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Abstract

Existing action detection algorithms usually generate action
proposals through an extensive search over the video at mul-
tiple temporal scales, which brings about huge computational
overhead and deviates from the human perception procedure.
We argue that the process of detecting actions should be nat-
urally one of observation and refinement: observe the current
window and refine the span of attended window to cover true
action regions. In this paper, we propose a Self-Adaptive Pro-
posal (SAP) model that learns to find actions through contin-
uously adjusting the temporal bounds in a self-adaptive way.
The whole process can be deemed as an agent, which is firstly
placed at the beginning of the video and traverse the whole
video by adopting a sequence of transformations on the cur-
rent attended region to discover actions according to a learned
policy. We utilize reinforcement learning, especially the Deep
Q-learning algorithm to learn the agent’s decision policy. In
addition, we use temporal pooling operation to extract more
effective feature representation for the long temporal window,
and design a regression network to adjust the position offsets
between predicted results and the ground truth. Experiment
results on THUMOS’14 validate the effectiveness of SAP,
which can achieve competitive performance with current ac-
tion detection algorithms via much fewer proposals.

Introduction

Temporal action detection requires not only to determine
whether an action occurs in a video but also to locate the
temporal extent of when it occurs, which is a challenging
problem for real-life long untrimmed videos. Most of mod-
ern approaches (Shou, Wang, and Chang 2016; Zhu and
Newsam 2016; Xiong et al. 2017) usually solve the problem
via a two-step pipeline: firstly generate a set of class inde-
pendent action proposals, which are obtained via running a
action/background classifier over a video at multiple tempo-
ral scales; then the proposals are classified by the pre-trained
action detector, and post processing such as non-maximum
suppression is applied. However, such extensive search for
action localization is unsatisfying in terms of both accuracy
and computational efficiency. Like the human detects the ac-
tion through successively altering the span of attended re-
gion to narrow down the difference between the bounds of
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current window and that of true action region, the optimal
algorithm should be the process of sequential, iterative ob-
servation and refinement consuming search steps as less as
possible.

In this paper, we propose a class-specific action detection
model called SAP that learns to continuously adjust the cur-
rent region to cover the groundtruth more precisely in a self-
adapted way. This is achieved by applying a sequence of
transformations to a temporal window that is initially placed
at the beginning of the video and finally finds and covers
action region as large as possible. The sequence of transfor-
mation is decided by an agent that analyzes the content of
the current attended region and select the next best action
according to a learned policy, which is trained via reinforce-
ment learning based on Deep Q-Learning algorithm (Mnih
et al. 2015). Different from existing approaches that locate
the action following a fixed path, our method generates vari-
ous search trajectories for different action instances, depend-
ing on the video scenarios, the starting search position and
the sequences of actions adopted. As a result, the trained
agent will locate a single instance of an action in about 15
steps, which means that the model only processes 15 succes-
sive regions of an image to explore an uncover video seg-
ment, thus it is of great computational efficiency to compare
with sliding window based approaches.

Our model draws the inspiration from works that have
used reinforcement learning to build active models for ob-
ject localization in image (Caicedo and Lazebnik 2015;
Jie et al. 2016; Bellver et al. 2016). However, we can not
handle the video in a top-down way that is proved to perform
effectively for image object localization, as the duration of
the video is usually too long (from hundreds to thousands
frames). We start the search from a position initially placed
at the beginning of the video, which will terminate until a
instance of action has been found or the maximum transfor-
mation steps has been reached, and then a new search be-
gins from the position on the right side away from current
attended region. We incorporate temporal pooling operation
with feature extraction process to better represent the long
video segment and design a ”jump” action to avoid the agent
trapping itself in the region where no action occurs. We con-
ducted a comprehensive experimental evaluation in the chal-
lenging THUMOS’14 dataset (Jiang et al. 2014), and the re-
sults demonstrate that SAP can achieve competitive perfor-
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mance in terms of precision and recall via a small number of
action proposals.

Related work
Action Recognition. This task has been attended for a
few years, and a large amount of research work have been
done (Laptev and Lindeberg 2003; Wang and Schmid 2013;
Simonyan and Zisserman 2014; Tran et al. 2015). In early
years, researchers often tackle the problem based on hand-
crafted visual features (Laptev and Lindeberg 2003; Wang
and Schmid 2013). Recently, impressed by the huge success
of deep learning on image analysis task, some approaches
have introduced deep models, especially Convolutional
Neural Network (CNN), for better excavation the spatial-
temporal information included in the video clip. Simonyan
and Zisserman (Simonyan and Zisserman 2014) propose the
two-stream network architecture with one branch process-
ing RGB signal and the other one dealing with optical-flow
signal. Tran et al. (Tran et al. 2015) construct C3D model,
which operates 3D convolution in spatio-temporal video vol-
ume directly and integrates appearance and motion cues for
better feature representation. There have been also other ef-
forts (Donahue et al. 2015; Yue-Hei Ng et al. 2015) that at-
tempt to combine frame-level CNN feature representation
and long-range temporal structure to cope with input videos
of long duration. Up to now, deep learning based approaches
have achieved state-of-the-art performances.

Temporal Action Detection. Different from action
recognition where actions are included in a trimmed video
clip and the aim is to predict the category, temporal ac-
tion detection needs to not only classify the action but also
give out temporal localization. Most existing approaches ad-
dress the problem via sliding window strategy for candidates
generation and focus on feature representation and classi-
fier construction (Shou, Wang, and Chang 2016; Gaidon,
Harchaoui, and Schmid 2013; Oneata, Verbeek, and Schmid
2013; Yuan et al. 2016). Shou et al. (Shou, Wang, and Chang
2016) utilize a multi-stage CNN detection network for ac-
tion localization, where background windows are first fil-
tered out by a binary action/background classifier based
on C3D feature, then an action detection network incorpo-
rated both classification loss and temporal localization loss
is trained for candidate refinement. By the limitation of 16-
frames input of C3D model, they select 16 frames in uniform
from the whole video, which is inferior to temporal pool-
ing operation utilized in our approach. Gao et al. (Gao et al.
2017) decompose the input video into short video units, and
pool features extracted from a set of contiguous units for
representation of long video clip, and meanwhile employ a
coordinate regression network to refine the temporal action
boundaries. Our approach also includes location regression,
whose regression offsets are calculated via the relative devi-
ation rather than the absolute value, thus it will facilitate the
model to converge more efficiently. Unlike the works men-
tioned above, Yeung et al. (Yeung et al. 2016) propose an at-
tention based model that predicts the action position through
a few of glimpses, which is trained via reinforcement learn-
ing. The difference between their work and ours is that our
approach locates the action through continuously adjusting

the span of current window not predicting the bounds di-
rectly.

Object Detection. Most of recent approaches for ob-
ject detection are built upon the paradigm of ”proposal +
classification” (Girshick et al. 2014; Ren et al. 2015). Ob-
ject proposals are usually either generated by methods re-
lied on hand-crafted low-level visual cues, such as Selec-
tiveSearch (Uijlings et al. 2013) and Edgebox (Zitnick and
Dollár 2014), or produced by fully convolutional network
implemented on CNN features extracted from anchor boxes
arranged uniformly on the image, such as Faster R-CNN
(Ren et al. 2015). However, generating too many propos-
als for a image with only one or two objects is unnecessary
and computational inefficiency. Some works attempt to re-
duce the number of proposals with an active object detec-
tion strategy (Caicedo and Lazebnik 2015; Jie et al. 2016;
Mathe, Pirinen, and Sminchisescu 2016). Caicedo et al.
(Caicedo and Lazebnik 2015) learns an optimal policy to
locate one single object in the image via Deep Q-Learning,
where it starts from the whole image in a top-down way and
adaptively adjusts the window scale and position to focus on
the true region. Jie et al. (Jie et al. 2016) propose an effec-
tive tree-structured reinforcement learning approach, which
learns to balance the exploration of uncovered new objects
and the refinement of covered ones, and can localize multi-
ple objects in a single run. Inspired by (Caicedo and Lazeb-
nik 2015; Jie et al. 2016), we design a reinforcement learn-
ing based approach for temporal action localization, which
locates action instances within the long untrimmed video via
the learned policy in a bottom-up way, and meanwhile uti-
lizes a regression network to refine the predicted temporal
window boundaries.

Self-Adaptive Proposal Model

In this section, we present Self-Adaptive Proposal (SAP)
model, which is self-adapted and will gradually adjust its
predicted results according to the content of attended win-
dow and the history of executed actions to cover the true
action region as accurate as possible in a few steps. We cast
the problem of temporal action localization as a Markov De-
cision Process (MDP), in which the agent interacts with the
environment and makes a sequence of decisions to achieve
the settled goal. In our formulation, the environment is the
input video clip, in which the agent has an observation of
the current video segment, called temporal window, and re-
structures the position or span of the window, to achieve the
goal of locating the action precisely. The agent receives pos-
itive or negative rewards after each decision made during the
train phase to learn an effective policy. Besides, we construct
a regression network to refine the final detection results to
promote the accuracy of localization. The framework of our
proposal generation model is illustrated in Fig. 1. In the fol-
lowing subsections, the set of actions A, the set of states S,
and the reward function R(s, a) of MDP and the regression
network are discussed in detail. To avoid confusion, the ac-
tion performed by the actor in the video is called motion in
this section, and in other sections the meaning of action is
determined by the context.
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Figure 1: The framework of SAP model based on Deep Q-learning, which incorporates a regression network for better action
localization.

MDP Formulation

Actions. The set of actions A can be divided into two
categories: one group for transformation on temporal win-
dow, such as ”move left”, ”move right”, ”expand left”, and
the remaining one for terminating the search, ”trigger”, as
shown in Fig. 2. The transformation group includes regular
actions that comprises of translation and scale, and one ir-
regular action. The regular actions vary the current window
in terms of position or time span around the attended re-
gion, such as ”move left”, ”expand left” or ”shrink”, which
are adopted by the agent to increase the intersection with
the groundtruth that has overlaps with the current window.
The irregular action, namely ”jump”, translates the window
to a new position away from the current site to avoid that
the agent traps itself round the present location when there
is no motion occurring nearby. The change caused by any
regular actions at each time to the window equals to a value
in proportion to the current window size. For instance, sup-
posing that current window is denoted as [xl, xr], where xl

and xr stand for the left and right boundary respectively.
The action ”move left” translates the window to a new site
of [xl′ , xr′ ] with xl − xl′ = xr′ − xr = α ∗ (xr − xl),
while for action ”expand left” scales the window with the
change of xl − xl′ = α ∗ (xr − xl) and xr′ = xr. Here,
α ∈ [0, 1] is a parameter that can give a trade-off between
search speed and localization accuracy. In this paper, we set
α = 0.2. The action ”jump” selects a new window randomly
from the left or right side, which has the same size with the
current window, being a distance away from the present site.
The regular actions make the agent gradually adjust its posi-
tion to cover the motion more accurately when it has found
one; while the action ”jump” let the agent explore unknown
region that may contain the motion in a discontinuous and
efficient way. The action ”trigger” is employed by the agent
whenever it considers that a motion has been localized by the
current window, and stops the sequence of current search,
and restarts a new search for the next motion with an initial
window position away from current site.

State. The state of MDP is the concatenation of two
components: the presentation of current window and the his-
tory of taken actions. To describe the motion within current
window generally, the feature extracted from the C3D CNN
model (Tran et al. 2015), which is pretrained on Sports-
1M and finetuned on UCF-101, is utilized as the presen-
tation. Here, we choose the feature vector from fc6 layer

(4096 dimension) in our problem, consideing its good ab-
stract representation for the semantic information about the
motion. The original C3D model can only accept 16 frames
as input, however, the duration of temporal window is al-
ways far more than that number. To tackle with the prob-
lem, we design two different solutions: i.) uniformly select
16 frames from the whole duration ; ii.) fed all the frames
into the C3D model and add a additional pooling layer (av-
erage pooling for our problem) between the ”pool5” layer
and the ”fc6” layer, which condenses the dimension of ex-
tracted feature vector from ”pool5” to the value specified by
the C3D model. The history of the taken actions is a binary
vector that tells which action has been adopted by the agent
in the past. Each action in the history is represented by a 7-
dimension binary vector where all the values are zero except
the one corresponding to the taken action. In the experiment,
we totally record 4 past actions as the history. The history of
taken actions informs the agent the search path that has been
passed through and the regions already attended, so as to
stabilize search trajectories that might get stuck in repetitive
cycles.

Reward Fuction. The reward function R(s, a) pro-
vides a feedback to the agent when it performs the action
a at the current state s, which awards the agent for actions
that will bring about the improvement of motion localization
accuracy while gives the punishment for actions that leads to
the decline of the accuracy. The quality of motion localiza-
tion is evaluated via the simple yet indicative measurement,
Intersection over Union (IoU) between current attended tem-
poral window and the groundtruth. Supposing that w stands
for the current window and g represents the groundtruth re-
gion of motion, then the IoU between w and g is defined as
IoU(w, g) = span(w ∩ g) / span(w ∪ g). The reward func-
tion is proportional to the difference between IoUs of two
successive states s and s′, where the agent moves to state s′
from s by executing the action a. Specially, it is formulated
as following:

r(s, a) = max
1≤i≤n

sign(IoU(w′, gi)− IoU(w, gi)), (1)

where w′ and w are attended windows corresponding to
state s′ and s respectively, n is the number of groundtruths
within the input video. The reward function returns +1 or
-1. Equation 1 indicates that the agent receives the reward
+1 if the new window w′ has more overlap with any of the
groundtruth than the previous window w, while the reward
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Figure 2: Illustrations of the actions adopted by the agent for motion search in our experiment. White boxes with solid line
stand for current attended temporal window; while yellow boxes with dash line represent the resulting temporal window after
taking the corresponding motion.

-1 otherwise. Such binary reward value makes the agent
clearly realize that at present state, which action drives the
attended window towards the groundtruth, and thus acceler-
ates the convergence rate of the model during training phase.
In addition, such reward-function scheme facilitates better
localization towards motion regions especially for the video
with multiple motion instances, as there is no limitation on
which motion should be focused on at each state. The ”trig-
ger” action has a different reward function scheme, as it
leads to the termination of search and there is no next state.
The reward of ”trigger” is determined by a piecewise func-
tion of IoU threshold, which can be presented as following:

re(s) =

{
+η if IoU(w, g) ≥ τ

−η otherwise.
(2)

In equation 2, e represents the ”trigger” action, η is the
reward value and chosen as 3 in our experiment, τ is the
IoU threshold, which controls the tradeoff between the lo-
calization accuracy and computational overhead. The large
τ will encourage the agent to locate the motion more pre-
cisely, however it consumes more action steps to complete
the search. In training phase, we do not stop the search pro-
cess when the agent correctly performs the action ”trigger”
for the first time, and let it continuously explore uncover
regions. Therefore, our model recognizes many termination
states that have IoU with groundtruth more than τ . We uti-
lize τ = 0.5 for our problem, and find that larger τ , such as
0.6 or 0.7, gives rise to negligible promotion on recall value,
which is validated by the experiments.

Deep Q-learning. The goal of the agent is to maximize
the sum of discounted rewards that are received through con-
tinuously transforming the current attended window during a
sequence of interactions with the environment (an episode).
In other words, the agent needs to learn a policy π(s) that
specifies an optimal action at current state s in the view of
maximizing the long-term benefit. Due to the lack of state
transition probability and the model free environment, we
utilize reinforcement learning, specially Deep Q-learning,
to estimate the optimal value for each state-action pair. In
this paper, we follow the deep Q-learning framework pro-
posed by Mnih et al. (Mnih et al. 2015) that estimates the
action-value function via a neural network. The architec-
ture of our Deep Q-Network (DQN) is illustrated as the up
branch of Fig. 1. Similar to (Caicedo and Lazebnik 2015;
Jie et al. 2016), the C3D CNN model is just used for feature
extraction, and we do not train the whole pipeline for the

full feature hierarchy learning, due to the good generaliza-
tion of CNN model pretrained on large dataset and short of
sufficient motion detection data for jointly training both two
networks. During training phase, the agent operates multiple
episodes with randomly initialized positions for each video
clip. We train separate DQN for each motion category and
follow the ε-greedy policy. Specially, the agent randomly se-
lects an action from the whole action set with probability ε
at current state, while greedily chooses the optimal action
according to the learned policy with probability 1-ε. Dur-
ing the whole training epochs, ε is annealed linearly from
1.0 to 0.1, which gradually shifts from exploration to ex-
ploitation. Following (Mnih et al. 2015), we also incorpo-
rate the replay-memory scheme to collect various transition
experiences from the past episodes, from which each record
may be repeatedly used for model updates, in favor of break-
ing short-term correlations between states. A minibatch (e.g.
200 records) is randomly sampled from replay-memory as
training samples to update the model at each time.

Regression Network

Inspired by Fast R-CNN (Girshick et al. 2014) where a re-
gression network is incorporated to revise the position de-
viation between the predicted result and the groundtruth,
we also introduce a regression model to refine the motion
proposals. As shown in the down branch of Fig. 1, the re-
gression channel accepts 4096-dimension feature vector as
input and gives out two coordinate offsets on both starting
and end moment. Unlike spatial bounding box regression, in
which coordinate scaling is needed due to various camera-
projection perspectives, we directly utilize original temporal
coordinate (i.e. frame number) for offsets calculation lever-
aging the advantage of unified frame rate among video clips
in our experiment. The regression biases are represented as
the ratio of position deviation relative to the predicted span,
which are defined as following:

os = (sp−sg)/(ep−sp), oe = (ep−eg)/(ep−sp), (3)

where sp and ep are frame indexes for predicted starting
and end moment, while sg and eg are frame indexes for the
matched groundtruth. The loss for temporal coordinate re-
gression, Lreg , is defined as following:

Lreg =
1

Nend

Nend∑
i=1

(|os,i|+ |oe,i|), (4)
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(a) (b)

Figure 3: Evaluation results of recall performance on THU-
MOS’14. SCNN-prop and DAPs are state-of-the-art meth-
ods while Sliding Window in dash line is the baseline. We
use the codes provided by (Escorcia et al. 2016) to calculate
recalls

where Nend is the number of actions that correctly per-
form ”trigger” in a minibatch. In other words, we only
regress the position of temporal window whose IoU with
groundtruth is more than 0.5. We utilize L1 norm to make
the loss be insensitive to outliers.

Experimental Results

We evaluate the performance of our SAP model1 on the
dataset THUMOS’14. Followed the standard evaluation pro-
tocol, our method achieves a competitive recall compared
to the state-of-the-art results and outperforms the existing
methods by a large margin for action detection task.

Implementation Details

Datasets. We validate the quality of SAP on labeled
untrimmed videos from the challenging THUMOS’14,
which contains over 20 hours of video from 20 sport action
categories. The dataset comprises 413 videos with 200 for
validation and 213 for test. We train SAP on validation set
and report results on test set.
Training Details. SAP is implemented on Torch 7 (Col-
lobert, Kavukcuoglu, and Farabet 2011). We train category
specific model for each action and keep the same parameters
settings. In pre-processing stage, we downsample the videos
to have the same frame rate (30 frames/second), hence, the
C3D model can extract more compact feature descriptors for
input video sequence and the temporal regression network
can operate more effectively on unified time basis. The re-
play memory buffer size is set as 2000, while the minibatch
size is 200. The learning rate for DQN is 1e-3 with a decay
rate of 5e-5, while the learning rate for regression network is
1e-4 with a decay rate of 9e-5. Dropout is applied with a ra-
tio of 0.2. To accelerate training and avoid the agent getting
itself trapped around temporal regions without any action in-
stance, we force the agent to take a ”jump” action towards
left or right if the IoU for current window is zero, which will
drive the window to the region around a groundtruth.
Testing Details. During test phase, the agent starts its search

1The model implementations can be found on:
https://github.com/hjjpku/Action Detection DQN

from the beginning of the video, and take actions to ad-
just the position of current attended temporal window. We
set a maximum action steps for the agent as 15. The agent
will restart its search from the right side of current win-
dow, if it takes a ”trigger” action or finishes maximum ac-
tion steps. Note that different from training, the agent con-
sistently takes a leap towards right (two times farther than
move ”left/right”) when it adopts a ”jump” action. There-
fore, the agent sequentially traverses the video from the start
to end, which guarantees that different action instances ex-
isted within given video sequence will be visited. We choose
the windows, where the agent takes ”trigger” action, as pro-
posals and utilize the pre-trained TSN (Wang et al. 2016)
action detector as our classifier.

Temporal Proposals Evaluation

All the regions attended by the agent can be understood as
temporal proposal candidates. Our methods run for about
400 steps with around 50 triggers averaged for each video.
Fig.6 is an instance of the detection process of DQN. For
each attended region, we score them with the Q-value pre-
dicted by the model, and add a large bonus only to ”trigger”
regions in order to give them higher priority when rank-
ing the proposals. To assess the recall performance of our
method, we use the metrics from (Escorcia et al. 2016):
Recall vs. Average Number of Proposal: average recall
over all categories at IoU 0.5 is calculated as a function of
average number of proposal. The best proposal approach is
expected to achieve a higher recall with less proposals.
Recall vs. IoU: for a fixed number of proposals, recall is
calculated at IoU between 0.05 to 1. To measure the local-
ization quality of the top ranked proposals that are of most
important for further recognition task, we fix the number of
proposals to 100.
We compare SAP with DAPs (Escorcia et al. 2016), SCNN-
prop (Shou, Wang, and Chang 2016), Sparse-prop (Heil-
bron, Niebles, and Ghanem 2016) and sliding window.
SCNN-prop and DAPs are the state-of-the-art methods
while sliding window is the baseline. For DAPs, SCNN-prop
and Sparse-prop, we plot the curves using the proposal re-
sults provided by the authors. sliding window generates the
proposals including all siding windows of lengths from 16 to
512 with 50% overlapping, and each window is scored with
a random value. As shown in Fig.3.(a), our method achieves
a better performance than the state-of-the-art methods in the
early state of recall, and we have a competitive recall per-
formance for the top 100 proposals according to Fig.3.(b).
Notice that, the recall growth of our method slows down af-
ter about 70 proposals. It is because that our DQN agent tries
to figure out the ground truth as fast as possible, and tends
to stop exploration when it considers that an action region
with IoU more than 0.5 has been found. Therefore, except
the ”trigger” segments, other proposals are intermediate re-
sults during the exploring process, which are unreliable on
most occasions.

Temporal Action Detection Analysis

Following the convention (Jiang et al. 2014), we evaluate
the performance of our SAP on the temporal localization
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Figure 4: Histograms of average precision for each categories on THUMOS’14. The results are calculated with the official
toolkit. The mAP(%) for Oneata et al., Yeung et al., SCNN and our SAP are 14.4, 17.1, 19.0 and 27.7 respectively.

Figure 5: Recall Evaluation for ablation study:
Recall vs. Average Number of Proposal at IoU=0.5

task with mean Average Precision(mAP) score at 50% IoU.
In the experiments, we take ”trigger” windows as proposals
and classify them with a pre-trained TSN. SAP is compared
with other state-of-the-art methods in the literature, includ-
ing CDC (Shou et al. 2017), SCNN (Shou, Wang, and Chang
2016), Oneata et al. (Oneata, Verbeek, and Schmid 2013)
and Yeung et al. (Yeung et al. 2016). As is shown in Table 1,
SAP outperforms the state-of-the-art approaches on THU-
MOS’14 by a large margin of 4.4%. The average precisions
for each action category of various approaches are shown in
Fig. 4. CDC is not included in Fig. 4 because the author did
not publish the class specific results yet. Our approach be-
haves superiorly than other methods for most of categories,
and especially for classes Billiards, Basketball Dunk, Cliff
Diving, to name a few, the performance promotions are sig-
nificant. The detection examples of action PoleVault are il-
lustrated in Fig. 6.
Furthermore, to figure out the doubt whether the perfor-
mance promotion of our approach is produced by employing
a strong classifier, we conduct contrast experiments of us-
ing proposals at fixed number under a pre-trained TSN clas-
sifier for different proposal methods. As is shown in Table 1,
with proposal number of 50, DAPs and SCNN-prop acquire
mAPs at 6.99 and 16.9; while with proposal number of 100,

Model@Proposal Number mAP(%)
DAPs+TSN @50 6.99

DAPs+TSN @100 9.16
SCNN-prop+TSN @100 12.4
SCNN-prop+TSN @50 16.9

SAP w/o POOLING w/o RGN@50 22.3
SAP w/o POOLING@50 24.6

SAP@50 26.4

Oneata et al.@NA 14.4
Yeung et al.@NA 17.1

SCNN @NA 19.0
CDC @NA 23.3
SAP@NA 27.7

Table 1: Temporal-action detection results evaluation: mAP
calculated with a fixed number of average proposals on
THUMOS’14. @NA means the proposal number is not
specified for the methods.

the mAPs for DAPs and SCNN-prop will present at 9.16
and 12.4, respectively. These scores are far below our per-
formance of mAP at 26.4 with 50 proposals. The compared
results demonstrate that our approach can surely generate
fewer proposals of high quality, which are mostly composed
of true positives and are essential for the task of temporal
action localization. For more experiment details, please con-
sult our supplementary material.
To further analyze the contributions of different model
components, namely temporal pooling and coordinate re-
gression, for action detection task, we implement ablation
study. We construct three models, which are described as
follows:
• SAP: The integrated model with architecture shown in Fig.
1, where DQN agent generates proposals with the features
processed through temporal pooling layer and finetunes the
proposals with regression network.
• SAP w/o POOLING: The model without temporal pool-
ing layer, uniformly samples video frames from the input
video segment to extract C3D features and finetunes the pro-
posals with regression network.
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Figure 6: An instance of how DQN agent takes actions to generate proposals. The examples are sampled from the action
PoleVault of THUMOS’14. The last row is the time shaft, where the red lines correspond to the ground truth. The top 3 rows are
the running details corresponding to action instances #1, #2 and #3. The blue lines are the agent’s search histories. A green
circle indicates that it is a right ”trigger” decision while the red one indicates a wrong one.

• SAP w/o POOLING w/o RGN: The basic model without
both temporal pooling layer and regression network.
For each model, we evaluate the proposals and overall action
localization performance. First of all, we use Recall vs. Av-
erage Number of Proposal at IoU=0.5 to evaluate the pro-
posal performance that is shown in Fig. 5. Then we present
the quantitative detection results of the models in Table 1
that are reported by mAP scores at 50% IoU. The mAPs are
calculated with a fixed number of average proposals (i.e.
50). Interestingly, it seems that SAP w/o POOLING has
the superior recall performance than SAP, as shown in Fig.
5, however, SAP outperforms the other models by a large
margin on overall detection performance. This is because
SAP produces proposals with a small number of hard neg-
atives, which allows the activity classifier to keep the num-
ber of false positive low. Besides, the results also illustrate
that localization regression is of benefit to the detection task
without exception.

Run-time Performance

The run-time property of our method is dependent on the
DQN’s performance. For a well trained DQN agent, it will
concentrate on the ground truth in a couple of steps once it
perceives the action segment. Meanwhile, it can also acceler-
ate the exploring process over the video with ”jump” action.
Besides, the selection of scalar α is also an important factor
that will influence the run-time performance. A large α will
make the agent take a brief glance over the video in most of
the case, but will also result in coarse proposals. As a trade
off,we set the α = 0.2 during the training and testing phase.

During the test, we load the video first and then record the
run-time of our model used to scan the video. On Tesla K80,
the average run-time over all testing videos in THUMOS’14
is 266.6 FPS, including the online feature extraction.

Conclusion

In this paper, we have introduced an active action proposal
model called SAP that learns to adaptively adjust the span
of attended current window to cover the true action regions
in a few steps. We build our model based on deep reinforce-
ment learning and lean an optimal policy to direct the agent
to act. In order to precisely locate the action, we design a
regression network to revise the offsets between predicted
bound results and the groundtruth. Experiment results on
THUMOS’14 dataset validate that the proposed approach
can achieve comparable performance with most of modern
action-detection methods with much fewer action proposals.
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