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Abstract
Heterogeneous face recognition (HFR) refers to matching a
probe face image taken from one modality to face images
acquired from another modality. It plays an important role
in security scenarios. However, HFR is still a challenging
problem due to great discrepancies between cross-modality
images. This paper proposes an asymmetric joint learning
(AJL) approach to handle this issue. The proposed method
transforms the cross-modality differences mutually by in-
corporating the synthesized images into the learning pro-
cess which provides more discriminative information. Al-
though the aggregated data would augment the scale of intra-
classes, it also reduces the diversity (i.e. discriminative infor-
mation) for inter-classes. Then, we develop the AJL model
to balance this dilemma. Finally, we could obtain the simi-
larity score between two heterogeneous face images through
the log-likelihood ratio. Extensive experiments on viewed
sketch database, forensic sketch database and near infrared
image database illustrate that the proposed AJL-HFR method
achieve superior performance in comparison to state-of-the-
art methods.

1 Introduction
Heterogeneous face images refer to images that represent
faces in different modalities, such as sketch images (drawn
by artists), visual (VIS) images (captured through general
camera) and near infrared (NIR) images (captured through
near infrared devices). Matching face images between dif-
ferent modalities is called heterogeneous face recognition
(HFR), which is an important issue in security scenarios.
For instance, the photos of suspects are usually difficult to
obtain during the law enforcement process. Then the HFR
is desired to identify suspects by matching sketches drawn
by artists with photos in mug-shot databases. And HFR is
also aimed to matching NIR images with VIS images when
the circumambient illumination condition is poor for face
recognition in public security.

Due to the great differences between heterogeneous face
images, it is difficult for conventional face recognition meth-
ods to identify a face sketch or a near infrared face im-
age from visual face photos. Existing HFR methods can be
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Figure 1: The latent information in synthesized images. Dif-
ferent colors of circles and backgrounds represent different
texture information and domains respectively. For example,
The purple circles with the blue rectangle background repre-
sent the texture information of one subject in photo domain
and the purple circles with the green rectangle background
represent the same texture information of the synthesized
sketch in sketch domain.

grouped into three categories: local feature descriptor-based
methods, subspace learning-based methods and synthesis-
based methods.

Local feature descriptor-based methods extract local fea-
ture descriptors to represent heterogeneous face images,
which is desired to reduce the discrepancies between het-
erogeneous face images in feature level. Yet, because of the
high computational complexity and limited discriminabil-
ity, these encoded feature descriptors take much time and
perform poor in recognition tasks. Subspace learning-based
methods project face images from different modalities into
a common subspace to minimize the discrepancies. Within
this subspace, heterogeneous face images can be matched
directly. But, it is inevitable to lose effective information in
the projection procedure, which decreases recognition per-
formance. Synthesis-based methods train a set of reconstruc-
tion coefficients to transform heterogeneous face images to
homogeneous face images, which is aimed to reduce the
discrepancies between heterogeneous face images in image
level. Then these homogeneous face images can be directly
applied to conventional face recognition approaches. How-
ever, the synthesized photos only change the color of corre-
sponding sketches, which could never reduce the differences
in texture (e.g. the shape of glasses frame, double-fold eye-
lid and facial outline) between heterogeneous face images
and achieve poor performance in HFR. Recently, an effi-
cient joint formulation (Chen et al. 2017) for conventional
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Figure 2: Framework of the proposed asymmetric joint
learning method for heterogeneous face recognition.

face recognition was proposed, which enhanced the original
Bayesian face model and achieved a promising result. This
method takes intra-personal variations and inter-personal in-
variants over the image pairs into consideration and requires
that there are enough intra-class face images. But most of
heterogeneous face databases provide few intra-class face
images and the differences between heterogeneous face im-
ages are cross-modality. So the performance of this method
on heterogeneous face databses is not good.

This paper proposes a novel asymmetric joint learning ap-
proach for heterogeneous face recognition (AJL-HFR). The
proposed method takes the latent information from synthe-
sized face images into consideration. The latent informa-
tion refers to texture of synthesized face images. Note that,
the synthesized images and corresponding original face im-
ages together provide more information of the same tex-
ture in different modalities, which is shown in Figure. 1.
When extracting intra-class information, we add the syn-
thesized face images into the training set. Therefore, we
could acquire more effective intra-class information from
the enlarged training set. However, it also introduces redun-
dant variables to inter-class information, which influences
the recognition performance. To balance this dilemma, we
design an asymmetric joint learning model to extract more
effective intra-class information without losing inter-class
information in the training phase. Two covariance matrices
that represent two kinds of information are jointly optimized
by original images and synthesized images. Finally, the log-
likelihood ratio statistic is calculated as similarity score of
two input heterogeneous face images. The outline can be
found from Figure. 2. We evaluate our methods on four
databases: CUHK Face Sketch FERET (CUFSF) database
(Zhang, Wang, and Tang 2011), IIIT-D Sketch database
(Bhatt et al. 2012), Forensic Sketch database (Peng et al.
2017) and CUHK VIS-NIR database (Gong et al. 2017). Fig-
ure. 3 shows some samples in these databases.

The contributions of this paper are summarized as fol-
lows:

• We firstly utilize the latent information involved in syn-
thesized images to extract more effective intra-class in-
formation and design a valid strategy to obtain more in-
formation from the limited databases.

(a) (b) (c) (d)

Figure 3: The illustration of heterogeneous face databases.
(a): CUFSF database. (b):IIIT-D Sketch database. (c): Foren-
sic Sketch database. (d): CUHK VIS-NIR database.

• An asymmetric joint learning model is developed to
jointly optimize intra-class and inter-class information
without losing effective inter-class information.

• Experimental results illustrate the superior performance
of our proposed approach compared with state-of-the-art
HFR methods on multiple HFR scenarios.

We organize the rest of this paper as follows. Section 2,
representative heterogeneous face recognition methods are
briefly reviewed. Section 3, the proposed asymmetric joint
learning approach is introduced in detail. We provide some
experimental results and analysis in section 4, and summa-
rize this paper in section 5.

2 Related Work
In this section, we briefly review some representative HFR
methods in three categories: local feature descriptor-based
methods, subspace learning-based methods and synthesis-
based methods.

Local feature descriptor-based methods focus on ex-
tracting the invariant features from face images in differ-
ent modalities. Most of these methods utilized local fea-
tures for HFR, such as LFDA (Klare, Li, and Jain 2011),
CITE (Zhang, Wang, and Tang 2011), LRBP (Galoogahi
and Sim 2012), MCWLD (Bhatt et al. 2012), LDoGBP
(Alex, Asari, and Mathew 2013), and CEFD (Gong et al.
2017). Besides, Mittal, Vatsa, and Singh (2015) and He et
al. (2017) employed deep learning to extract invariant fea-
tures for HFR. To summarize, feature-based methods try to
minimize modality discrepancies in heterogeneous face im-
ages. However, due to the high computational complexity
and limited discriminability, the accuracies of these meth-
ods still remain to improve.

Subspace learning-based methods aim to project het-
erogeneous facial features into a common subspace. A gen-
eral discriminant feature extraction method was firstly pro-
posed in Lin and Tang (2006), which can transform the
features in different modalities into the common space re-
spectively. Sharma and Jacobs (2011) proposed partial least
squares (PLS) approach to get a common linear subspace.
Lei et al. (2012) applied coupled spectral regression method
in the projection procedure. A non-linear kernel was applied
to represent heterogeneous face images in P-RS (Klare and
Jain 2013). Kan et al. (2016) utilized the relationship of
cross-modality facial images to develop a multi-view dis-
criminant analysis (MvDA) approach. Actually, it is un-
avoidable to lose some discriminative information in the pro-
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jection procedure, and leads to dissatisfactory performance
in HFR.

Synthesis-based methods try to synthesize heteroge-
neous face images and compare them in the same modality.
These methods are almost based on a set of reconstruction
coefficients and heterogeneous image patches (Chen et al.
2009; Wang and Tang 2009; Zhou, Kuang, and Wong 2012;
Gao et al. 2012; Zhang et al. 2011; Wang et al. 2013;
Song et al. 2014; Wang, Gao, and Li 2018). In addition, we
introduce generative adversarial networks (GANs) (Isola et
al. 2016) to synthesize heterogeneous face images. However,
each method has its own pro and con. Though synthesis-
based methods can reduce the modality discrepancies in
heterogeneous face images, the synthesis procedure takes
a long time, which slows down the HFR process. Mean-
while, images synthesis is another difficult issue. Therefore,
synthesis-based methods perform unpleasantly for HFR.
However, the synthesized face sketches reflect different as-
pects of photos, which is the basic motivation of our pro-
posed approach. Synthesized sketches and photos are only
used for training in our proposed method which thus does
not increase the online time-consuming for HFR.

3 Asymmetric Joint Learning
We present a novel framework for HFR in this section,
which is called asymmetric joint learning for heterogeneous
face recognition (AJL-HFR). Without loss of generality and
for ease of representation, we describe our approach on face
sketch-photo recognition scenario, which can be generalized
to other heterogeneous face recognition scenarios. Firstly,
we introduce our motivation. Then we introduce how to de-
rive the proposed model and how to optimize it.

3.1 Motivation
We find that the texture information (e.g. the shape of glasses
frame, double-fold eyelid and facial outline) of the same
subject in the photo domain and the sketch domain is differ-
ent. For example, we list some photo-sketch pairs in Figure.
4. Among them, the first column is the original photo-sketch
pair, followed by synthesized photo-sketch pairs generated
by Chen et al. (LLE), Wang and Tang (MRF), Zhou, Kuang,
and Wong (MWF), Gao et al. (SFS), Zhang et al. (SVR), Gao
et al. (SRE), Wang et al. (RSLCR), and GANs. In the origi-
nal photo-sketch pair, the glasses in the photo are frameless,
but the artists draw the glasses frame in the sketch to incar-
nate the glasses clearly. There are many similar differences
like this between heterogeneous images, such as hair, wrin-
kles and so on. Although these differences seriously affect
the final recognition performance, we find some interesting
phenomenon from these differences.

Since we utilize the linear combination of the recon-
structed coefficients of the sketches and the photo patches in
the training set to synthesize photos (Wang et al. 2014), the
texture of synthesized photos are more similar to the original
sketches than original photos. Similarly, the texture of syn-
thesized sketches are more similar to the original photos than
original sketches. Thus, through photos and the correspond-
ing synthesized sketches, we can obtain more information

original RSLCRLLE SVR SRESFSMWFMRF GANs

Figure 4: Original photo-sketch pairs and the corresponding
synthesized photo-sketch pairs. The names of the synthesis
methods are presented under the image pairs.

of same texture in different modalities. As shown in Figure.
4, if these synthesis methods are conditionally selected to
enlarge the training set, we can obtain more useful informa-
tion. However, the selected synthesis images should not be
too many for these images contain both valid information
and redundant information. When there are too many syn-
thesized images, the redundant information could overweigh
the valid information. In addition, the inter-class informa-
tion is obtained from the intra-class averages of all classes.
If synthesized images are added into the training set, the ef-
fectiveness of inter-class information could be reduced. To
balance this dilemma of valid information and redundant in-
formation, we propose the asymmetric joint learning frame-
work for heterogeneous face recognition.

3.2 Model Derivation
As shown in Figure. 2, we need generate some pairs of syn-
thesized sketch and synthesized photo to construct the train-
ing database for learning the AJL model. Here we generated
three synthesized sketch-photo pairs by RSLCR, MWF and
GANs respectively. These three methods are chosen from
three different categories of face sketch synthesis meth-
ods respectively. The rationale behind this selection strategy
would be given in section 4. We extract CNN features from
synthesized image pairs and original image pair to represent
each subject. AJL model (the notation M and N in Figure.
2) is calculated from the inter-class covariance matrix and
intra-class covariance matrix. In the recognition phase, the
similarity between the input query image and the gallery
image is calculated by a log-likelihood ratio based on the
trained AJL model.

Inspired by the metric learning model (Chen et al. 2017),
a face x can be approximated by inter-class variation μ and
intra-class variation ε, where μ represents the identity and
ε represents the heterogeneous information between cross-
modality face images belonging to the same identity. Sim-
ilar with the preceding models (Belhumeur, Hespanha, and
Kriegman 1997; Ioffe 2006; Susskind et al. 2011), these two
parts are modeled by independent zero-mean Gaussian,

μ ∼ N (0,Sμ),

ε ∼ N (0,Sε),
(1)

where Sμ and Sε are two covariance matrices to be trained.
A face image can be represented by the two parts as follows,

x = μ+ ε. (2)
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For the two input face images x1 and x2, the covariance of
which can be written as

cov(x1,x2) = cov(μ1, μ2) + cov(ε1, ε2). (3)
If x1 and x2 belong to the same identity, denoted by HI, or
else, donated by HE. Thus, the intra-class joint distribution
P(x1,x2|HI) is a Gaussian with zero-mean and the covari-
ance matrix of which is∑

I=

[
Sμ + Sε Sμ

Sμ Sμ + Sε

]
. (4)

The inter-class joint distribution P(x1,x2|HE) is a Gaus-
sian with zero-mean and the covariance matrix of which is∑

E=

[
Sμ + Sε 0

0 Sμ + Sε

]
. (5)

The covariance matrix Sμ is trained from the combination
of the average of each class. And the covariance matrix Sε is
trained from all the samples of each class. However, for het-
erogeneous face images, the images belonging to the same
subject come from different modalities. Therefore, it is not
sufficient to extract intra-class information by only model-
ing the single pair of sketch-photo images in the training
dataset which is adopted by joint Bayesian method (Chen et
al. 2017). In order to obtain more useful intra-class infor-
mation of heterogeneous face images, we jointly train the
model relying on both the original training dataset and the
synthesized image pairs. Thus, the covariance matrix Sε pro-
vides more information about intra-class face images. How-
ever, since the synthesized image pairs are pseudo hetero-
geneous face image pairs, they are different from the image
pairs in the training set and would bring in redundant in-
formation. When we add all these synthesized image pairs
(e.g. Figure. 4) to the training set and train a joint Bayesian
model directly, the covariance matrices Sμ and Sε would be
contaminated by these redundant information inevitably. It
seriously affects the effectiveness of joint Bayesian model.
To solve this problem and extract more useful intra-class and
inter-class information, we improve the model by an asym-
metric joint learning model.

The asymmetric joint learning model firstly generates
a certain number of sketch-photo pairs. We present the
detailed illustration about how to generate synthesized
sketches and photos in section 4. Then, the intra-class and
inter-class covariance matrices are trained jointly. The intra-
class covariance matrix Sεot,st is derived from the original
training set (denoted as ot) and the corresponding synthe-
sized images (denoted as st). The inter-class covariance ma-
trix Sμot is derived only from original training set. For the
two covariance matrices are independent, the covariance ma-
trix of intra-class joint distribution P(x1,x2|HI) can be writ-
ten as ∑

I=

[
Sμot + Sεot,st Sμot

Sμot Sμot + Sεot,st

]
. (6)

The covariance matrix of the inter-class joint distribution
P(x1,x2|HE) can be written as

∑
E=

[
Sμot + Sεot,st 0

0 Sμot + Sεot,st

]
. (7)

Finally, omitting the constant parameter, we can compute the
log-likelihood ratio r(x1,x2) to obtain the similarity of two
input cross-modality face images by intra-class joint distri-
bution and inter-class joint distribution as

r(x1,x2) = log
P(x1,x2|HI)

P(x1,x2|HE)

= xT
1 Mx1 + xT

2 Mx2 − 2xT
1 Nx2,

(8)

where
M = (Sμot + Sεot,st)

−1 −K, (9)
and K satisfies[

K N
N K

]
=

[
Sμot + Sεot,st Sμot

Sμot Sμot + Sεot,st

]−1

.

(10)
Therefore, we turn the face verification issue into estimating
the two covariance matrices Sμot and Sμot,st .

Suppose that there are mi i.i.d. intra-class face images
belonging to the same subject i. According to equation ( 2),
we can represent all the samples of the same subject by

xi = Qihi, (11)

where

Qi =

⎡
⎢⎢⎣

I I 0 · · ·
I 0 I · · ·
...

...
...

. . .
I 0 0 · · ·

0
0
...
I

⎤
⎥⎥⎦ ,

hi =
[
μiot ; εiot,st1; εiot,st2; · · · ; εiot,stmi

]
,

(12)

and I is the identity matrix whose dimension is determined
by the feature dimension.

Note that, our objective function is

max
∏

iP(xi|hi). (13)

For each identity, the inter-class variation μiot can
be derived from N (0,Sμot). Then the intra-class varia-
tions

[
εiot,st1; εiot,st2; · · · ; εiot,stmi

]
can be derived from

N (0,Sμot,st). Because subjects are independent, the objec-
tive function is equivalent to

max
∑

i logP(xi|Sμot ,Sεot,st). (14)

To solve this problem, we develop an asymmetric EM al-
gorithm to jointly optimize the estimation of two covariance
matrices in next subsection.

3.3 Model Optimization
E-Step Considering the distribution of the latent variation
hi is a Gaussian with the covariance matrix,

∑
hi

=

⎡
⎢⎣

Sμot

Sεot,st

Sεot,st

Sεot,st

⎤
⎥⎦ , (15)

we can write the likelihood function of subject i as

P(xi|Sμot ,Sεot,st) = N (0,
∑

xi
), (16)

6685



Algorithm 1 AJL-HFR

Input: Training set A, probe image p, gallery dataset G.
Step 1: Generate synthesized image pairs corresponding
to training set A by three face sketch synthesis methods:
RSLCR, MWF, GANs. Let B represents the set of the
synthesized image pairs and the original training image
pairs.
Step 2: Initialize the inter-class covariance matrix Sμot

from image pairs of training set A and the intra-class co-
variance matrix Sεot,st from image pairs of dataset B.

Step 3: EM strategy is applied to jointly optimize Sμot

and Sεot,st . Then calculate M and N according to equa-
tion (9) and (10) respectively.
Step 4: Calculate the similarity of probe image p and
each image in gallery dataset G. Sort the similarities by
descend order.
Output: The target heterogeneous face image t in gallery
dataset G.

where

∑
xi

= Qi

∑
hi
QT

i =

⎡
⎢⎢⎣

I I 0 · · ·
I 0 I · · ·
...

...
...

. . .
I 0 0 · · ·

0
0
...
I

⎤
⎥⎥⎦

⎡
⎢⎣
Sμot

Sεot,st

Sεot,st

Sεot,st

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

I I · · · I
I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

Sμot + Sεot,st Sμot · · · Sμot

Sμot Sμot + Sεot,st · · · Sμot

...
...

. . .
...

Sμot Sμot · · · Sμot + Sεot,st

⎤
⎥⎥⎥⎦
(17)

Based on the learning process in Chen et al. (2017), the ex-
pectation of latent variable hi can be computed by

EP(hi|xi,Sμot ,Sεot,st )
=

∑
hi
QT

i

∑−1
xi

xi. (18)

At the beginning of E-Step, we asymmetrically initialize
Sμot by the covariance of the mean of each inter-class iden-
tity from original training set, and initialize Sεot,st by the
covariance of intra-class face images from original training
set and synthesized face images.

M-Step As the latent variable hi has been estimated in the
last step, we can update the parameters by substituting μiot
and εiot into the following equation:

Sμot =
1
n

∑
i E

[
μiotμ

T
iot

]
,

Sεot,st =

∑
i

∑
j E

[
εiot,stjε

T
iot,stj

]
∑

i mi
,

(19)

where n represents the number of subjects in training set.
The algorithm generally converges in fifty iterations, then

we can utilize the equations (8)-(10) to compute the similar-
ities between the probe image and the gallery images. Al-
gorithm 1 summarizes the implementation steps for the pro-
posed asymmetric joint learning method for heterogeneous
face recognition.

4 Experimental Results and Analysis
In this section, we validated the effectiveness of the pro-
posed approach on four HFR scenarios, i.e. viewed sketches
vs. visible images, semi-forensic sketches vs. visible images,
forensic sketches vs. visible images and near infrared images
vs. visible images. To begin with, we explored the effect of
different features and different combinations of face sketch
synthesis methods. Then, we confirmed the superior perfor-
mance of our approach compared with state-of-the-art meth-
ods on CUFSF database, IIIT-D Sketch database, Forensic
Sketch database and CUHK VIS-NIR database.

4.1 Databases and Protocols
We present four HFR scenarios as shown in Figure. 3. The
viewed sketches are drawn by artists as viewing photos. For
viewed sketch database, we use the CUFSF database which
contains 1194 sketch-photo pairs and 500 subjects are ran-
domly selected as the training set. The remaining 694 sub-
jects are used for test.

The forensic sketches are generally used for law enforce-
ment which are drawn according to descriptions of eyewit-
nesses or victims. There are great gap between the viewed
sketches and the forensic sketches. To decrease the gap,
researchers develop semi-forensic sketches (IIIT-D Sketch
database) which are drawn by artists according to their mem-
ory to the photos which are viewed once to the artists. There
are two partition protocols for these databases. One protocol
is training on semi-forensic database, and then testing on
the forensic sketch database. The forensic sketch database
contains 168 mug shot photos and corresponding foren-
sic sketches from real world. We follow the same protocol
in Peng et al. (2017), i.e. 124 sketch-photo pairs of IIIT-
D database are randomly selected as the training set. Face
sketch synthesis models are trained on CUHK AR sketch
database (Wang and Tang 2009). Then we evaluate the per-
formance on 168 real forensic sketch-photo pairs. The other
protocol is training and testing both on the forensic sketch
database. We randomly select 112 subjects as the training
set. 250 subjects from CUFSF database are randomly se-
lected to generate synthesized image pairs. The remaining
56 subjects are used as the testing set. The gallery sets are all
extended by 10000 photos that are randomly selected from
LFW database (Huang et al. 2007).

The near infrared images are formed by the reflected in-
frared waves of objects. For this HFR scenario, we evaluate
the proposed approach on CUHK VIS-NIR database (Gong
et al. 2017), each subject in which has one pair of near in-
frared image-visible image. There are 2800 subjects in total.
Considering the partition protocol in Gong et al. (2017), we
randomly divide the database into two halves without over-
lapping, one half for training and the other half for testing.
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Figure 5: Left top subfigure gives the performance compari-
son with different features; right top subfigure illustrates the
influence with different feature dimensions; left bottom sub-
figure provides the results corresponding to different com-
binations of eight synthesis methods (there are totally 28

different combinations). The horizental axis is the decimal
digit corresponding to the binary number, and the vertical
axis is the rank-1 recognition accuracy corresponding to dif-
ferent combinations. There we set ’RSLCR’, ’LLE’, ’MRF’,
’MWF’, ’SFS’, ’SRE’, ’SVR’ and ’GANs’ as a binary digit
with 8 bits. Each method is corresponding to one bit. For in-
stance, the binary digit ’10101010’ represent the combina-
tion of ’RSLCR’, ’MRF’, ’SFS’ and ’SVR’. And the corre-
sponding decimal digit is 170; right bottom subfigure high-
lights several highest recognition rates from left bottom sub-
figure. All four experiments are conducted on the CUFSF
database.

Since the differences between NIR images and VIS images
of the same subject are relatively small, we only utilize the
RSLCR method to construct the final training set.

4.2 Experimental Settings
All the images used in this paper are aligned according to
the eye centers. And the size of each image is cropped to
250×200. Each image patch is size of 10×10, and we keep
50% overlap between adjacent patches. All experiments are
conducted on Windows 7 operation system with i7-4790
3.6G CPU, under the environment of MATLAB R2016b
software. All the experimental results in this paper are the
average of ten repetitions of the corresponding experiments
by randomly partitioning the database.

Feature Exploration We explore four local feature de-
scriptors, i.e. SIFT (Lowe 2004), HOG (Dalal and Triggs
2005), SURF (Bay, Tuytelaars, and Van Gool 2006), GA-
BOR, and deep features i.e. VGG features (Parkhi, Vedaldi,
and Zisserman 2015) in this paper. For local feature descrip-
tors, we choose the default parameter settings. For deep fea-
tures, we extract the output of last pooling layer in VGG-face
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Figure 6: Left subfigure shows the results on IIIT-D
database; right subfigure shows the results on Forensic
Sketch database.

networks. The left top subfigure in Figure. 5 gives the per-
formance comparison with different features. It can be seen
that deep features outperform other features. Hence, we rep-
resent images by deep features for the proposed approach in
the following experiments.

In addition, the features utilized in this paper are dimen-
sion reduced by PCA. Thus, we explore the effectiveness of
different feature dimensions. The accuracies corresponding
to different dimensions of VGG features are shown in the
right top subfigure in Figure. 5 and 750 is the best dimen-
sionality for our framework.

Discussions on the Combination of Different Face Sketch
Synthesis Methods In this section, we choose eight syn-
thesis methods (i.e. RSLCR, LLE, MRF, MWF, SFS, SRE,
SVR and GANs) to explore the effectiveness of different
combinations of synthesized image pairs for the proposed
method. The synthesized examples can be found in Fig-
ure. 4. We select some number (from 1 to 8) of synthesized
image pairs for joint training, and traverse all the combina-
tions. Each experiment is repeated 10 times and the exper-
imental results are shown in Figure. 5. The best four com-
binations are {RSLCR, MWF, SRE}, {RSLCR, SFS, SRE,
GANs}, {RSLCR, SRE, GANs}, {RSLCR, MWF, GANs}.
However, the SRE method has large computation complex-
ity which costs too much time. Therefore, we choose the
fourth best combination in all our following experiments.
We also attempted other methods by incorporating different
synthesized images into consideration. However, their im-
provements were marginal or even worse.

4.3 Results on Multiple Databases
For CUFSF database, we evaluate the rank-1 recognition ac-
curacies under the same partition protocol. The comparison
with the state-of-the-art methods is presented in Table 1.
Our approach achieves the rank-1 recognition accuracy of
99.61%, which is superior to all other state-of-the-art meth-
ods.

For IIIT-D Sketch database and Forensic Sketch database,
we compare the proposed approaches with state-of-the-art
methods and the baseline methods. The experimental results
are presented in Figure. 6. It can be seen that the proposed
method outperforms state-of-the-art methods a lot. We list
rank-50 accuracies in Table 2. They are 66.99% on IIIT-D
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Algorithms Rank-1 Recognition
Accuracy

MRF(2009) 46.03%
MWF(2012) 74.15%
TFSPS(2013) 72.62%
RSLCR(2018) 75.94%
LRBP(2012) 91.12%

LDoGBP(2013) 91.04%
G-HFR(2017) 96.04%

PLS(2011) 51.00%
MvDA(2016) 55.50%
VGG(2015) 45.82%

SeetaFace(2017) 16.57%
JB(2017)+VGG(2015) 98.43%

JB(2017)+VGG(2015)+
Synthesis Methods 98.56%

AJL-HFR 99.61%

Table 1: Rank-1 recognition accuracies of the state-of-the-
art approaches and our method on CUFSF database

Database Algorithms Rank-50 Recognition
Accuracy

IIIT-D Sketch Database
MCWLD(2012)
G-HFR(2017)

AJL-HFR

28.52%
30.36%
66.99%

Forensic Sketch Database
P-RS(2013)

G-HFR(2017)
AJL-HFR

20.80%
31.96%
72.86%

Table 2: Rank-50 recognition accuracies of the state-of-
the-art approaches and our method on IIIT-D database and
Forensic Sketch database

Algorithms Rank-1 Recognition
Accuracy

LFDA(2011) 69.22%
CITE(2011 72.53%

LCKS-CSR(2012) 71.21%
P-RS(2013) 72.93%

CFDA(2014) 80.19%
VGG(2015) 62.91%

SeetaFace(2017) 69.50%
CEFD((2017)) 83.93%

AJL-HFR 99.05%

Table 3: Rank-1 recognition accuracies of the state-of-the-
art approaches and our method on CUHK VIS-NIR database

database and 72.86% on Forensic Sketch database for our
proposed method in comparison to 30.36% and 31.96% of
G-HFR which is the second best, i.e. we double the rank-50
accuracy of state-of-the-art methods.

The comparisons between the proposed method with
state-of-the-art methods on CUHK VIS-NIR database are
shown in Table 3. Our proposed approach achieve the rank-1
accuracy of 99.05%, which is much higher than the second
best, 83.93% of (Gong et al. 2017).

5 Conclusion
In this paper we proposed an asymmetric joint learning
method for HFR. The proposed AJL-HFR method jointly
extracts intra-class information from the original train-
ing image pairs and the synthesized image pairs. The
asymmetric framework is employed to avoid losing inter-
class information. Experiments on viewed sketch (CUFSF)
database, semi-forensic sketch (IIIT-D) database, forensic
sketch database and near infrared image (CUHK VIS-NIR)
database illustrate the effectiveness and superiority of the
proposed method in comparison to state-of-the-art methods.
In the future, we would explore more effective features be-
sides VGG features.
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