequence β of m bits
(line 2). The CLD algorithm is called with the additional
constraint that h(X) = β (line 3), producing a potential

Algorithm 2: SampleMCS algorithm for sampling a sin-
gle MCS of a MOCO instance

Input: F , O, m
1 h ← random hash function in Hxor(|X| ,m)
2 β ← random bit sequence in {0, 1}m
3 C ← CLD(F∪ Encode(h(X) = β), L¬(O))
4 if F ∪ (L¬(O) \ C) ∪ {(∨l∈C l

)} is satisfiable then

5 C ← CLD(F ∪ (L¬(O) \ C), C)
6 return C

MCS C. Then, SampleMCS checks if C is an MCS of the
original instance (line 4). If so, then the algorithm terminates
returning C (line 6). Otherwise, the hash function constraint
is discarded and CLD continues its execution (line 5). Simi-
larly to CLD, SampleMCS can also be used to sample mul-
tiple MCSs by including the constraint

(∨
l∈C l

)
in F and

re-running the algorithm.
Finally, we note that other MCS algorithms (Bailey and

Stuckey 2005; Felfernig, Schubert, and Zehentner 2012;
Mencı́a, Previti, and Marques-Silva 2015) can be used in-
stead of CLD. Although not explicitly stated in the pseudo-
code, it is possible that adding an hash function h(X) = β
might result in an unsatisfiable formula (line 3). In that case,
no MCS is generated.

4.2 Path Diversification

Given the set of variables X of a MOCO, the idea behind
path diversification is to select a subset XP ⊂ X and parti-
tion the search tree considering all possible assignments to
the variables in XP . For each cost function f ∈ O, nP vari-
ables of f are selected for XP as follows: (1) sort the literals
in L(f) in decreasing order of their respective coefficients in
f ; (2) add the variables of the first nP literals to XP , skip-
ping literals of variables already in XP .

Example 4.1. Let O = {f1, f2}, where f1 = 2·x1+4·¬x2+
3 · x3 and f2 = 5 · x2 + ¬x4 + 3 · x5, be the cost function
set of a MOCO instance. After sorting, we have L(f1) =
{¬x2, x3, x1} and L(f2) = {x2, x5,¬x4}. Assuming nP =
2, we select variables x2 and x3 from L(f1), and then x5 and
x4 from L(f2). In the end, we have XP = {x2, x3, x4, x5}.

After variable selection, a queue P of diversification paths
is generated. A diversification path is a complete assignment
of the variables in XP . We prioritize switching the values of
the variables that correspond to the literals with the largest
coefficients in the cost functions, alternating between func-
tions. In other words, we begin by considering the first vari-
able selected from L(f1), then the first from L(f2), and so
on. Only after traversing all cost functions we consider the
second variable selected from each set.

Example 4.2. Recall the MOCO instance in example 4.1.
Variables x2 and x3 (x5 and x4) have coefficients 4 and 3 in
f1 (3 and 1 in f2). Therefore, the variables are considered
in the order x2, x5, x3, x4, and the corresponding diversifi-

6652

Algorithm 3: MCSEnumPD algorithm for enumerating
MCSs of a MOCO instance using path diversification

Input: F , O, nP

1 M ← ∅
2 P ← GeneratePaths(F , O)
3 while P �= ∅ do
4 αP ← PopFront(P)
5 if F ∪⋃

(x,b)∈αP
(x = b) is satisfiable then

6 C ← CLD(F ∪⋃
(x,b)∈αP

(x = b), L¬(O))

7 if F ∪ (L¬(O) \ C) ∪ {(∨l∈C l
)} is satisfiable

then
8 C ← CLD(F ∪ (L¬(O) \ C), C)
9 M ← M ∪ {C}

10 F ← F ∪ (∨
l∈C l

)
11 PushBack(P , αP)

12 return M

cation path queue is

P =<{(x2, 0), (x5, 0), (x3, 0), (x4, 0)},
{(x2, 1), (x5, 0), (x3, 0), (x4, 0)},
{(x2, 0), (x5, 1), (x3, 0), (x4, 0)},
{(x2, 1), (x5, 1), (x3, 0), (x4, 0)},
· · · > .

(7)

The pseudo-code of MCSEnumPD, MCS enumeration
with path diversification, is presented in algorithm 3. It starts
by building the queue of diversification paths (line 2). Then,
it removes the first path from the queue (line 4) and checks
if an MCS exists for that path (line 5). If so, then an MCS
C is generated (line 6), followed by a check to validate if C
is an MCS of the original instance (line 7). After obtaining
a valid MCS, the algorithm stores it (line 9) and ”blocks”
it (line 10). The path is then placed at the end of the queue
(line 11). Note that paths for which an MCS no longer exists
are discarded by the algorithm. This process is repeated until
the queue becomes empty (line 3), i.e., no more MCSs exist
for any path.

5 Experimental Results

In this section, the performance of the techniques proposed
in sections 3 and 4 is evaluated on instances of the Virtual
Machine Consolidation (VMC) problem. In VMC, we have
several servers with fixed resource capacities and Virtual
Machines (VMs) with requirements of those same resources.
Each VM must be placed in some server, but server capaci-
ties cannot be exceeded and some VMs cannot be placed in
the same server. There exists an initial placement, i.e., a VM
can be associated with an initial server, incurring a migration
cost if the VM is placed in a different one. This cost is esti-
mated to be equal to the memory requirement of the VM. A
migration budget constraint can be used to enforce an upper
limit on the migration costs, and is specified as a percentile
bp of the total memory capacity of the servers. The goal is to

find a placement that satisfies the constraints and simultane-
ously minimizes energy consumption, migration costs and
resource wastage. The latter is a measure of the imbalance
of server resource usage.

A detailed description of the VMC problem, as well as
the MOCO formulation, can be found in the work of Terra-
Neves, Lynce, and Man qui nho(2017). Note that the authors
use a resource wastage cost function that is an approxima-
tion of the one used by Zheng et al.(2016), which is a sum
of divisions. The approximation consists in discarding the
denominators of the divisions in order to obtain a linear cost
function. In this paper, we consider the exact version of the
wastage cost function and compare the performance of the
methods proposed in section 3 with the linear approximation
of the wastage function.

The evaluation is performed on the VMC benchmarks
used in the work of Terra-Neves, Lynce, and Man qui-
nho(2017), which are based on subsets of workload traces
randomly selected from the Google Cluster Data project1.
The benchmark set includes instances with 32, 64 and 128
servers. For each benchmark instance, the sum of VM re-
source requirements can be approximately 25%, 50%, 75%
and 90% of the total capacity of the servers. The initial
placements comprises approximately 0% (no placement),
25%, 50%, 75% and 100% (all VMs initially placed) of
the total VM resource requirements. There are five different
benchmarks for each number of servers (32, 64 and 128), to-
tal VM resource requirement (25%, 50%, 75% and 90%) and
placement requirement percentile combination (0%, 25%,
50%, 75% and 100%), amounting to a total of 300 bench-
marks. For each server, the energy consumption parameters
energyidle and energyfull were chosen from the ranges
[110, 300] and [300, 840], respectively, depending on their
resource capacities. The benchmark set and the prototype
that implements the algorithms evaluated in this paper are
publicly available online2.

The Hypervolume (HV) quality indicator (Zitzler and
Thiele 1999) provides a combined measure of convergence
and diversity and is used to compare the performance of the
algorithms. HV measures the volume of the cost space be-
tween the set of non-dominated solutions returned by the
algorithm and a given reference point. The reference point
depends on the benchmark, and is set to the worst possible
costs. Larger values of HV mean that the solution set is com-
posed of solutions of better quality and/or diversity.

The Inverted Generational Distance (IGD) indicator
(Zhang and Li 2007) is also used to assess the quality of the
solution sets produced by the algorithms. IGD measures the
average Euclidean distance, in the cost space, between the
Pareto optimal solutions and the solution set returned by the
algorithm, and a smaller value is preferred. In this scenario,
since the set of Pareto optimal solutions is unknown, we use
instead an approximation obtained by combining the solu-
tion sets produced by all algorithms evaluated in this section.

All algorithms were implemented in Java and Sat4j-PB
(Le Berre and Parrain 2010) (version 2.3.4) was used as the

1http://code.google.com/p/googleclusterdata/
2http://sat.inesc-id.pt/dome

6653

PBS solver. Each algorithm was executed with a memory
limit of 4 GB and a time limit of 1800 seconds. Randomized
algorithms were executed with 10 different seeds for each
instance, and the analysis is performed using the median val-
ues over all executions. The evaluation was conducted on an
AMD Opteron 6376 (2.3 GHz) with 128 GB of RAM.

5.1 Division Reduction vs Approximation

In this section, we evaluate how the CLD algorithm per-
forms when handling resource wastage with division reduc-
tion, compared to approximating by discarding the denomi-
nators. For the purpose of this evaluation, 100 instances with
8 servers from Google’s workload traces were generated.
Because those instances are smaller, the algorithms are able
to produce better approximations of the Pareto front. There-
fore, we only show results for those instances, as they better
illustrate the impact of division reduction. We also obtained
results for the instances with 32, 64 and 128 servers, but de-
spite having positive results, the impact of division reduction
was smaller for those instances.

Figures 1 and 2 show the distributions of the HV and IGD
values, respectively, obtained by both approaches with a mi-
gration budget of 100%. A point (x, y) in the HV (IGD) dis-
tribution plot indicates that the given approach obtained an
HV (IGD) equal to or greater (lower) than y for x instances.
For example, the point (40, 0.15) on division reduction’s line
in figure 1 indicates that, with division reduction, CLD ob-
tained HVs equal to or greater than 0.15 for 40 instances.
Note that points that correspond to IGD values larger than
3 are not displayed in figure 2. This is explained by the fact
that, for some harder instances, the corresponding IGD val-
ues were too large (sometimes larger than 40), resulting in
all lines to overlap for x < 80. Therefore, in order to im-
prove the readability of IGD distribution plots, only points
up to some fixed value are displayed.

Observe that division reduction allows CLD to find solu-
tions of better quality, both in terms of IGD and HV. Fig-
ure 3 shows the distribution of the best wastage costs ob-
tained with both approaches. In general, CLD is able to find
solutions with smaller resource wastage costs when using di-
vision reduction. Results with budgets of 5%, 1% and 0.5%
were also obtained. In terms of IGD, the results were very
similar. In terms of HV and best wastage costs, the gains be-
come less significant as the budget decreases. These results
are not shown due to space restrictions.

5.2 Comparison of Diversification Techniques

Figures 4 and 5 show the HV and IGD distributions, respec-
tively, for CLD, SampleMCS and MCSEnumPD when using
a budget of 100%. The m (nP) parameter of SampleMCS
(MCSEnumPD) was set to 1 (4), as suggested by our empir-
ical evaluation. We can see that SampleMCS degrades IGD
without improving HV. On the other hand, MCSEnumPD
shows a large improvement in terms of HV. It also improves
IGD for some instances, but we can see a negative impact
on many of them. We observed that this IGD deterioration
occurs mostly on the instances with VM loads of 75% and
90%. Such instances have considerably less feasible solu-
tions, causing MCSEnumPD to spend its time proving that

no solution exists for most of the diversification paths, in-
stead of actually finding solutions. This occurs because MC-
SEnumPD does not consider the problem constraints when
generating the diversification paths. Instead, it focuses on
variables with larger coefficients in the cost functions.

Figures 6 and 8 show the HV distributions when using
budgets of 5% and 1% respectively. Observe that migration
budgets are not relevant for the 60 instances with no VMs
initially placed. Hence, the results for these instances are not
illustrated in these figures. We can see that MCSEnumPD’s
improvement in HV becomes less significant as the bud-
get decreases. Migration budget constraints reduce the space
of feasible solutions, triggering the same behavior in MC-
SEnumPD for the 75% and 90% load instances. Also, these
constraints prune the search space, making it easier for all
MCS algorithms to find good solutions. This is supported by
the observation that, in general, HV values tend to increase
as the budget decreases. Additionally, with a budget of 5%,
SampleMCS is able to find feasible solutions for more in-
stances than the original CLD algorithm. The IGD distribu-
tions are presented in figures 7 and 9. The impact in terms of
IGD also becomes less significant as the budget decreases.

5.3 Comparison with State-of-the-Art

This section compares the proposed enhancements with
state-of-the-art VMC algorithms, VMPMBBO (Zheng et
al. 2016) and MGGA (Xu and Fortes 2010). We note that
VMPMBBO was originally designed for minimizing en-
ergy consumption and resource wastage. When no initial
placement exists, no migrations occur and VMPMBBO was
run with the configuration suggested by Zheng et al.(2016).
However, when some VMs are initially placed, we have to
consider migration costs. VMPMBBO’s population is di-
vided into subsystems and each subsystem minimizes a sin-
gle cost function. The suggested configuration uses 4 sub-
systems, 2 per objective. When an initial placement exists,
we use 6 subsystems instead to account for migration costs.

MGGA was originally designed for minimizing thermal
dissipation instead of migration costs. We adapted MGGA
to consider migration costs instead and was configured to
use a population size of 12, and crossover rate and mutation
rate as suggested by Xu and Fortes(2010).

Figures 4 and 5 show the HV and IGD distributions, re-
spectively, for all algorithms when using a migration bud-
get of 100%. We can see that VMPMBBO has the best per-
formance both in terms of HV and IGD, being able to find
solution sets for more instances and of better quality. How-
ever, note that MCSEnumPD is able to obtain HV values
better than MGGA’s in far more instances than the origi-
nal CLD algorithm. Finally, when migration budgets of 5%
and 1% are considered, VMPMBBO’s and MGGA’s perfor-
mance degrades considerably, while CLD and its variants
remain robust, as we can see in figures 6, 7, 8 and 9. Note
that MGGA’s performance degrades the most, barely being
able to find feasible solutions. In fact, with a budget of 1%,
MGGA fails to find a single solution for all instances. Note
in figure 6 that MCSEnumPD is able to surpass VMPMBBO
in terms of HV for far more instances than CLD, thus im-
proving the constraint-based approach for MOCO.

6654

Figure 1: HV distributions for division
handling (bp = 100%).

Figure 2: IGD distribution for division
handling (bp = 100%).

Figure 3: Best wastage distribution for
division handling (bp = 100%).

Figure 4: Algorithm HV distributions
(bp = 100%).

Figure 5: Algorithm IGD distributions
(bp = 100%).

Figure 6: Algorithm HV distributions
(bp = 5%).

Figure 7: Algorithm IGD distributions
(bp = 5%).

Figure 8: Algorithm HV distributions
(bp = 1%).

Figure 9: Algorithm IGD distributions
(bp = 1%).

6 Conclusions and Future Work

The usage of constraint-based methods for solving MOCO
formulations is still in its early stages. This paper further
enhances the state of the art in several ways. In particular,
this work goes beyond linear expressions in cost functions in
PBO and MOCO formulations, and defines a new scheme to
deal with divisions of linear expressions. Furthermore, in or-
der to provide better approximations of the Pareto front, two
new diversification procedures are proposed, namely sam-
pling of MCSs and path diversification. Experimental results

in a large set of MOCO instances from the VMC problem
show the improvements due to the proposed techniques.

The usage of constraint-based methods for MOCO can
be expanded in several ways. First, other non-linear cost
functions should be considered in constraint-based meth-
ods. Additionally, the current diversification scheme based
in sampling is computationally heavy and can be improved
with new procedures for MCS sampling (Achlioptas and
Theodoropoulos 2017). Moreover, the proposed path diver-
sification strategy focus mainly on the coefficients in the cost

6655

functions, but other procedures for guiding path generation
can also be used (Heule et al. 2012).

Acknowledgments

This work was supported by national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with references
UID/CEC/50021/2013 and SFRH/BD/111471/2015.

References

Achlioptas, D., and Theodoropoulos, P. 2017. Probabilistic
model counting with short xors. In Proceedings of the Twen-
tieth International Conference Theory and Applications of
Satisfiability Testing, 3–19.
Bacchus, F.; Davies, J.; Tsimpoukelli, M.; and Katsirelos,
G. 2014. Relaxation Search: A Simple Way of Managing
Optional Clauses. In Proceedings of the Twenty-Eighth Con-
ference on Artificial Intelligence, 835–841. AAAI Press.
Bailey, J., and Stuckey, P. J. 2005. Discovery of Minimal
Unsatisfiable Subsets of Constraints Using Hitting Set Dual-
ization. In Proceedings of the Seventh Symposium on Prac-
tical Aspects of Declarative Languages, 174–186. Springer.
Birnbaum, E., and Lozinskii, E. L. 2003. Consistent Sub-
sets of Inconsistent Systems: Structure and Behaviour. Jour-
nal of Experimental & Theoretical Artificial Intelligence
15(1):25–46.
Boros, E., and Hammer, P. L. 2002. Pseudo-Boolean Opti-
mization. Discrete Applied Mathematics 123(1):155–225.
Carter, L., and Wegman, M. N. 1977. Universal Classes
of Hash Functions (Extended Abstract). In Proceedings of
the Ninth Annual Symposium on Theory of Computing, 106–
112. ACM.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013. A
Scalable and Nearly Uniform Generator of SAT Witnesses.
In Proceedings of the Twenty-Fifth International Conference
on Computer Aided Verification, 608–623. Springer.
Deb, K.; Agrawal, S.; Pratap, A.; and Meyarivan, T. 2000.
A Fast Elitist Non-dominated Sorting Genetic Algorithm
for Multi-objective Optimisation: NSGA-II. In Proceedings
of the Sixth International Conference on Parallel Problem
Solving from Nature, 849–858. Springer.
Felfernig, A.; Schubert, M.; and Zehentner, C. 2012. An Ef-
ficient Diagnosis Algorithm for Inconsistent Constraint Sets.
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 26(1):53–62.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Near-
Uniform Sampling of Combinatorial Spaces Using XOR
Constraints. In Proceedings of the Twentieth Annual Con-
ference on Advances in Neural Information Processing Sys-
tems, 481–488.
Grégoire, É.; Lagniez, J.; and Mazure, B. 2014. An Experi-
mentally Efficient Method for (MSS, CoMSS) Partitioning.
In Proceedings of the Twenty-Eighth Conference on Artifi-
cial Intelligence, 2666–2673. AAAI Press.
Heule, M. J.; Kullmann, O.; Wieringa, S.; and Biere, A.
2012. Cube and Conquer: Guiding CDCL SAT Solvers by

Lookaheads. In Hardware and Software: Verification and
Testing. Springer. 50–65.
Iturriaga, S.; Dorronsoro, B.; and Nesmachnow, S. 2017.
Multiobjective Evolutionary Algorithms for Energy and Ser-
vice Level Scheduling in a Federation of Distributed Data-
centers. International Transactions in Operational Research
24(1-2):199–228.
Jackson, D.; Estler, H.; Rayside, D.; et al. 2009. The Guided
Improvement Algorithm for Exact, General-Purpose, Many-
Objective Combinatorial Optimization. Technical Report
MIT-CSAIL-TR-2009-033, MIT.
Le Berre, D., and Parrain, A. 2010. The Sat4j Library, Re-
lease 2.2. Journal on Satisfiability, Boolean Modeling and
Computation 7(2-3):59–6.
Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and
Belov, A. 2013. On Computing Minimal Correction Sub-
sets. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, 615–622. AAAI Press.
Mencı́a, C.; Previti, A.; and Marques-Silva, J. 2015. Literal-
Based MCS Extraction. In Proceedings of the Twenty-
Forth International Joint Conference on Artificial Intelli-
gence, 1973–1979. AAAI Press.
Nadel, A. 2011. Generating diverse solutions in SAT. In
Proceedings of the International Conference in Theory and
Applications of Satisfiability Testing, 287–301.
Soh, T.; Banbara, M.; Tamura, N.; and Le Berre, D.
2017. Solving Multiobjective Discrete Optimization Prob-
lems with Propositional Minimal Model Generation. In Pro-
ceedings of the International Conference on Principles and
Practice of Constraint Programming, 596–614. Springer.
Terra-Neves, M.; Lynce, I.; and Manquinho, V. 2017. Intro-
ducing Pareto Minimal Correction Subsets. In Proceedings
of the Twentieth International Conference Theory and Ap-
plications of Satisfiability Testing, 195–211. Springer.
Ulungu, E. L., and Teghem, J. 1994. Multi-Objective Com-
binatorial Optimization Problems: A Survey. Journal of
Multi-Criteria Decision Analysis 3(2):83–104.
Xu, J., and Fortes, J. A. B. 2010. Multi-Objective Vir-
tual Machine Placement in Virtualized Data Center Envi-
ronments. In Proceedings of the International Conference
on Green Computing and Communications, & International
Conference on Cyber, Physical and Social Computing, 179–
188. IEEE.
Zhang, Q., and Li, H. 2007. MOEA/D: A Multiobjective
Evolutionary Algorithm Based on Decomposition. IEEE
Transactions on Evolutionary Computation 11(6):712–731.
Zheng, Q.; Li, R.; Li, X.; Shah, N.; Zhang, J.; Tian, F.; Chao,
K.; and Li, J. 2016. Virtual Machine Consolidated Place-
ment Based on Multi-Objective Biogeography-Based Opti-
mization. Future Generation Computer Systems 54:95–122.
Zitzler, E., and Thiele, L. 1999. Multiobjective Evolution-
ary Algorithms: A Comparative Case Study and the Strength
Pareto Approach. IEEE Transactions on Evolutionary Com-
putation 3(4):257–271.

6656

