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Abstract

In this work, we present a Multi-Channel deep convolutional
Pyramid Person Matching Network (MC-PPMN) based on
the combination of the semantic-components and the color-
texture distributions to address the problem of person re-
identification. In particular, we learn separate deep repre-
sentations for semantic-components and color-texture distri-
butions from two person images and then employ pyramid
person matching network (PPMN) to obtain correspondence
representations. These correspondence representations are
fused to perform the re-identification task. Further, the pro-
posed framework is optimized via a unified end-to-end deep
learning scheme. Extensive experiments on several bench-
mark datasets demonstrate the effectiveness of our approach
against the state-of-the-art literature, especially on the rank-1
recognition rate.

Introduction

The task of person Re-Identification (Re-ID) is to judge
whether two person images indicate the same target or not
and has widespread applications in video surveillance for
public security. From the perspective of human perception,
two persons can be distinguished according to the color or
texture features of the persons’ attributes (e.g. clothes, hairs)
and the latent semantic parts (e.g., head, front and back
upper body, belongings). Consequently, the person Re-ID
task can be addressed from two aspects matching: the color-
texture distributions and the latent semantic-components.

In the previous efforts, two common strategies are em-
ployed for the person Re-ID task. One strategy focuses
on learning the correspondence among color-texture distri-
butions from different person images, but ignoring corre-
spondence among the semantic-components (Mignon and
Jurie 2012) (Pedagadi et al. 2013) (Weinberger and Saul
2009) (Koestinger et al. 2012). The other relies on learning
the correspondence among semantic-components, while ig-
noring the color-texture correspondence (Ahmed, Jones, and
Marks 2015) (Li et al. 2014) (Varior et al. 2016) (Zhang et
al. 2016a) (Cheng et al. 2016a) (Ding et al. 2015) (Wang et
al. 2016). Figure 1 gives two examples to show respective
advantages of the two strategies, where images in the first
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Figure 1: Example pairs of images from the CUHK03
dataset. Given the probe image of a person in view A marked
by a blue window, the task is to find the same person in the
gallery set of view B. The groundtruth images are marked by
the green bounding boxes. The first row and the second row
are re-identification results by semantic components (SC)-
based and color-texture maps (CTM)-based strategies, re-
spectively. Failures exist in both cases. The third row are
the results by the combination of the two strategies which
obtain success on both examples.

row are re-identified results by the semantic correspondence
and images in the second row are re-identified results by the
color-texture correspondence..

In this work, we assume that the semantic-components
and color-texture distributions are complementary to each
other and present a novel multi-channel deep convolutional
person matching network based on the combination of the
semantic-components and the color-texture distributions.
In particular, we learn separate deep representations for
semantic-components and color-texture distributions from
two person images and then employ the matching network
to obtain the correspondence representations. These corre-
spondence representations are fused to address the Re-ID
task.
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On one hand, to learn the correspondence among
semantic-components from two persons, we first fine-
tune the model weights of the ImageNet-pretrained
GoogLeNet (Szegedy et al. 2015) to learn the deep repre-
sentation of each person’s semantic-components. By visual-
izing some layers of this network, we observe that the dis-
criminative regions in feature maps correspond to different
components (bag, head, body, etc.) of a person. For matching
these learned feature regions from two person images, con-
volution operation is exploited to fuse these feature regions
from different inputs in the same sub-windows. However,
the feature regions of the same components from two views
for one person seldom have the consistent spatial scale and
location due to viewpoint changes. To overcome the varia-
tion of spatial scale and location, we employ atrous convolu-
tion (Chen et al. 2016) with multi-scale views to construct a
module called pyramid matching module, which provides a
desirable view of perception without increasing parameters
and computation by introducing zeroes between the consec-
utive filter values. With this module, we obtain the corre-
spondence representation between the semantic-components
from different inputs.

On the other hand, to build the correspondence repre-
sentation between color-texture distributions, we propose
to introduce the deep color-texture distribution representa-
tion learning based on convolutional neural network. Dif-
ferent from the conventional hand-crafted features (e.g.,
LOMO) (Liao et al. 2015), we first extract RGB, HSV and
SILTP histograms (Liao et al. 2010) with the sliding win-
dows and then project the histogram bins into specific fea-
ture maps, which encode the spatial distribution for the par-
ticular color-texture range. With these Color-Texture fea-
ture Maps (CTM), we employ a 3-layers convNet to learn
the deep color-texture representation for each person image.
Thus, the pyramid matching module is exploited to learn the
correspondence representation between color-texture distri-
butions from different person images.

Having the learned correspondence representations for
the semantic-components and color-texture distributions, the
MC-PPMN is carried out by fusing them with two fully con-
nected layers to decide whether the two input images rep-
resent the same person or not. The proposed framework is
evaluated on several real-world datasets. Extensive experi-
ments on these benchmark datasets demonstrate the effec-
tiveness of our approach against the state-of-the-art, espe-
cially on the rank-1 recognition rate.

The main contributions of this paper are as follows:
(1) We propose a deep convolutional network named

MC-PPMN which learns the correspondence representa-
tions from both the semantic-components and color-texture
distributions. Deep structures for encoding both semantic
space and color-texture distributions, and cross-person cor-
respondence are jointly optimized to improve the general-
ization performance of the person re-identification task.

(2) The proposed framework employs the pyramid match-
ing strategy based on the atrous convolution to learn the cor-
respondence representation for two person images, which
provides a desirable view of perception without increasing
parameters and computation by introducing zeroes between

the consecutive filter values.

Related Work

In the past five years, many efforts have been proposed for
the task of person Re-ID, which greately advance this field.
The discrimative feature representation learning and the ef-
fective matching strategy learning are the main topics for
person Re-ID. For feature representation, many approaches
design the robust descriptors againist misalignments and
variations with color and texture, which are two of the most
useful characteristics in image representation. The hand-
crafted features including HSV color histogram (Farenzena
et al. 2010), SIFT histogram (Zhao, Ouyang, and Wang
2013), LBP histogram (Li and Wang 2013) features and
the combination of them are widely used for image repre-
sentation. Many efforts also consider the properties of per-
son images such as symmetry structure of segments (Faren-
zena et al. 2010) and the horizontal occurrence of local fea-
tures(Liao et al. 2015), to design the features, which signifi-
cantly boost the matching rate.

For the matching strategy, the metric learning is the
basic idea to find a mapping function from the feature
space to the distance space so as to minimize the intra-
personal variance while maximizing the inter-personal mar-
gin. Many approaches have been proposed based on this
idea including pair-wise constrained component analysis
(PCCA) (Mignon and Jurie 2012), local Fisher discrimi-
nant analysis (LFDA) (Pedagadi et al. 2013), Large Margin
Nearest-Neighbour (LMNN) (Weinberger and Saul 2009),
and KISS metric learning (KISSME) (Koestinger et al.
2012). However, these matching strategies often pay much
attention to the distance learning of the abstract features
without taking the spatial stuctural and semantic correspon-
dence learning in consideration.

Recently, the efforts which employ deep convolutional ar-
chitectures to deal with the task of person Re-ID have shown
a remarkable improvement over the approaches based on
the hand-craft features. For example, the patch-based meth-
ods (Ahmed, Jones, and Marks 2015) (Li et al. 2014) per-
form patch-wise distance measurement to obtain the spa-
tial relationship. Part-based methods (Varior et al. 2016) di-
vide one person into some equal parts and jointly perform
body-wise and part-wise correspondence learning based on
the assumption that the pedestrian keeps upright in gen-
eral. Some efforts (Zhang et al. 2016a) try to capture the
semantic and structural correlation using deep convolution
networks, which have promising results on the challenging
datasets. To improve the performance of feature extraction,
the triplet learning frameworks (Cheng et al. 2016a) (Ding
et al. 2015) (Wang et al. 2016) which employ triplet training
examples and the triplet loss function to learn fine grained
image are also proposed.

Our Architecture

Figure 2 illustrates our network’s architecture. The pro-
posed architecture extracts color-texture and the mid-level
semantic-components representation for a pair of input per-
son images. With the features mentioned above, two pyra-
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Figure 2: The proposed architecture of deep convolutional person matching network.

mid matching modules are employed to learn the corre-
spondence for the color-texture distributions and semantic-
components, respectively, and to output the correspondence
representations. Finally, we fuse the correspondence repre-
sentations utilizing two fully connected layers and employ
softmax activations to compute the final decision which in-
dicates the probability that the image pair depicts the same
person. The details of the architecture is explained in the fol-
lowing subsections.

Semantic-Components (SC) Images Representation

As discussed previously, there exists a set of intrinsic la-
tent semantic components (e.g., head, front and back up-
per body, belongings) in a person image, which are robust
to the variations of views and background change. With
these semantic representations for the images, we are able
to learn the correspondence between the image pair. The
well-known ImageNet-pretrained deep convolutional frame-
works (like AlexNet, GoogLeNet, ResNet, etc) (Szegedy et
al. 2015) (He et al. 2016) (Krizhevsky, Sutskever, and Hin-
ton 2012) have been widely used to project the RGB space
to the semantic-aware space. The previous efforts (Davis et
al. 2007) have also verified that the mid-level feature maps
of the frameworks represent the semantic-components for
one object. In our architecture, we extract these semantic-
components with two parameter-shared GoogLeNets for a
pair of person images. Figure 3a shows the visualization of
every block’s responses in GoogLeNet finetuned on the Re-
ID dataset CUHK03. We observe that the original person im-
ages are decomposed into many semantic-components (bag,
head, etc.). The responses of low layers like Conv1 depict
the particular components apparently and the high layers’

responses like Conv5 layer look abstract but still keep the
shape and spatial location. For notational simplicity, we re-
fer to the convNet as a function fCNN (X;θ), that takes
X as input and θ as parameters. The GoogLeNets output
1024 feature maps with size 10 × 5 respectively as the rep-
resentations of images for an input pair of images resized to
160×80 from two cameras, A and B. We denote this process
as follows:

{RA
sc,R

B
sc} = {fCNN (IA;θ1

sc), fCNN (IB ;θ1
sc)} (1)

where RA
sc and RB

sc denote the SC representation of images
IA and IB separately. θ1

sc are the shared parameters.

Color-Texture Maps (CTM) Images Representation

The existing methods often extract the color-texture features
for images by computing the histgrams of color channels
within a partitioned horizontal stripe, which works under the
assumption of slight vertical misalignment, and only con-
sider the pose variations on horizontal dimension. These
methods also ignore the spatial structure information. To ad-
dress these problems and represent the color spatial distri-
butions, we propose to use sliding windows to describe lo-
cal color details for a person image and construct the spatial
feature maps instead of feature vectors. RGB and HSV chan-
nels are the basic color characteristics for images. The Scale
Invariant Local Ternary Pattern (SILTP) (Liao et al. 2010)
descriptor is an improved operator over the well-known Lo-
cal Binary Pattern (LBP) (Li and Wang 2013) and an in-
variant texture description for illumination. Specifically, we
use a subwindow size of 8 × 8, with an overlapping step of
4 pixels to locate local patches in the input 160 × 80 im-
ages. Within each subwindow, we extract a 24-bin RGB his-
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Figure 3: a: Visualization of features for the ImageNet-
pretrained GoogLeNet network, which is finetuned on the
CUHK03 dataset. b: Illustration of the proposed Color-
Texture feature Maps (CTM) extraction.

togram, a 24-bin HSV histogram and a 16-bin SILTP his-
togram (SILTP 0.3

4,3 ). These resulting histogram-bins com-
puted from all subwindows are then projected to the feature
maps with size 40 × 20. Figure 3b shows the procedure of
the proposed CTM extraction.

With the extracted CTM, we employ the parameters-
shared convolution networks constructed with three convo-
lution layers and two max-pooling layers to generate the
color-texture representation with spatial size 10 × 5 consis-
tent with the SC representation. We denote the representa-
tion above as RA

ctm and RB
ctm for images IA and IB re-

spectively with the shared parameters θ1
ctm:

{RA
ctm,RB

ctm} = {fCNN (IA;θ1
ctm), fCNN (IB ;θ1

ctm)}
(2)

Pyramid Matching Module with Atrous
Convolution

In this work, we represent the semantic-components of per-
son images with the mid-level feature maps of GoolgLeNet,
which still preserve the original shape and releative spatial
location. Therefore, the variations of the spatial scale and
location misalignment caused by viewpoint changes remain
significant on the image representation. As shown in Figure
4, the same bag belonging to the same person is located on
the right side of one image but on the left side of the other
image. The previous efforts (Zhang et al. 2016a) address this
problem by decreasing the distance for the same semantic
components from two images with max-pooling layers. This

Figure 4: Illustration of correspondence learning with pyra-
mid matching module. Left: the component “head” has the
similiar spatial location. Right: the component “bag” has the
completely different shape and location. We match the com-
ponents above by computing their responses in one window
and the convolutions with multi-scale field-of-view are ro-
bust to the misalignment and variation of scale caused by
viewpoint changes.

strategy is effective but loses the spatial information.
We employ atrous convolution to address this issue

above. By introducing zeroes between the consecutive fil-
ter values, the atrous convolution computes the correspon-
dences of the same semantic-components without decreas-
ing their resolutions. Another challenge is that different
semantic-components have the different scale of variations
and misalignments. To address the scale invariance, we
employ multi-rate atrous convolutions to construct pyra-
mid matching module based on pyramid matching strategy
to adaptively learn the correspondence for the semantic-
components with multi-scale misalignments. Considering
the size of feature maps, the pyramid matching module in-
cludes three branches 3 × 3 atrous convolution with rate 1,
2 and 3, which provides the field-of-view with size 3 × 3,
5 × 5, 7 × 7 respectively. Figure 5 shows the structure of
this module and in Figure 4 two examples whose correspon-
dences are learned with the rate1 and rate2 atrous convo-
lutions respectively, are given to illustrate how this mod-
ule works. With the images’ concatenated SC representation
{RA

sc,R
B
sc}, the proposed module computes the correspon-

dence distribution denoted as Sp
sc = {Sr=1

sc , Sr=2
sc , Sr=3

sc },
in which the value of each location (i, j) indicates the corre-
spondence probability at that location. r is the rate of atrous
convolution. We formulate this matching strategy as follows:

Sp
sc = {Sr=1

sc ,Sr=2
sc ,Sr=3

sc }
= {fCNN ({RA

sc,R
B
sc}; {θ2

1,θ
2
2,θ

2
3}sc}

= {fCNN ({RA
sc,R

B
sc};θ2

sc}} (3)

where θ2
sc = {θ2

1,θ
2
2,θ

2
3}sc denotes the parameters of our

module for SC representation. θ2
r(r = 1, 2, 3) are the pa-

rameters of the matching branch with rate r.
We fuse the concatenated correspondence maps Sp

sc with
learned parameters θ3

sc, which indicate the weights of differ-
ent matching branches, and output the fused correspondence
representation. Inspired by (Zhang et al. 2016a), we further
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Figure 5: Illustration of the pyramid matching module.

downsample the representation by max-pooling so as to pre-
serve the most discriminative correspondence information
and align it in a larger region. Finally, we obtain the corre-
spondence representation Sf

sc:

Sf
sc = fCNN ({Sr=1

sc ,Sr=2
sc ,Sr=3

sc };θ3
sc)

= fCNN ({RA
sc,R

B
sc};θ2

sc,θ
3
sc} (4)

Based on the same motivation and principle, we learn
the correspondence of color-texture distributions of the per-
son’s attributes (e.g.clothes, hairs) with another standalone
pyramid matching module. With the images’ concatenated
CTM representation {RA

ctm,RB
ctm}, We obtain the corre-

spondence representation as follows:

Sf
ctm = fCNN ({RA

ctm,RB
ctm};θ2

ctm,θ3
ctm} (5)

where θ2
ctm and θ3

ctm denote the parameters of pyramid
matching module for CTM representation.

The Unified Framework and Learning

The correspondence representations Sf
sc and Sf

ctm are fused
to the correspondence descriptor of size 1024 by using two
fully connected layers. We pass the correspondence descrip-
tor to another fully connected layer containing two softmax
units. The probability that the two images in the pair, IA and
IB , are of the same person with softmax activations com-
puted on the units above is denoted as:

p =
exp(S1(S

f
sc,S

f
ctm;θ4))

exp(S0(S
f
sc,S

f
ctm;θ4)) + exp(S1(S

f
sc,S

f
ctm;θ4))

(6)
where S0(S

f
sc,S

f
ctm;θ4) and S1(S

f
sc,S

f
ctm;θ4) are the

softmax units for S(Sf
sc,S

f
ctmθ4).

We reformulate the proposed framework as a unified deep
convolution framework based on Eqs.1 - 4 :

S(Sf
sc,S

f
ctm,θ4)

= fCNN ({IA, IB}; {{θ3, {θ2
r},θ1}sc;

{θ3, {θ2
r},θ1}ctm;θ4})

= fCNN ({IA, IB};θ) (7)

where θ = {{θ1, {θ2
r},θ3}sc; {θ1, {θ2

r},θ3}ctm;θ4}, and
r = 1, 2, 3.

We minimize the widely used cross-entropy loss to opti-
mize the network as Eq.7 over a training set of N pairs us-
ing stochastic gradient descent. ln is the 1/0 label for the in-
put pair depicting whether the same person or not. With this
unified network, the processes of discriminative image rep-
resentation learning and cross-person correspondence learn-
ing are optimized jointly to make the image representation
optimal to this task.

L = − 1

N

N∑

n=1

[ln log pn + (1− ln) log(1− pn)] (8)

By setting {θ1, {θ2
r},θ3}sc = 0 or {θ1, {θ2

r},θ3}ctm =
0, we construct two independent convNets named SC-
PPMN and CTM-PPMN which focus on semantic-
components correspondence learning and color-texture dis-
tributions correspondence learning respectively. These two
convNets are denoted as Eq.9 and Eq.10 optimized with Lsc

and Lctm represented in Eq.8 respectively.

Ssc(S
f
sc,θ

4
sc)

= fCNN ({IA, IB}; {{θ3, {θ2
r},θ1}sc;θ4

sc})
= fCNN ({IA, IB};θsc) (9)

Sctm(Sf
ctm,θ4

ctm)

= fCNN ({IA, IB}; {{θ3, {θ2
r},θ1}ctm;θ4

ctm})
= fCNN ({IA, IB};θctm) (10)

Experiments

Datasets and Protocol

We evaluate the proposed architecture and compare our re-
sults with those of the state-of-the-art approaches on six
person Re-ID datasets, namely CUHK03 (Li et al. 2014),
CUHK01 (Li, Zhao, and Wang 2012), VIPeR (Gray and Tao
2008), PRID450s (Roth et al. 2014), i-LIDS (Office 2008)
and PRID2011 (Hirzer et al. 2011). All the approaches are
evaluated with Cumulative Matching Characteristics (CMC)
curves by single-shot results, which characterize a ranking
result for every image in the gallery given the probe image.
Our experiments are conducted on the datasets with 10 ran-
dom training and the average results are presented. We con-
duct the experiments on SC-PPMN, CTM-PPMN and MC-
PPMN to learn the correspondence for two person images
with the CTM features, SC features and the fused features,
respectively. We report the experimental results and analyze
the performances of CTM features and SC features.

Table lists the description of each dataset and our ex-
perimental settings with the training and testing splits. The
CUHK03 dataset provides two settings named labelled set-
ting with the manually annotated pedestrian bounding boxes
and detected settings with automatically generated bound-
ing boxes in which possible misalignments and body part
missing are introduced for a more realistic setting. In this
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Table 1: Datasets and settings in our experiments.
Dataset CUHK03 CUHK01 VIPeR PRID450s i-LIDS PRID2011

identities 1360 971 632 450 119 385/749
images 13164 3884 1264 900 479 1134
views 2 2 2 2 2 2

train IDs 1160 871;485 316 225 59 100
test IDs 100 100;486 316 225 59 100

paper, the evaluation results on both labelled and detected
settings are reported. For the CUHK01 dataset, we report
results on two different settings: 100 test IDs, and 486 test
IDs. The VIPeR and PRID450s dataset are relatively small
datasets and only contain one image per person in each view.
i-LIDS dataset is constructed from video images shooting a
busy airport arrival hall and contains 479 images from 119
persons, in which each person has four images in average.
PRID2011 dataset consists of images captured by two static
surveillance cameras, in which views A and B contain 385
and 749 persons, respectively, with 200 persons appearing
in both views. Following the procedure described in (Cheng
et al. 2016b) for evaluation on the test set, view A is used
for the probe set (100 person IDs) and view B is used for
the gallery set, which contains all images of the view B (649
person IDs) except the 100 training samples.

Training the Network

The proposed architecture is implemented on the widely
used deep learning framework Caffe (Jia et al. 2014) with
an NVIDIA TITAN X GPU. We use stochastic gradient de-
scent(SGD) for updating the weights of the network. The
parameters for training SC-PPMN, CTM-PPMN and MC-
PPMN are listed in Table 2. We start with a base learning rate
and gradually decrease it as the training progresses using a
polynomial decay policy: ηi = η0(1 − i

max iter )
p, where

p = 0.5, i is the current mini-batch iteration and max iter
is the maximum iteration. We train the MC-PPMN model
by fixing the parameters of the pre-trained SC-PPMN and
CTM-PPMN models.

Data Augmentation. To make the model robust to the
image translation variation and to enlarge the data set, we
sample 5 images around the image center, with translation
drawn from a uniform distribution in the range [−8, 8] ×
[−4, 4] for an original image of size 160× 80.

Hard Negative Mining (hnm). In fact, the negative pairs
are far more than the positive pairs, which can lead to data
imbalance. Also, in these negative pairs, there still exist
some scenarios that are hard to distinguish. To address these
difficuties, we sample the hard negative piars for retrain-
ing our network following the way in (Ahmed, Jones, and
Marks 2015).

Experiments Results

We campare our proposed MC-PPMN with several meth-
ods in recent years, including both hand-craft feature
based methods: ITML (Davis et al. 2007), LMNN (Wein-
berger and Saul 2009), KISSME (Koestinger et al. 2012),
LOMO+XQDA (Liao et al. 2015), LSSCDL (Zhang
et al. 2016b), LOMO+LSTM (Varior et al. 2016);

Table 2: The parameters for training.
Parameters SC-PPMN CTM-PPMN MC-PPMN

Training Time (hours) 40-48 16 10
Maximum Iteration 160K 30K 10K

Batch Size 100 800 150
Momentum 0.9 0.9 0.9

Weight Decay 0.0002 0.0002 0.0002
Base Learning Rate 0.01 0.1 0.0001

Table 3: Comparison of state-of-the-art results on labelled
and detected CUHK03 dataset with 100 test IDs. The cumu-
lative matching scores (%) at rank 1, 5, and 10 are listed.

Methods labelled CUHK03 detected CUHK03
r=1 r=5 r=10 r=1 r=5 r=10

KISSME 14.17 37.46 52.20 11.70 33.45 45.69
LMNN 7.29 19.64 30.74 6.25 17.87 26.60

LSSCDL 57.00 - - 51.20 - -
LOMO+LSTM - - - 57.30 80.10 88.30
LOMO+XQDA 52.20 82.23 92.14 46.25 78.90 88.55

CTM-PPMN (no hnm) 73.52 95.12 98.56 68.44 91.50 96.98
CTM-PPMN (hnm) 76.58 95.64 98.24 70.68 92.58 97.18

FPNN 20.65 50.94 67.01 19.89 49.41 -
ImprovedDL 54.74 86.50 93.88 44.96 76.01 81.85

PIE(R)+Kissme - - - 67.10 92.20 96.60
SICIR - - - 52.17 - -

DCSL (no hnm) 78.60 97.76 99.30 - - -
DCSL (hnm) 80.20 97.73 99.17 - - -

MTDnet 74.68 95.99 97.47 - - -
JLML 83.20 98.00 99.40 80.60 96.90 98.70

SC-PPMN (no hnm) 83.20 97.50 99.25 77.60 96.10 98.60
SC-PPMN (hnm) 85.50 98.20 99.50 80.63 95.62 98.07

MC-PPMN (no hnm) 84.36 98.56 99.80 81.28 96.14 98.54
MC-PPMN (hnm) 86.36 98.54 99.66 81.88 96.56 98.58

and DCNN feature based methods: FPNN (Li et al.
2014), ImprovedDL (Ahmed, Jones, and Marks 2015),
Single-Image and Cross-Images Representation learning
(SICIR) (Wang et al. 2016), TCP (Cheng et al. 2016b),
DCSL (Zhang et al. 2016a), Pose Invariant Embedding
(PIE(R)+Kissme) (Zheng et al. 2017), MTDnet (including
MTDnet-cross) (Chen et al. 2017), JLML (Li, Zhu, and
Gong 2017). We report the evaluation results as shown in
Table 3 - Table 6.

Comparisons on CUHK03 dataset. We conduct the ex-
periments on both labelled and detected CUHK03 datasets.
From Table 3, we see that our proposed approach achieves
the better results than the state-of-the-art methods. On the la-
belled dataset, our method outperforms the next best method
by an improvement of 3.16% (86.36% vs. 83.20%). On the
detected dataset, the performance is reduced by the mis-
alignment and incompleteness caused by the detector. How-
ever, the proposed method still achieves an improvement
1.28% over the next best method (81.88% vs. 80.60%).

Comparisons on CUHK01 dataset. Table 4 illustrates
the top recognition rate on CUHK01 dataset with 100 test
IDs and 486 test IDs. We see that our proposed method
achieves the best recognition rate of 93.45% (rank-1),
99.62% (rank-5) and 99.98% (rank-10) (vs. 89.60%, 96.90%
and 99.98% respectively by the next best method) with 100
test IDs. For the setting with 486 test IDs, only 485 identities
and half positive samples are left for training which make
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Table 4: Comparison of state-of-the-art results on CUHK01
dataset with 100 test IDs and 486 test IDs. The cumulative
matching scores (%) at rank 1, 5, and 10 are listed.

Methods CUHK01(100 test IDs) CUHK01(486 test IDs)
r=1 r=5 r=10 r=1 r=5 r=10

KISSME 29.40 60.18 74.44 - - -
LMNN 21.17 48.51 62.98 13.45 31.33 42.25

LSSCDL 65.97 48.51 62.98 - - -
CTM-PPMN (no hnm) 71.18 91.94 96.54 48.01 75.91 84.34

CTM-PPMN (hnm) 73.74 92.32 98.18 53.57 79.32 87.13
FPNN 27.87 59.64 73.53 - - -

ImprovedDL 65.00 89.00 94.00 47.53 71.60 80.25
SICIR 71.80 - - - - -
TCP - - - 53.70 84.30 91.00

MTDnet-cross 78.50 96.50 97.50 - - -
DCSL (no hnm) 88.00 96.90 98.10 - - -

DCSL (hnm) 89.60 97.80 98.90 76.54 94.24 97.49
SC-PPMN (no hnm) 92.10 99.50 99.95 - - -

SC-PPMN (hnm) 93.10 98.80 99.80 77.16 92.80 97.53
MC-PPMN (no hnm) 92.32 98.68 99.60 - - -

MC-PPMN (hnm) 93.45 99.62 99.98 78.95 94.67 97.64

Table 5: Comparison of state-of-the-art results on VIPeR and
PRID450S datasets.The cumulative matching scores (%) at
rank 1, 5, and 10 are listed.

Methods VIPeR PRID450s
r=1 r=5 r=10 r=1 r=5 r=10

KISSME 19.60 48.00 62.20 15.0 - 39.0
LSSCDL 42.66 - 84.27 60.49 - 88.58

LOMO+LSTM 42.40 68.70 79.40 - - -
LOMO+XQDA 40.00 68.13 80.51 61.42 - 90.84

CTM-PPMN 32.12 64.24 80.38 28.98 59.47 73.60
ImprovedDL 34.81 63.61 75.63 34.81 63.72 76.24

PIE(R) 27.44 43.01 50.82 - - -
SICIR 35.76 - - - - -
TCP 47.80 74.70 84.80 - - -

DCSL 44.62 73.42 82.59 - - -
JLML 50.20 74.20 84.30 - - -

SC-PPMN 45.82 74.68 86.08 52.08 82.58 88.36
MC-PPMN 50.13 81.17 91.46 62.22 84.00 93.56

it challenging for our proposed deep architecture to con-
verge. Following the way in (Zhang et al. 2016a), we fine-
tune the network for CUHK01 with the pre-trained model
on CUHK03 and achieve an improvement of 2.41%(78.95%
vs. 76.54%) on rank-1 recognition rate.

Comparisons on VIPeR and PRID450s dataset. Fol-
lowing (Ahmed, Jones, and Marks 2015), we pre-train the
network using CUHK03 and CUHK01 datasets, and fine-
tune on the training set of VIPeR and PRID450s. As shown
in the Table 5, the proposed MC-PPMN is better than the
state-of-the-art method in all the cases except the rank-1
recognition rate for VIPeR dataset, while is comparable with
the best competing method JLML.

Comparisons on i-LIDS and PRID2011 datasets.
We also conduct experiments on the i-LIDS dataset and
PRID2011 dataset. Table 6 shows our results. For both
datasets, MC-PPMN achieves the best rank-1, rank-5 and
rank-10 recognition rates, which demonstrate the effective-
ness of the proposed method for the small training set.

The effect of fusion for the correspondence represen-
tations. Camparing with the experimental results by learn-
ing the correspondence for two person images with CTM
features and SC features, respectively, Table 7 shows the

Table 6: Comparison of state-of-the-art results on i-LIDS
and PRID2011 datasets. The cumulative matching scores
(%) at rank 1, 5, and 10 are listed.

Methods i-LIDS PRID2011
r=1 r=5 r=10 r=1 r=5 r=10

ITML 29.00 54.00 70.50 12.00 - 36.00
KISSME - - - 15.00 - 39.00
LMNN 28.00 53.80 66.10 10.00 - 30.00

CTM-PPMN 44.17 73.31 85.02 12.00 32.00 42.00
TCP 60.40 82.70 90.70 22.00 47.00 57.00

MTDnet 57.8 78.61 87.28 32.00 51.00 62.00
SC-PPMN 54.80 81.92 92.32 32.00 53.00 63.00
MC-PPMN 62.69 84.80 93.31 34.00 60.00 69.00

Table 7: The improvement of the fused correspondence rep-
resentations for rank-1 recognition rates on the experimental
datasets.

Dataset CTM-PPMN SC-PPMN MC-PPMN Improvement
CUHK03(labelled) 76.58 85.50 86.36 0.86
CUHK03(detected) 70.68 80.63 81.88 1.25

CUHK01(100 test IDs) 73.74 93.10 93.45 0.35
CUHK01(486 test IDs) 53.57 77.16 78.95 1.79

VIPeR 32.12 45.82 50.13 4.31
PRID450s 28.98 52.08 62.22 10.14

i-LIDS 44.17 54.80 62.69 7.89
PRID2011 12.00 32.00 34.00 2.00

improvement on the rank-1 recognition rates with the fu-
sion for the correspondence representations. For CUHK03
and CUHK01 datasets, we achieve the absolute gain about
1.00% and for the other datasets, we can see the absolute
gain over 2.00%. Especially, the proposed method achieve
10.14% improvement on the rank-1 recognition rate. The
results above demonstrate the effectiveness of fusion for
the correspondence representations, which is obvious on the
small datasets.

The effect of hard negative mining. We also report the
results of both our model with hnm and without hnm as
shown in Table 3 and 4. We can see the absolute gain about
1.00% compared with the same model without hnm.

Conclusion

In this paper, we have developed a novel multi-channel deep
convolutional architecture for person re-identification. We
employ deep convNets to map person’s semantic compo-
nents and color-texture distributions to the required feature
space. Based on the learned deep features and a pyramid
matching strategy, we learn their correspondence representa-
tions and fuse them together to perform the re-identification
task. The effectiveness and promise of our method is demon-
strated by extensive evaluations on various datasets. The re-
sults have shown that our method has a remarkable improve-
ment over the competing models.

Acknowledgments

This work was supported by National Key R&D Program
of China (No. 2017YFB1002400), National Natural Science
Foundation of China (No. 61702448, 61672456), the Key
R&D Program of Zhejiang Province (No. 2018C03042), the
Fundamental Research Funds for the Central Universities

7249



(No. 2017QNA5008, 2017FZA5007). X. Li was also sup-
ported in part by the National Natural Science Foundation
of China under Grant U1509206 and Grant 61472353, and
the Alibaba-Zhejiang University Joint Institute of Frontier
Technologies.

References

Ahmed, E.; Jones, M.; and Marks, T. K. 2015. An improved
deep learning architecture for person re-identification. In
CVPR, 3908–3916.
Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2016. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE Transactions on Pattern Analysis and
Machine Intelligence PP(99):1–1.
Chen, W.; Chen, X.; Zhang, J.; and Huang, K. 2017. A
multi-task deep network for person re-identification. In
AAAI, 3988–3994.
Cheng, D.; Gong, Y.; Zhou, S.; Wang, J.; and Zheng, N.
2016a. Person re-identification by multi-channel parts-based
cnn with improved triplet loss function. In CVPR, 1335–
1344.
Cheng, D.; Gong, Y.; Zhou, S.; Wang, J.; and Zheng, N.
2016b. Person re-identification by multi-channel parts-based
cnn with improved triplet loss function. In CVPR, 1335–
1344.
Davis, J. V.; Kulis, B.; Jain, P.; Sra, S.; and Dhillon, I. S.
2007. Information-theoretic metric learning. In ICML, 209–
216.
Ding, S.; Lin, L.; Wang, G.; and Chao, H. 2015. Deep
feature learning with relative distance comparison for person
re-identification. Pattern Recognition 48(10):2993–3003.
Farenzena, M.; Bazzani, L.; Perina, A.; Murino, V.; and
Cristani, M. 2010. Person re-identification by symmetry-
driven accumulation of local features. In CVPR, 2360–2367.
Gray, D., and Tao, H. 2008. Viewpoint invariant pedestrian
recognition with an ensemble of localized features. Com-
puter Vision–ECCV 262–275.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Hirzer, M.; Beleznai, C.; Roth, P. M.; and Bischof, H. 2011.
Person re-identification by descriptive and discriminative
classification. In Scandinavian Conference on Image Anal-
ysis, 91–102.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
ACM MM, 675–678. ACM.
Koestinger, M.; Hirzer, M.; Wohlhart, P.; Roth, P. M.; and
Bischof, H. 2012. Large scale metric learning from equiva-
lence constraints. In CVPR, 2288–2295. IEEE.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.

Li, W., and Wang, X. 2013. Locally aligned feature trans-
forms across views. In CVPR, 3594–3601.
Li, W.; Zhao, R.; Xiao, T.; and Wang, X. 2014. Deep-
reid: Deep filter pairing neural network for person re-
identification. In CVPR, 152–159.
Li, W.; Zhao, R.; and Wang, X. 2012. Human reidentifi-
cation with transferred metric learning. In ACCV, 31–44.
Springer.
Li, W.; Zhu, X.; and Gong, S. 2017. Person re-identification
by deep joint learning of multi-loss classification. In IJCAI,
2194–2200.
Liao, S.; Zhao, G.; Kellokumpu, V.; Pietikainen, M.; and Li,
S. Z. 2010. Modeling pixel process with scale invariant local
patterns for background subtraction in complex scenes. In
CVPR, 1301–1306.
Liao, S.; Hu, Y.; Zhu, X.; and Li, S. Z. 2015. Person re-
identification by local maximal occurrence representation
and metric learning. In CVPR, 2197–2206.
Mignon, A., and Jurie, F. 2012. Pcca: A new approach for
distance learning from sparse pairwise constraints. In CVPR,
2666–2672.
Office, U. H. 2008. i-lids multiple camera tracking scenario
definition.
Pedagadi, S.; Orwell, J.; Velastin, S.; and Boghossian, B.
2013. Local fisher discriminant analysis for pedestrian re-
identification. In CVPR, 3318–3325.
Roth, P. M.; Hirzer, M.; Koestinger, M.; Beleznai, C.; and
Bischof, H. 2014. Mahalanobis distance learning for person
re-identification. In Person Re-Identification. Springer. 247–
267.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In CVPR, 1–9.
Varior, R. R.; Shuai, B.; Lu, J.; Xu, D.; and Wang, G. 2016.
A siamese long short-term memory architecture for human
re-identification. In ECCV, 135–153. Springer.
Wang, F.; Zuo, W.; Lin, L.; Zhang, D.; and Zhang, L. 2016.
Joint learning of single-image and cross-image representa-
tions for person re-identification. In CVPR, 1288–1296.
Weinberger, K. Q., and Saul, L. K. 2009. Distance met-
ric learning for large margin nearest neighbor classification.
volume 10, 207–244.
Zhang, Y.; Li, X.; Zhao, L.; and Zhang, Z. 2016a.
Semantics-aware deep correspondence structure learning for
robust person re-identification. In IJCAI, 3545–3551.
Zhang, Y.; Li, B.; Lu, H.; Irie, A.; and Ruan, X. 2016b.
Sample-specific svm learning for person re-identification. In
CVPR, 1278–1287.
Zhao, R.; Ouyang, W.; and Wang, X. 2013. Unsuper-
vised salience learning for person reidentification. In CVPR,
3586–3593.
Zheng, L.; Huang, Y.; Lu, H.; and Yang, Y. 2017. Pose
invariant embedding for deep person re-identification. arXiv
preprint arXiv:1701.07732.

7250


