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Abstract

Unsupervised learning is widely recognized as one of the
most important challenges facing machine learning nowa-
days.However, in spite of hundreds of papers on the topic
being published every year, current theoretical understanding
and practical implementations of such tasks, in particular of
clustering, is very rudimentary.
This note focuses on clustering. The first challenge I address
is model selection - how should a user pick an appropriate
clustering tool for a given clustering problem, and how should
the parameters of such an algorithmic tool be tuned? In con-
trast with other common computational tasks, for cluster-
ing, different algorithms often yield drastically different out-
comes. Therefore, the choice of a clustering algorithm may
play a crucial role in the usefulness of an output clustering
solution. However, currently there exists no methodical guid-
ance for clustering tool selection for a given clustering task.
I argue the severity of this problem and describe some recent
proposals aiming to address this crucial lacuna.

Introduction

Clustering is one of the most basic and useful data process-
ing tasks. It is being routinely applied in a wide variety of
applications. Not surprisingly, there exist many clustering
algorithms. However, clustering is an ill defined problem -
given a data set, it is not clear what a correct clustering for
that set is. Indeed, different algorithms may yield dramat-
ically different outputs for the same input sets. In contrast
with other common learn- ing tasks, like classification pre-
diction, clustering does not have a well defined ground truth.
Faced with a concrete clustering task, a user needs to choose
an appropriate clustering algorithm (as well as a concrete
setting for the tuneable parameters of the chosen algorithm).
Currently, such decisions are often made in a very ad hoc, if
not completely random, manner. Given the crucial effect of
the choice of a clustering algorithm on the resulting cluster-
ing, this state of affairs is truly regrettable. Can the research
community develop effective tools for helping users make
informed decisions when they come to pick a clustering tool
for their data? How can we help the data analysts in finding
the cluster structures that will best suit their needs?
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Here, we focus on the basic case, where the relevant sim-
ilarity (or distance measure) is given. Furthermore, in this
note, we only consider partitional deterministic clustering,
where each data point ends up in single cluster. Most of the
issues that we raise are relevant to other clustering settings as
well, however, for the sake of concreteness we keep that out-
side the scope of the current discussion. Finally, it is worth-
while mentioning that we consider the aspect of clustering
that aims to group data in a way that similar points share
a cluster and dissimilar points are separated into different
clusters. The term clustering is sometimes also applied to
the detection of connected components of density level sets
of a probability distribution. This is a somewhat different
interpretation of clustering and will not be addressed here.

The conflicts between various desiderata

Arguably the most basic definition of clustering is “parti-
tioning of data into groups (a.k.a. clusters) so that similar
(or close w.r.t. the underlying distance function) elements
share the same cluster and the members of each cluster are
all similar” (or, equivalently, dissimilar elements are sep-
arated into different clusters). A moment reflection reveals
that this definition is problematic. Its two requirements may
well conflict with each other. As a simple example, consider
a collection of elements scattered next to each other along a
long line. If we wish to satisfy “every pair of close by ele-
ments share the same cluster” we ought to put all of those
points in a single joint cluster. However, such a clustering
violates the second requirement - we will end up with dis-
similar elements sharing the same cluster. If you wish, this
is the simplest clustering impossibility theorem. More ab-
stractly, the goal of partitional clustering is to have clusters
such the relation ”x and y belong to the same cluster” is a
good approximation to the input relation ”x is similar to y”.
However, the first relation is transitive whereas the relation
”being similar” may well violate transitivity.

The above basic definition fails to determine how should
such conflicts be resolved. Furthermore, this is not the only
potential conflict. There are many other clustering properties
that are desirable under some conceivable circumstances.
For example, keeping some balance between the number of
elements in different clusters, or being robust to small data
perturbations, and more. For any pair of such requirements
there are data sets for which those requirements cannot be
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mutually met.
Indeed, as we will elaborate in the next sections, differ-

ent clustering paradigms prioritize those requirements dif-
ferently, and different clustering applications call for differ-
ent prioritization.

Some common clustering approaches emphasize
different requirements

Let us briefly consider some basic clustering paradigms
from the point of view of the above desiderata;

• Its is easy to see that Single Linkage (SL) clustering (with
some fixed termination rule) focuses on the requirement
“every pair of close by elements share the same cluster”.
If points are close enough (relative to the set of point wise
distances in the data), SL will keep them in the same clus-
ter. However, SL is oblivious to generating clusters that
contain very far apart points or to extreme imbalance be-
tween the sizes of the clusters it ends up with.

• Similarly, Max Linkage focus on the requirement “the
members of each cluster are all similar”. For some data
sets, it outputs clusters that separate very (relatively) sim-
ilar points, and it is oblivious to imbalance between the
sizes of the clusters it generates.

• In contrast with both of the above paradigms, as well as
with any other linkage based clustering rule, the K-Means
algorithm is sensitive to imbalance between the number
of points in different clusters. It may well end up with
clusters that cut through a dense cloud of points while in-
cluding far away elements, for the sake of saving the cost
incurred by having too many points in one cluster.

Similarly, one can readily realize that other clustering
paradigms prioritize different requirements differently.

Some common clustering tasks call for different
prioritizations of clustering properties

Here we give just a few generic examples of common usages
of clustering that obviously call for taking into consideration
different clustering requirements:

• Clustering records in a large data base to eliminate dupli-
cations (say records of patients collected from many clin-
ics and hospitals to detect records that refer to the same
patient). Clearly, a high priority for such an application of
clustering is not having very different elements (records)
share the same cluster (namely, be declared as referring to
the same patient).

• Clustering natural vegetation for predicting the potential
spread of some fungus. In such cases, the foremost con-
sideration in determining clusters should be that close by
plants should belong to the same cluster, since the fungus
is likely to pass between them.

• Clustering neighbourhoods into school districts. For such
an application the requirement of (some) balance between
the sizes of different clusters should be an important con-
sideration.

The conclusion is obvious - different clustering tasks
should be carried out by different clustering algorithms, and
that choice of clustering tools should be done based on care-
ful examination of the clustering task as well as elaborate
understanding of the features of each clustering algorithm
(and often also the effect of picking appropriate parameter
values for those algorithms).

What should practitionares change?

When you ask clustering users how did they pick the spe-
cific clustering algorithm they are using on their data, the
answers one gets sound extremely ad hoc: “This is the algo-
rithm that is commonly used in my field”, “This algorithm is
user friendly and easy to run”, “This algorithm is provided
with the statistics package I got”, “This algorithm runs fast”,
“no need to tune any sensitive parameters”.

I hear such answers even from the most otherwise-
sophisticated users, biologists, astronomers, physicists, so-
cial scientists, you name it.

For analogy, assume you are sick, your doctor prescribes
some medication for you and you ask ”Why did you pick
this particular medication?”. Will you accept answers like
”This is what my peers like to use” (regardless of what your
disease is), or “This medication can be taken in any time of
the day, regardless of when you eat”, or “This medication
is the cheapest drug in the market”? Will you pick an over
the counter drug just based on the aesthetics of its cover, or
its price, without reading the details of what it does and for
which symptoms should it be used?

As silly as it sounds, the way many users pick their clus-
tering tool is not much more thoughtful.

What should theoreticians change?

Every big data science related conference has many cluster-
ing papers (last year’s AAAI had about 20 of those). What
do most of those papers offer? They talk about run time, they
give examples of data sets on which the results were great,
they may offer a new algorithmic approach. However, few, if
any at all, make an attempt to analyze with respect to which
clustering properties do their algorithms differ from exist-
ing ones? For which specific applications will the proposed
algorithm be more suitable and why?

For the sake of saving face, I refrain for mentioning any
specific papers. But just check it out – those issues are very
common. In AAAI papers, in NIPS papers, in Science and
Nature papers, all around us.

Furthermore, in the algorithms and complexity research
communities, a lot of effort is devoted to coming up with
efficient approximation algorithms for clustering objective
minimization (such as approximating k-means cost mini-
mization with runtime that is not exponential in the number
of clusters, k). I would argue that in most clustering appli-
cations the users do not care about finding such a cost min-
imizing solution. In fact, they can never even evaluate how
close to the minimum possible is the cost of the clustering
output by some algorithm. A suitable choice of an algorithm
(maybe through a good choice of an objective function) will
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usually have a much higher impact on the usability of out-
put clusterings. Just the same, very little, if any, research is
devoted to that algorithmic selection aspect.

Recent work on informed choice of clustering

tools

The challenge of matching clustering tools to clustering
tasks has been addressed along two lines of research.

An analytic approach

A natural option is the establish a list of properties, or fea-
tures, of clustering algorithms that would serve as a basis
for informed search for users faced with a concrete cluster-
ing task. Ideally, based on such a list clustering algorithms
will each have a profile - a vector of scores of their degree of
compliance with each of these properties. Such an approach
has been proposed, for example, by Ackerman et al (Acker-
man, Ben-David, and Loker 2010).

The main challenge with this direction is finding a way of
expressing properties of clustering algorithms that is mean-
ingful at the same time both for algorithm design purposes
and to clustering end users. One issue with the properties
proposed so far (e.g. by (Ackerman, Ben-David, and Loker
2010) and reference there) is that they address the behaviour
of an algorithm over all possible data sets, or with respect to
some statistics over data sets, while a user is concerned with
their own specific data. In some sense, such “worst case” or
“average case” behaviour may not be relevant to a given sub-
set of data sets of interest. An algorithm may fail to satisfy
some such requirement that a user cares about on some pos-
sible inputs and yet meet that same requirement on the data
the user cares about.

Interactive semi-supervised clustering

An alternative approach is to rely on interactions between
the data expert and the algorithm designer. This may be
viewed as providing some supervision (on top of raw, un-
labeled data) to the clustering procedure, hence the term
Semi-Supervised Clustering. This approach dates back to
(Wagstaff 2000) (see a survey of such methods in (Bair
2013)).

Statistical analysis of a specific type of semi-supervision,
a model in which the user provides a desired clustering of a
small sample of the given data set, is provided in (Ashtiani
and Ben-David 2015).

Another component allowing introducing domain specific
bias into a clustering tool is ongoing interaction between the
user and the algorithm as modelled by interactive clustering,
e.g., (Awasthi, Balcan, and Voevodski 2017) and references
there within.

(Ashtiani, Kushagra, and Ben-David 2016) demonstrates
how allowing active pairwise sam-cluster queries not only
allows domain knowledge to effect the output clustering but
may also result in dramatic reduction of the clustering algo-
rithm’s run time.

Challenges and directions for further research

The first message I would like to convey is the importance
of researching and developing tools for the transfer of do-
main expertise and task requirements between the end user
of clustering and the algorithm developer. First steps in this
direction are being slowly taken, but much more is needed.

Another important message concerns the way clustering
research is presented. Researchers should pay much more
attention to understanding and explaining the elaborate com-
bination of requirements that distinguishes the methods they
propose, and to the range of tasks they are good for. There
can be no universally optimal clustering algorithm. Your al-
gorithm is never just ”better” than any competitor’s algo-
rithm, it may only be better for some specific clustering
tasks, try to understand and explain what are those.

Let me mention just one of the many other shortcomings
of our current understanding of clustering. When faced with
a task and data that is likely to result in a large number of
clusters (like the record de-duplication task), the user cannot
tell in advance what the number of resulting clusters should
be. Furthermore, there is no clear monotonicity - we would
not necessarily be happier with clustering with more clusters
or with clustering with less clusters. For such tasks, we cur-
rently have no satisfactory objective (a.k.a. cost) function to
guide the a clustering algorithms.
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