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Abstract

Unsupervised domain adaptation has been proved to be a
promising approach to solve the problem of dataset bias. To
employ source labels in the target domain, it is required to
align the joint distributions of source and target data. To do
this, the key research problem is to align conditional dis-
tributions across domains without target labels. In this pa-
per, we propose a new criterion of domain-shared group-
sparsity that is an equivalent condition for conditional distri-
bution alignment. To solve the problem in joint distribution
alignment, a domain-shared group-sparse dictionary learn-
ing method is developed towards joint alignment of condi-
tional and marginal distributions. A classifier for target do-
main is trained using the domain-shared group-sparse coef-
ficients and the target-specific information from the target
data. Experimental results on cross-domain face and object
recognition show that the proposed method outperforms eight
state-of-the-art unsupervised domain adaptation algorithms.

1 Introduction

Though many encouraging results have been reported in the
challenging tasks of classification and recognition especially
with the development of the convolutional neural networks
(CNN) (Krizhevsky, Sutskever, and Hinton 2012), recent
researches (Long et al. 2016; Tsai et al. 2016) show that
the problem of dataset bias (Torralba and Efros 2011) re-
mained unsolved. Even with more generative features learnt
by CNN, it can hardly ensure that the data distributions of
the training dataset (source domain) and the test dataset (tar-
get domain) are exactly the same. Some techniques (Bruz-
zone and Marconcini 2010; Yao et al. 2015) have been de-
veloped to refine the source classifier for the target domain
with target labeled data, but it is extremely expensive and
time-consuming to annotate target data in practical applica-
tions (e.g., large scale camera networks). Instead of collect-
ing target labels, unsupervised domain adaptation (Gopalan,
Li, and Chellappa 2011) has been proposed to address the
problem of distribution mismatch under the situation that
target labels are unavailable. Existing methods can be cat-
egorized into two approaches as follows.

The first approach assumes that conditional distributions
between the source and target domains are equal, and there-
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Figure 1: Illustration of Domain-shared Group-sparse Rep-
resentation (a) Group-sparse representation for source la-
beled data; (b) Sparse representation for target unlabeled
data; (c) Without target labels, we constrain the target coef-
ficients share the same group sparsity as the source domain.
As the computation of distribution does not rely on data or-
der, conditional distributions across domains can be aligned
by the proposed domain-shared group-sparse constraint.

fore, joint distribution alignment can be solved by aligning
marginal distributions across domains. Along this line, many
unsupervised domain adaptation methods, e.g. (Sun, Feng,
and Saenko 2016; Tsai et al. 2016; Tzeng et al. 2017), have
been proposed and the results are encouraging when the as-
sumption is valid. However, in many practical applications
such as face and object recognition, conditional distributions
between source and target domains may be different.

The second approach matches the joint distributions
across domains without equal conditional distribution as-
sumption. For this purpose, (Long et al. 2013b; Ming
Harry Hsu et al. 2015) proposed to estimate target labels
from unlabeled target data so that target conditional dis-
tribution can be estimated for joint distribution alignment.
However, accurately estimating labels from unlabeled tar-
get data is very difficult due to the large data variations.
Instead, (Long et al. 2014; Gong et al. 2016) re-weighted
and/or transformed source data as target labeled data. Under
the assumptions of location-scale transformation and condi-
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tional independence between different classes, they proved
that the joint distributions across domains can be aligned.
However, such assumptions may not be valid in practical ap-
plications.

In view of the limitations on existing methods, this paper
proposes to derive an equivalent condition for conditional
distribution alignment, instead of estimating target labeled
data directly. In specific, we take advantage of the class-
independent property in group-sparse representations (Sun
et al. 2014) to extract class-specific information. By shar-
ing the class-specific information across domains, the condi-
tional distribution alignment can be modeled by constraining
the source and target domains share the same group sparsity.

As shown in Figure 1 (a), source data are sparse in group
according to their labels in the group-sparse representations.
But this property cannot be guaranteed for target data with-
out labels as shown in Figure 1 (b). With different non-zero
elements in the source and target coefficient vectors of the
same class, the conditional distributions are not the same.
In contrast, constrained by domain-shared group sparsity,
the source and target coefficient vectors have and only have
non-zero elements in one class-specific group (as illustrated
in Figure 1 (c)). Using the same group of elements for rep-
resentation, the conditional distributions of data from each
class are aligned in the group-sparse coefficients.

The contributions of this paper are three-folds,

• We derive a domain-shared group-sparse constraint for
conditional distributions alignment in unsupervised do-
main adaptation.

• We propose a domain-shared group-sparse dictionary
learning model to align joint distributions across domains.

• We develop a target-specific classifier that exploits both
domain-shared and target-specific information.

2 Related Work

In unsupervised domain adaptation, many researches de-
voted to select or project source data as target labeled data
to train a classifier for the target domain. Selection-based
methods (Gong, Sha, and Grauman 2012; Gong, Grauman,
and Sha 2013) selected a subset of source data, in which the
distribution is similar to the target domain for adaptation.
In contract, projection-based methods (Gong et al. 2012;
Sun, Feng, and Saenko 2016; Tsai et al. 2016) projected the
source data to the target domain or projected both source and
target data into an intermediary space, so that the projected
source dataset could be used as target-domain training data.
Along this line, dictionary-based models (Ni, Qiu, and Chel-
lappa 2013; Wu et al. 2016) are developed to find the pro-
jected space with sparse representation, and deep-learning
based methods (Long et al. 2016; Ganin et al. 2016) are pro-
posed to model the nonlinear projection.

Other methods aimed to estimate labels from target data
for adaptation. JDA (Long et al. 2013b) predicted labels for
target data with the source classifier to align data distribu-
tions across domains. (Ming Harry Hsu et al. 2015) fur-
ther improved JDA by combing the structural information
of target data to predict target labels. Rather than distribu-

tion alignment, (Xu et al. 2014) refined the source classifiers
to the target domain using target data with estimated labels.

3 Proposed Method

In this section, we first introduce the Domain-shared
Group-sparse Dictionary Learning (DsGsDL) model that
aligns joint distributions across domains by minimizing the
domain-shared group-sparse constraint and marginal distri-
bution difference. Theoretical analysis and optimization al-
gorithm are then provided in Section 3.2 and 3.3, respec-
tively. After learning the domain-shared group-sparse dic-
tionary, a classifier for the target domain is trained using the
domain-shared coefficients together with target-specific in-
formation from target data. Details about the classifier learn-
ing is discussed in Section 3.4.

3.1 Domain-Shared Group-Sparse Dictionary
Learning

Given a set of source data XS with labels yS and a set of
unlabeled target data XT , we aim to align joint distribu-
tions PS(X

S ,yS) and PT (X
T ,yT ) for domain adaptation.

Specifically, target labels yT are unknown in unsupervised
domain adaptation. For this purpose, the proposed DsGsDL
model learns the group-sparse representations, in which both
the conditional and marginal distributions are aligned across
the source and target domains.

Conditional Distribution Alignment We align condi-
tional distributions with the constraint of domain-shared
group sparsity on both source and target domains. We
first consider the formulation in the source domain. De-
note a set of labeled source data from K classes as XS =
[XS

1 , X
S
2 , ..., X

S
K ], where XS

k ∈ R
p×nk is the sub-set of

source data from class k, p is the feature dimensionality of
each source sample and nk is the number of source data from
class k. The dictionary for source domain is represented as
DS = [DS

1 , D
S
2 , ..., D

S
K , DS

r ], where DS
k ∈ R

p×qk is a sub-
dictionary specific to class k and DS

r ∈ R
p×qr is the dic-

tionary for the remainder sparse coefficients from all classes
in the source domain. qk and qr are the number of bases for
DS

k and DS
r , respectively. Let αS ∈ R

q×n be the coeffi-
cients for source data. q is the total number of bases in DS

while n is the total number of source data. Correspond to
DS , source coefficients are divided as matrix of row vec-
tors αS = [αS

1,:;α
S
2,:; ...;α

S
K,:;α

S
r,:]. On the other hand,

the coefficient matrix can be written by column vectors as
αS = [αS

:,1,α
S
:,2, ...,α

S
:,K ] according to the source labels

yS . We attain source-domain group sparsity by minimiz-
ing the reconstruction error of each sub-dictionary and con-
straining that samples from different classes respond to dif-
ferent sub-dictionaries. Employing l0 norm for group-sparse
constraint, the source group-sparse dictionary is learned by

min
DS ,αS

K∑
k=1

||XS
k −DS

kα
S
k,k −DS

r α
S
r,k||2F

+ η
n∑

yi �=yj

||αS
c,(i) ◦αS

c,(j)||0 + λ
n∑

i=1

|αS
(i)|

(1)
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where ◦ denotes the Hadamard product, αS
c =

[αS
1,:;α

S
2,; ...;α

S
K,:] is the class-specific coefficients,

αS
c,(i) and αS

c,(j) are the i-th and j-th column of αS
c ,

respectively. yi and yj represent the labels of the i-th and
j-th source samples, respectively. αS

(i) is the coefficients
for the i-th source sample. η and λ are regularization
parameters for coefficient sparsity.

In the target domain, the domain-shared group spar-
sity is formulated as follows. Given a set of unlabeled
target data XT ∈ R

p×m, where p is feature dimen-
sionality and m is the number of target data, let tar-
get dictionary has the same structure as source dictio-
nary, denoted as DT = [DT

1 , D
T
2 , ..., D

T
K , DT

r ]. Corre-
spondingly, denote target coefficients as αT = [αT

c ;α
T
r ],

where αT
c = [αT

1,:;α
T
2,:; ...;α

T
K,:] is target class-specific

coefficients. Since the classification task is shared across
source and target domains, the sub-dictionary DS

k specific
to class k is close to the sub-dictionary DT

k in target do-
main. Utilizing this criterion, the distance between class-
specific components DS

c = [DS
1 , D

S
2 , ..., D

S
K ] and DT

c =
[DT

1 , D
T
2 , ..., D

T
K ] in source and target domains are mini-

mized for the same class representation across domains, i.e.,

min
DS

c ,DT
c

||DS
c −DT

c ||2F (2)

On the other hand, the coefficients of the same class sam-
ples in both domains need to share the same group sparsity
for conditional distribution alignment. For this purpose, the
coefficients of target samples are constrained to exclude for
two sub-dictionaries representing two different classes. With
this criterion, each target sample automatically selects the
optimal group of coefficients for representation so that the
conditional distributions of source and target group-sparse
coefficients are aligned. We employ l0 norm to obtain group
sparsity for target coefficients αT , which minimize

min
αT

qc∑
la �=lb

||αT
(a),: ◦αT

(b),:||0 (3)

where αT
(a),: and αT

(b),: are the a-th and b-th rows of

αT , respectively. qc =
∑K

k=1 qk is the total number of
class-specific bases. la and lb represent the class of sub-
dictionaries that αT

(a),: and αT
(b),: respond, respectively.

Marginal Distribution Alignment Besides conditional
distribution alignment, we further minimize the marginal
distribution difference for joint distribution alignment. Max-
imum Mean Discrepancy (MMD) (Gretton et al. 2007) is
employed to measure the difference between marginal distri-
butions of the domain-shared group-sparse coefficients αS

c
and αT

c . Thus, we minimize

min
αc

tr(αcMα′
c) (4)

where αc = [αS
c ,α

T
c ] and M is the MMD matrix,

Mij =

⎧⎪⎨
⎪⎩

1/n2, i, j ≤ n

1/m2, i, j > n

1/m/n, otherwise

(5)

Combining conditional distribution alignment objectives
(Equation (1), (2), (3)) and marginal distribution alignment
objective (Equation (4)) with the target reconstruction error,
the optimization problem towards aligning the joint distribu-
tions is given by

min
DS ,DT

αS ,αT

K∑
k=1

||XS
k −DS

kα
S
k,k −DS

r α
S
r,k||2F

+ ||XT −DTαT ||2F + η
n∑

yi �=yj

||αS
c,(i) ◦αS

c,(j)||0

+ δ

qc∑
la �=lb

||αT
(a),: ◦αT

(b),:||0 + β||DS
c −DT

c ||2F

+ μtr(αcMα′
c) + λ

n+m∑
i=1

|α(i)|
(6)

where α(i) is the i-th column of α = [αS ,αT ] and μ, β, η,
λ and δ are parameters to balance the trade-off between the
reconstruction terms and other constraints.

3.2 Theoretical Analysis

In our model, the joint distributions of the domain-shared
group-sparse coefficients PS(α

S
c ,y

S) and PT (α
T
c ,y

T ) are
aligned by jointly aligning the marginal and conditional dis-
tributions across domains. Marginal distributions PS(α

S
c )

and PT (α
T
c ) are aligned by minimizing the MMD between

the source and target domains (Equation (4)), as in existing
methods (Long et al. 2013a). In the following, we mainly
discuss how the conditional distributions can be aligned by
the constraint of domain-shared group sparsity.

With labeled data in the source domain, group-sparse rep-
resentations αS

c (Equation (1)) can be obtained by group-
sparse dictionary learning (Sun et al. 2014). With the group-
sparse representations in the source domain, the coefficients
of source data from class k are more likely to be non-zeros
for the k-th class-specific dictionary DS

k , while others are al-
most zeros. With this property, we show that domain-shared
group sparsity is a sufficient and necessary condition for
conditional distribution alignment across the source and tar-
get domains as follows.

Sufficiency: Denote χk as a set of coefficient vectors in
the k-th group (from class k). Source-domain group spar-
sity implies large-value probability PS(y

S = k|αS
c ⊆

χk) and small-value probability PS(y
S �= k|αS

c ⊆ χk).
With the same classification task, we assume that the class-
specific information is shared across the source and target
domains. According to the domain-shared property (Equa-
tion (2)), the k-th group target dictionary DT

k is correspond-
ing to the k-th class-specific dictionary DS

k , which means
the class concept is shared by source and target dictionar-
ies across domains. On the other hand, Equation (3) lim-
its non-zero coefficients of target data to be in only one
group k, i.e., αT

c,k ⊆ χk. Thus, we have large-value prob-
ability PT (y

T = k|αT
c ⊆ χk) and small-value probability

PT (y
T �= k|αT

c ⊆ χk) in the target domain. Consequently,
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PS(y
S |αS

c ) ≈ PT (y
T |αT

c ), which means the conditional
distributions are aligned across the source and target do-
mains. Hence, domain-shared group sparsity is a sufficient
condition for conditional distribution alignment.

Necessity: In the source domain, according to the pre-
vious analysis, the group-sparse coefficients αS

c satisfies
αS

c ⊆ (∪K
k=1χk), which implies large-value probabil-

ity PS(y
S |αS

c ⊆ (∪K
k=1χk)) and small-value probabil-

ity PS(y
S |αS

c �⊆ (∪K
k=1χk)). If the conditional proba-

bilities are equal to each other in both domains, we get
large-value probability PT (y

T |αT
c ⊆ (∪K

k=1χk)) and small-
value probability PT (y

T |αT
c �⊆ (∪K

k=1χk)). This means
the group sparsity is shared across domains, so αT

c ⊆
(∪K

k=1χk). Therefore, target coefficients αT
c have non-zero

values in only one group as the source domain, i.e., ||αT
(a),: ◦

αT
(b),:||0 = 0 for la �= lb (Equation (3)). On the other hand,

conditional distributions are equal to each other for each
class, i.e., PS(y

S = k|αS
c ⊆ χk) = PT (y

T = k|αT
c ⊆

χk). This constrains that class information encoded in the
dictionaries is shared across domains, so we formulate this
property as DS

c = DT
c (Equation (2)). Therefore, domain-

shared group sparsity is a necessary condition for equal con-
ditional distribution across the source and target domains.

3.3 Optimization

To solve the optimization problem in Equation (6) more
efficiently, we introduce a set of selection matrices
{Q1, Q2, ...QK , Qr} to extract sub-dictionaries from source
and target dictionaries. Let Qk ∈ R

q×q = diag(0, 1) be a
diagonal matrix, where the diagonal value Qk

ii = 1 if the
i-th basis of DS and DT belongs to sub-dictionary DS

k and
DT

k , respectively. Similarly, Qr ∈ R
q×q = diag(0, 1) has

none-zero values in the position corresponding to DS
r and

DT
r . Applying selection matrices, we have ||XS

k −DS
kα

S
k,k−

DS
r α

S
r,k||2F = ||XS

k −DSQkαS
:,k−DSQrαS

:,k||2F . Let Qc =∑K
k=1 Q

k be the selection matrix for class-specific dictio-
naries, we get DS

c = DSQc, DT
c = DTQc, αc = Qcα and

αc,(i) = Qcα(i). Equation (6) is then rewritten as,

min
DS ,DT

αS ,αT

K∑
k=1

||XS
k −DSQkαS

:,k −DSQrαS
:,k||2F

+ ||XT −DTαT ||2F + η
n∑

yi �=yj

||QcαS
(i) ◦QcαS

(j)||0

+ δ

qc∑
la �=lb

||αT
(a),: ◦αT

(b),:||0 + μtr(QcαM(Qcα)′)

+ β||DSQc −DTQc||2F + λ
n+m∑
i=1

|α(i)|
(7)

To solve the optimization problem (7), dictionaries DS

and DT , coefficients αS and αT are iteratively optimized
as follow.

Learning Dictionary Fix source and target coefficients
αS , αT , source dictionary DS is learned by solving the l2
norm optimization function,

min
DS

K∑
k=1

||XS
k −DS(QkαS

:,k −QrαS
:,k)||2F

+ β||DSQc −DTQc||2F
(8)

The solution to (8) can be obtained by setting the first deriva-
tive to zero. Similarly, fix αS , αT and DS , target dictionary
DT is learned by

min
DT

||XT −DTαT ||2F + β||DSQc −DTQc||2F (9)

Learning Coefficients The strategy of coordinate de-
scent (Aharon, Elad, and Bruckstein 2006) is utilized to up-
date each column α(i) of coefficients α = [αS , αT ] when
DS , DT and other columns of α are fixed.

For the source coefficient α(i), where i ≤ n, the opti-
mization function is,

min
α(i)

gS(α(i)) =hS(α(i)) + lS(α(i)) + λ|α(i)| (10)

where

hS(α(i)) =||xi − (DSQki −DSQr)αS
(i)||2F

+ μMii(Q
cα(i))

′(Qcα(i))

+ 2μ
n+m∑

j=1,j �=i

Mij(Q
cα(i))

′(Qcα(j))

(11)

xi is the i-th column of X = [XS , XT ], ki is the class index
of xi and

lS(α(i)) = η
n∑

j=1
yi �=yj

||QcαS
(i) ◦QcαS

(j)||0 (12)

Minimizing Equation (10) is NP hard as it includes a l0
norm term and a l1 norm term. To solve the l0 norm, an
iterative re-weighting strategy (Chartrand and Yin 2008) is
employed to approximate lS(α(i)). Follow the support dis-
crimination method (Liu et al. 2016), lS(α(i)) is approxi-
mated by l2 norm as,

lS(α(i)) = η||ΩiQ
cαS

(i)||2F (13)

where Ωi is a re-weight matrix calculated by coefficients
with different class label from αS

(i).

Ωi = diag(

√ ∑
j,yi �=yj

(
√
ωij ◦ (QcαS

(j)))
�2) (14)

with ωij = 1/(QcαS
(i) ◦ QcαS

(j))
�2, where 
2 represents

the operation of element by element square for a vector.
With Equation (13), Equation (10) is approximated as a

QP problem with a sparsity constraint. Follow the optimiza-
tion process proposed in TSC (Long et al. 2013a), a sparse
coding algorithm (Lee et al. 2007) is applied. By searching
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the sign for each element of α(i), Equation (10) is reduced
into a quadratic optimization problem, which can be solved
by fixing the first derivative as zero.

For the target coefficient αi, where i > n, the optimiza-
tion function is

min
α(i)

gT (α(i)) = hT (α(i)) + lT (α(i)) + λ|α(i)| (15)

where

hT (α(i)) =||x(i) −DTα(i)||2F + μMii(Q
cα(i))

′(Qcα(i))

+ 2μ
n+m∑

j=1,j �=i

Mij(Q
cα(i))

′(Qcα(j))

(16)
and

lT (α(i)) = δ

qc∑
la �=lb

||αT
(a),(i) ◦αT

(b),(i)||0 (17)

We adapt the feature-sign search algorithm (Lee et al.
2007) to solve the NP hard problem of Equation (15) with a
non-derivable term (Equation (17)). For the a-th element of
αT

(i), we have

||αT
(a),(i) ◦αT

(b)(i)||0 =

{
||αT

(b)(i)||0, αT
(a),(i) �= 0

0, otherwise
(18)

If αT
(a),(i) �= 0, the subdifferentiable of |α(i)| for the a-th

element is∇(a)|α(i)| = sign(α(a),(i)). Thus, the subdiffer-
entiable for gT (α(i)) is

∇(a)g
T (α(i)) =∇(a)h

T (α(i)) + λsign(α(a),(i))

+ δ

qc∑
b=1
la �=lb

||αT
(b),(i)||0 (19)

Otherwise, αT
(a),(i) = 0, ∇(a)|α(i)| and ∇(a)||αT

(a),(i) ◦
αT

(b)(i)||0 are non-derivable so that we set the value for them
as 1 or −1. The subdifferentiable for gT (α(i)) is

∇(a)g
T (α(i)) =∇(a)h

T (α(i))± (λ+ δ) (20)

To optimize Equation (15), the gradient ∇(a)g
T (α(i))

should be equal to 0 if αT
(a),(i) �= 0. Otherwise,

|∇(a)h
T (α(i))| ≤ λ+ δ and ∇(a)g

T (α(i)) can not be 0 for
any value of αT

(a),(i). Here, both λ and δ are positive num-
bers. Therefore, we search the elements of αT

(i) that satisfies
|∇(a)h

T (α(i))| > λ + δ for optimization. For the a-th ele-
ment of αT

(i), if |∇(a)h
T (α(i))| > λ+δ, we get αT

(a),(i) �= 0

and assign sign for αT
(a),(i). The value of αT

(a),(i) is then op-
timized by setting Equation (19) equal to 0.

3.4 Learning Target Classifier by Incorporating
Target-Domain-Specific Information

After getting the domain-shared group-sparse representa-
tions, a straight-forward method to classify target samples

is to train a classifier using the source domain-shared coef-
ficients αS

c with their labels yS , and then apply it to target
coefficients αT

c . While αS
c and αT

c only contain the discrim-
inative information that is shared in both source and target
domains, it is possible that some target discriminative infor-
mation is not contained in the source domain.

To further incorporate target-domain-specific informa-
tion, we propose to learn a target classifier by using both
the domain-shared group-sparse representations and the tar-
get feature vectors XT . On the one hand, source label infor-
mation yS is propagated to target-domain data through the
domain-shared group-sparse representations, which is for-
mulated similar to the objective in semi-supervised learning
(e.g., (Wang and Zhang 2008)). On the other hand, the orig-
inal feature space XT is more informative than the domain-
shared group-sparse coefficients, so the regularization graph
within the target data is constructed by XT .

Based on the analysis above, we construct two graphs
for cross-domain label propagation. The first one Gc =<
V c, Ec > is constructed by class-specific coefficients αc in
both source and target domains, where the nodes V c = αc

and the edge εcij ∈ Ec connects αc,(i) and αc,(j). The
second one GT =< V T , ET > is constructed by target
data XT only, where the nodes V T = XT and the edge
εTij ∈ ET connects xT

i and xT
j .

The weight of each edge between a pair of nodes is
computed by the neighbourhood information of each node
(Wang and Zhang 2008). With weight matrices W c and WT ,
the classifier in the target domain can be learned by label
propagation on these two graphs. For simplicity, linear clas-
sifier θ is employed, i.e.,

min
θ

1

nm

n∑
i=1

m∑
j=1

||yS
i − θxT

j ||22W c
j′i

+
1

m2

m∑
i,j=1

||θxT
i − θxT

j ||22WT
ij + γ||θ||22

(21)

where j′ = j+n is the index of αT
c,(j) in αc, and γ is a reg-

ularization parameter. The label of target data xT
j depends

on its neighbourhood in αc and XT .
Equation (21) can be rewritten as

min
θ

1

m

m∑
j=1

θxT
j (x

T
j )

′θ′ − 2

nm

n∑
i=1

m∑
j=1

(yS
i (x

T
j )

′θ′)W c
j′i

+
1

m2
θXTL(XT )′θ′ + γθθ′

(22)
where L = diag(

∑m
j=1 W

T
ij )−WT is the Laplacian matrix.

By calculating the derivation for Equation (22), the
solution to the above optimization problem is given
by θ = ( 1

nm

∑
i

∑
j(y

S
i (x

T
j )

′)W c
j′i)(

1
m

∑
j x

T
j (x

T
j )

′ +
1

m2X
TL(XT )′ + γI)−1.

4 Experimental Results
In this section, we evaluate our method on two recognition
tasks: 1) face recognition across blur and illumination; 2)
object recognition across different datasets.
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Table 1: Comparison of face recognition accuracy (%) on
CMU-PIE dataset (Source: images under 11 illumination
conditions; Target: images under other 10 illumination con-
ditions with a blur kernel)

Method σ =3 σ =4 L =9 L =11
SVMScr 73.82 70.00 72.94 67.35

GFK 77.65 74.71 80.88 73.53
SA 76.47 75.29 78.24 75.29

SIDL 71.47 68.53 73.53 64.41
TKL 77.94 77.35 78.24 76.76

CORAL 76.18 72.94 78.53 67.06
JDA 74.12 74.71 78.53 62.65
TJM 59.71 56.76 60.29 42.06
CTC 68.82 65.28 70.00 62.65

DsGsDLNT (Ours) 86.47 86.76 89.12 77.74

DsGsDL (Ours) 88.82 87.94 90.59 80.29

4.1 Experimental Settings

Implementation Details For learning the domain-shared
group-sparse dictionary, the sizes of each sub-dictionary are
5 and 10 for face and object recognition, respectively. We
set the number of remaining bases as 2 for experiments. The
sparsity coefficient λ is set as 0.1, which follows the experi-
mental settings in TSC (Long et al. 2013a). Hyper-parameter
experiments are done to analyze the parameter sensitivity of
parameters η, δ, μ and β in the optimization function (Equa-
tion (6)). To save the iteration times, the source-domain
sparse dictionary (Equation (1)) are learnt to initialize the
source and target dictionaries in the DsGsDL model (Equa-
tion (6)). Experiments show that our algorithm converges
within 20-25 iterations during optimization.

For learning target classifier, the parameter γ is set as 1 to
balance each term in Equation (21). The settings for learn-
ing the relationship graphs Gc and GT follow the settings in
(Wang and Zhang 2008). Target domain accuracy is used as
performance measure like many existing domain adaptation
methods (Gong et al. 2012; Long et al. 2013b).

Datasets CMU-PIE dataset (Sim, Baker, and Bsat 2002)
is used for experiments of face recognition across blur and
illumination variations. Following the protocol in (Ni, Qiu,
and Chellappa 2013), frontal face images of 34 subjects un-
der 21 illumination conditions are selected. The pixel values
of each image are normalized and formed as a feature vec-
tor with 1920 dimensions for experiments. Two experiments
are performed. In the first experiment, the source domain in-
cludes images under 11 different illumination conditions and
target domain consists of the images under the other 10 illu-
mination conditions with a blur kernel. Gaussian blur with
standard deviations of 3 and 4 and motion blur with length of
9 and 11 are performed, respectively. The second experiment
is implemented by reversing the source and target domains
in the first experiment.

The experiments of object recognition are conducted on
Office+Caltech dataset (Saenko et al. 2010), which contains

Table 2: Comparison of face recognition accuracy (%) on
CMU-PIE dataset (Source: images under 10 illumination
conditions with a blur kernel; Target: images under other
11 illumination conditions)

Method σ =3 σ =4 L =9 L =11
SVMScr 70.88 66.48 74.12 67.06

GFK 85.29 83.24 85.29 81.47
SA 75.00 71.76 76.47 77.35

SIDL 83.53 80.59 87.06 82.06
TKL 80.88 80.59 81.76 77.35

CORAL 83.24 81.18 84.12 81.76
JDA 87.35 83.53 86.18 76.76
TJM 50.59 51.47 56.47 40.88
CTC 74.74 73.82 77.06 72.06

DsGsDLNT (Ours) 98.53 98.35 97.94 97.35

DsGsDL (Ours) 98.82 99.41 98.24 98.82

four datasets of object images captured under different con-
ditions: 1) Amazon includes 958 images downloaded from
websites; 2) Webcam is make up by 295 low-resolution im-
ages taken by web camera; 3) DSLR contains 157 high-
resolution images from digital SLR camera; 4) Caltech-10
is a subset of a object recognition dataset Caltech-256 with
1123 images. There are 10 categories of objects in each
dataset, including bags, bikes, chairs, laptops, etc. For short,
characters A, W , D and C are used to represent Amazon,
Webcam, DSLR, and Caltech-10, respectively. We perform
experiments on DeCAF6 features (Donahue et al. 2014) with
4096 dimensions. Selecting one dataset as the source do-
main and any other dataset as the target domain, 4*3 pairs
of source and target datasets are obtained for experiments.

Compared methods We compare the proposed method
with eight state-of-the-art unsupervised domain adaptation
methods, namely GFK (Gong et al. 2012), SA (Fernando et
al. 2013), SIDL (Ni, Qiu, and Chellappa 2013), JDA (Long
et al. 2013b), TJM (Long et al. 2014), TKL (Long et al.
2015b), CTC (Gong et al. 2016) and CORAL (Sun, Feng,
and Saenko 2016). Among these, GFK, SA, SIDL, TKL and
CORAL aligned marginal distributions under the assump-
tion of equal conditional distribution across domains while
JDA, TJM and CTC aligned both marginal and conditional
distributions. In addition, results of two deep-learning based
unsupervised domain adaptation methods (DDC (Tzeng et
al. 2014) and DAN (Long et al. 2015a)) are presented
for comparison in the experiments of cross-domain object
recognition. For fair comparison, experimental settings of
each compared method follow that reported in their paper.
The results of the source-domain SVM classifier (SVMScr)
are regarded as the baseline. To evaluate the performance
of DsGsDL model, we also perform experiments on the
DsGsDL model without using target-specific information,
called DsGsDLNT , in which SVM is used as a classifier.

7458



Table 3: Comparison of classification performance (%) on Office+Caltech dataset with DeCAF6 features (Color red, blue and
green represent the best, second best and third best results for each pair of datasets, respectively)

Datasets SVMScr GFK SA SIDL TKL CORAL JDA TJM CTC DsGsDLNT DsGsDL
(Ours) (Ours)

D →W 99.32 97.29 98.22 99.66 98.31 98.98 99.32 97.97 97.29 99.32 100

D → A 83.19 81.63 81.06 85.18 77.04 86.01 90.50 86.95 86.12 89.46 91.65

D → C 76.67 75.42 76.06 80.77 74.09 77.47 84.06 76.76 74.09 82.55 85.40

W →D 99.36 96.82 98.69 100 100 99.36 99.36 100 99.36 100 100

W → A 81.21 87.89 77.21 82.25 76.62 82.36 90.50 85.91 78.39 88.10 91.54

W → C 74.80 77.29 72.62 75.33 71.15 75.78 83.79 75.42 74.09 81.48 84.51

A→D 82.80 84.08 81.31 71.97 78.98 80.89 77.71 85.99 82.80 89.81 93.63

A→W 77.97 82.03 74.64 65.76 76.61 74.57 80.34 80.00 73.22 83.73 87.46

A→ C 82.99 83.88 81.90 81.21 80.05 83.43 80.94 78.01 78.98 85.57 87.44

C →D 87.26 84.71 83.50 76.43 87.26 87.90 80.89 93.63 79.62 95.54 97.45

C →W 80.34 86.10 76.15 71.53 71.19 80.00 82.37 81.69 72.20 94.92 96.27

C → A 90.81 91.65 89.81 85.70 91.02 91.65 86.74 92.38 87.47 93.01 93.22

Average 84.73 85.73 82.60 81.32 82.79 84.87 85.45 86.23 81.97 90.29 92.38

4.2 Face Recognition Across Blur and
Illumination Variations

Experimental results of the two experiments on face recog-
nition across blur and illumination are shown in Table 1
and Table 2, respectively. From these results, we can see
that even without target-specific information, the proposed
method (DsGsDLNT ) outperforms eight state-of-the-art un-
supervised domain adaption methods in all variation set-
tings. DsGsDLNT obtains 85.02% and 98.04% of aver-
age accuracy from the four different variation settings in
the target domain for the first and second experiments, re-
spectively. Incorporating with target-specific information,
the proposed method (DsGsDL) achieves even higher ac-
curacy, getting around 86.91% and 98.82% of accuracy
at average in the first and second experiments, respectively.
It can be observed from Table 1 and Table 2 that the pro-
posed method (DsGsDL) gains a significant improvement
(over 14.19% and 38.24% in Table 1 and Table 2, respec-
tively) compared to the baseline (SVMScr) for recognizing
faces in the target domain.

Moreover, it is interesting to see that the existing joint dis-
tribution alignment methods (JDA, TJM and CTC) do not al-
ways outperform the domain adaptation methods with equal
conditional distribution assumption (GFK, SA, SIDL, TKL
and CORAL). Especially, the performance of TJM which
tries to match the conditional distributions by re-weighting
(or selecting) source domain data is even worse than the
source-domain classifier SVMScr. These results reflect that
the selected source data can not correctly represent the target
conditional distribution in cross-domain face recognition.

4.3 Object Recognition Across Datasets

Results of object recognition across datasets are recorded
in Table 3. As shown in this table, without using target-
specific information, DsGsDLNT outperforms eight state-
of-the-art unsupervised domain adaption methods on 7 (out
of 12) pairs of datasets. Higher accuracy (rank first in all
datasets) is achieved by DsGsDL with target-specific infor-
mation, which convinces that recognition performance can

Table 4: Average accuracy (%) of object recognition on Of-
fice+Caltech dataset compared with deep-learning based un-
supervised domain adaptation methods

Method DDC DAN DsGsDL
(Ours)

Average accuracy 88.16 91.18 92.38

be further improved by incorporating the target-specific in-
formation. The average accuracy of our method (DsGsDL)
on 12 pairs of datasets is 92.38%, which is (7.65%) higher
than the baseline (SVMScr).

Besides, we find that the average accuracy of SVMScr

is better than some domain adaptation methods with equal
conditional distribution assumption. This may indicate that
the equal conditional distribution assumption is not valid in
some cases of cross-domain object recognition. By match-
ing conditional distributions, the joint distribution alignment
methods (JDA and TJM) outperform SVMScr and most of
other domain adaptation methods except ours. Since our
method avoids the problem of inaccuracy label estimation
or source domain data selection, it achieves the best results.

Furthermore, we also compare the results of the proposed
method (DsGsDL) to the deep-learning based unsupervised
domain adaptation methods (DDC and DAN). As shown in
Table 4, our method (DsGsDL) also achieves better result
than DDC and DAN at average.

5 Conclusion

This paper proposes and develops a new Domain-shared
Group-sparse Dictionary Learning method to align the joint
distributions for unsupervised domain adaptation. With the
domain-shared group-sparse coefficients, the target classifier
is determined by further incorporating the target specific in-
formation. Experiments show that the domain-shared group-
sparse coefficients achieve promising results in the tasks of
cross-domain face and object recognition. The performance
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is further improved by incorporating target-specific informa-
tion to train a classifier for the target domain.
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