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Abstract

We propose a recurrent neural network (RNN) based model
for image multi-label classification. Our model uniquely in-
tegrates and learning of visual attention and Long Short
Term Memory (LSTM) layers, which jointly learns the la-
bels of interest and their co-occurrences, while the associ-
ated image regions are visually attended. Different from ex-
isting approaches utilize either model in their network archi-
tectures, training of our model does not require pre-defined
label orders. Moreover, a robust inference process is intro-
duced so that prediction errors would not propagate and thus
affect the performance. Our experiments on NUS-WISE and
MS-COCO datasets confirm the design of our network and
its effectiveness in solving multi-label classification prob-
lems.

Introduction

Multi-label classification has been an important and prac-
tical research topic, since it needs to assign more than
one label to each observed instance. From machine learn-
ing, data mining, and computer vision, a variety of ap-
plications benefit from the development and success of
multi-label classification algorithms (Zhang and Zhou 2014;
Boutell et al. 2004; Schapire and Singer 2000; Godbole and
Sarawagi 2004; Lin et al. 2014; Kang et al. 2016b; 2016a;
Boutell et al. 2004; Shao et al. 2016). A fundamental and
challenging issue for multi-label classification is to identify
and recover the co-occurrence of multiple labels, so that sat-
isfactory prediction accuracy can be expected.

Recently, development of deep convolutional neural net-
works (CNN) (Krizhevsky, Sutskever, and Hinton 2012;
Szegedy et al. 2015; Simonyan and Zisserman 2014; He et
al. 2016) have made a remarkable progress in several re-
search fields. Due to its ability of representation learning
with prediction guarantees, CNNs contribute to the recent
success in image classification tasks and beyond (Deng et
al. 2009; Fei-Fei, Fergus, and Perona 2007; Griffin, Holub,
and Perona 2007). Despite its effectiveness, how to extend
CNNs for solving multi-label classification problems is still
a research direction to explore.

∗- indicates equal contribution.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While a number of research works (Zhang and Zhou
2006; Nam et al. 2014; Gong et al. 2013; Wei et al. 2014;
Wang et al. 2016) start to advance the CNN architec-
ture for multi-label classification, CNN-RNN (Wang et al.
2016) embeds image and semantic structures by project-
ing both features into a joint embedding space. By fur-
ther utilizing the component of Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997), a recurrent
neural network (RNN) structure is introduced to memorize
long-term label dependency. As a result, CNN-RNN exhibits
promising multi-label classification performance with cross-
label correlation implicitly preserved.

Unfortunately, the above frameworks suffer from the fol-
lowing three different problems. First, due to the use of
LSTM, a pre-defined label order is required during train-
ing. Take (Wang et al. 2016) for example, its label order is
determined by the frequencies of labels observed from the
training data. In practice, such pre-defined orders of label
prediction might not reflect proper label dependency. For ex-
ample, based on the number of label occurrences, one might
obtain the label sequence as {sea, sun, fish}. However, it
is obvious that fish is less semantically relevant to sun than
sea. For better learning and prediction of such labels, the or-
der of {sea, fish, sun} should be considered. On the other
hand, (Jin and Nakayama 2016) consider four experimen-
tal settings with different label orders: alphabetical order,
random order, frequency-first order and rare-first order (note
that rare-first is exactly the reverse of frequency-first). It is
concluded in (Jin and Nakayama 2016) that the rare-first or-
der results in the best performance. Later we will conduct
thorough experiments for verification, and show that orders
automatically learned by our model would be desirable.

The second concern of the above methods is that, labels of
objects which are in smaller scales/sizes in images would of-
ten be more difficult to be recovered. As a possible solution,
attention map (Xu et al. 2015) has been widely considered
in image captioning (Xu et al. 2015), image question an-
swering (Yang et al. 2016b), and segmentation (Hong et al.
2016). Extracted by different kernels from a certain convolu-
tional layer in CNN, the corresponding feature maps contain
rich information of different patterns from the input image.
By further attending on such feature maps, the resulting at-
tention map is able to identify important components or ob-
jects in an image. By exploiting the label co-occurrence be-
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Figure 1: Illustration of our proposed model for multi-label classification. Note that the joint learning of attention and LSTM
layers allows us to identify the label dependency without using any predetermined label order, while the corresponding image
regions of interest can be attended to accordingly.

tween the associated objects in different scales or patterns,
the above problem can be properly alleviated. However, this
technique could not be easily applied to RNN-based meth-
ods for multi-label problems. As noted above, such methods
determine the label order based on the occurrence frequency.
For example, the class person may appear more often than
horse in an image collection, and thus the label sequence
would be derived as {person, horse}. Even if the image re-
gion of horse is typically larger than that of person, it might
not assist in identifying the rider on its back (i.e., requiring
the prediction order as {horse, person}).

Thirdly, inconsistency between training and testing pro-
cedures would often be undesirable for solving multi-label
classification tasks. To be more precise, during the training
phase, the labels to be produced at each recurrent layer is se-
lected from the ground truth list during the training phase;
however, the labels to be predicted during testing are se-
lected from the entire label set. In other words, if a label
is incorrectly predicted during a time step during prediction,
such an error would propagate during the recurrent process
and thus affect the results.

To resolve the above problems, we present a novel deep
learning framework of visually attended RNN, which con-
sists of visual attention and LSTM models as shown in
Fig. 1. In particular, we propose a confidence-ranked LSTM
which reflects the label dependency with the introduced vi-
sual attention model. Our joint learning framework with the
introduced attention model allows us to identify the regions
of interest associated with each label. As a result, the or-
der of labels can be automatically learned without any prior
knowledge or assumption. As verified later in the experi-
ments, even the objects are presented in small scales in the
input image, the corresponding image regions would still be
visually attended. More importantly, as detailed later in Sect.
III, our network architecture can be applied to both training
and testing, and thus the aforementioned inconsistency issue
is addressed.

The main contributions of this paper are listed below:

• Without pre-determining the label order for prediction,
our method is able to sequentially learn the label depen-
dency using the introduced LSTM model.

• The introduced attention model in our architecture allows

us to focus on image regions of interests associated with
each label, so that improved prediction can be expected
even if the objects are in smaller sizes.

• By jointly learning attention and LSTM models in a
unified network architecture, our model performs favor-
ably against state-of-the-art deep learning approaches on
multi-label classification, even if the ground truth label
might not be correctly presented during training.

Related Work

We first review the development of multi-label classification
approaches. Intuitively, the simplest way to deal with multi-
label classification problems is to decompose them into mul-
tiple binary classification tasks (Tsoumakas and Katakis
2006). Despite its simplicity, such techniques cannot iden-
tify the relationship between labels.

To learn the interdependency between labels for
multi-label classification, approaches based on classifier
chains (Read et al. 2011) were proposed, which capture label
dependency by conditional product of probabilities. How-
ever, in addition to high computation cost when dealing with
a larger number of labels, classifier chains have limited abil-
ity to capture the high order correlations between labels. On
the other hand, probabilistic graphical model based methods
(Li, Zhao, and Guo 2014; Li et al. 2016) learn label depen-
dencies with graphical structure, and latent space methods
(Yeh et al. 2017; Bhatia et al. 2015) choose to project fea-
tures and labels into a common latent space. Approaches like
(Yang et al. 2016a) further utilize additional information like
bounding box annotations for learning their models.

With the recent progress of neural networks and deep
learning, BP-MLL (Zhang and Zhou 2006) is among the first
to utilize neural network architectures to solve multi-label
classification. It views each output node as a binary classi-
fication task, and relies on the architecture and loss func-
tion to exploit the dependency across labels. It was later ex-
tended by (Nam et al. 2014) with state-of-the-art learning
techniques such as dropout.

Furthermore, state-of-the-art DNN based multi-label al-
gorithms have proposed different loss functions or architec-
tures (Gong et al. 2013; Wei et al. 2014; Hu et al. 2016). For
example, Gong et al. (Gong et al. 2013) design a rank-based
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Figure 2: Architecture of our proposed network architecture for multi-label classification. Note that Mmap, Matt, and Mpred

indicate the layers for feature mapping, attention, and label prediction, respectively. vfeat is a set of feature maps extracted
from Mmap, and the vector output vprob represents the preliminary label prediction of Mmap to initiate LSTM prediction. z
and h are the attention context vector and the LSTM hidden state, respectively. Finally, p denotes the vector output indicating
the label probability, updated at every time step.

loss and compensate those with lowest ranks ones, Wei et
al. (Wei et al. 2014) generate multi-label candidates on sev-
eral grids and combine results with max-pooling, and Hu et
al. propose structured inference NN (Hu et al. 2016), which
uses concept layers modeled with label graphs.

Recurrent neural networks (RNN) is a type of NN struc-
ture, which is able to learn the sequential connections and
internal states. When RNN has been successfully applied to
sequentially learn and predict multiple labels of the data,
it typically requires a large number of parameters to ob-
serve the above association. Nevertheless RNN with LSTM
(Hochreiter and Schmidhuber 1997) is an effective method
to exploit label correlation. Researches in different fields
also apply RNNs to deal with sequential prediction tasks
which utilize the long-term dependency in a sequence, such
as image captioning (Mao et al. 2014), speech recognition
(Graves, Mohamed, and Hinton 2013), language modeling
(Sundermeyer, Schlüter, and Ney 2012), and word embed-
ding learning (Le and Zuidema 2015). Among multi-label
classification, CNN-RNN (Wang et al. 2016) is a represen-
tative work with promising performance. However, CNN-
RNN requires a pre-defined label order for learning, and
its limitation to recognize labels corresponding to objects in
smaller sizes would be the major concern.

Our Proposed Method

We first define the goal of the task in this paper. Let D =
{(xi, yi)}Ni=1 = {X,Y} denote the training data, where
X ∈ R

d×N indicates a set of N training instances in a d
dimensional space. The matrix Y ∈ R

C×N indicates the as-
sociated multi-label matrix, where C is the number of labels
of interest. In other words, each dimension in yc is a binary
value indicating whether xi belongs to the corresponded la-
bel c. For multi-label classification, the goal is to predict the
multi-label vector ŷ for a test input x̂.

A Brief Review of CNN-RNN

CNN-RNN (Wang et al. 2016) is a recent deep learning
based model for multi-label classification. Since our method
can be viewed as an extension, it is necessary to briefly re-
view this model and explain the potential limitations.

As noted earlier, exploiting label dependency would be
the key to multi-label classification. Among the first CNN
works for tackling this issue, CNN-RNN is composed of a
CNN feature mapping layer and a Long Short-Term Mem-
ory (LSTM) inference layer. While such an architecture
jointly projects the input image and its label vector into a
common latent space, the LSTM particularly recovers the
correlation between labels. As a result, outputs of multiple
labels can be produced at the prediction layer via nearest
neighbor search.

Despite its promising performance, CNN-RNN requires a
predefined label order for training their models. In addition
to the lack of robustness in learning optimal label orders, as
confirmed in (Wang et al. 2016), labels of objects in smaller
sizes would be difficult to predict if their visual attention
information is not properly utilized. Therefore, how to in-
troduce the flexibility in learning optimal label order while
jointly exploiting the associated visual information would be
the focuses of our proposed work.

Order-Free RNN with Visual Attention

As illustrated in Fig. 2, our proposed model for multi-label
classification has three major components: feature mapping
layer Mmap, attention layer Matt, and LSTM inference
layer Mpred. The feature mapping layer Mmap extracts the
visual features from the input image xi using a pre-trained
CNN model. With the attention layer Matt, we would ob-
serve a set of feature maps vfeat, in which each map is
learned to describe the corresponding layer of image seman-
tic information. The output of Matt then goes through the
LSTM inference process via Mpred, followed by a final pre-
diction layer for producing the label outputs.
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During the LSTM inference process, the hidden state
vector h would update the attention layer Matt with the
label inference from the previous time step, guiding the
network to visually attend the next region of interest in
the input image. Thus, such network designs allow one to
exploit label correlation using the associated visual infor-
mation. As a result, the optimal order of label sequences
can be automatically observed. In the following subsec-
tions, we will detail each component of our proposed model.

Feature Mapping Layer Mmap The feature mapping
layer Mmap first extracts visual features vfeat by pre-trained
CNN models. Following the design in (Liu et al. 2016), we
add a fully-connected layer with the output dimension of c
after the convolutional layers, which produces the predicted
probability vprob for each label as an additional feature vec-
tor. Therefore, the CNN probability outputs can be viewed
as preliminary label prediction.

With the ground truth labels given during training (note
that positive labels as 1 and negative ones as 0), the learn-
ing of Mmap would update the parameters of the fully-
connected layer via observing log-likelihood cross-entropy,
while the parameters of the pre-trained CNN remain fixed.
By concatenating m feature maps of dimension k in vfeat,
we convert vfeat into a single input vector learning visual
attention. As a result, the output probability vector of Mmap

can be expressed as follows:

V = [Vfeat,vprob] (1)

Vfeat = [v1, ...,vm],vi ∈ R
k (2)

vprob ∈ [0, 1]c. (3)

Attention Layer Matt When predicting multiple labels
from an input image, one might suffer from the fact that la-
bels of objects in smaller sizes are not properly identified.
For example, person typically occupies a significant portion
of an input image, while birds might appear in smaller sizes
and around the corners.

In order to alleviate this problem, we introduce an atten-
tion layer Matt to our proposed architecture, with the goal
of focusing on proper image regions when predicting the as-
sociated labels. Inspired by Xu et al. (Xu et al. 2015), who
advocated a soft attention-based image caption generator,
we advance the same network component in our framework.
For multi-label classification, this allows us to focus and de-
scribe the image regions of interest during prediction, while
implicitly exploiting the label co-occurrence information. In
our proposed framework, this attention layer would gener-
ate a context vector consisting of weights for each feature
map, so that the attended image region can be obtained dur-
ing each iteration. Later we will also explain that, with such
network designs, we can observe optimal label order when
learning our RNN-based multi-label classification model.

Following the structure of multi-layer perceptron (Xu et
al. 2015), our attention layer Matt is conditioned on the pre-
vious hidden state ht−1. For each vi in 2, the attention layer

Algorithm 1: Training of Our Proposed Model
Input: Feature maps Vfeat = [v1,...,vm] and label

vector y of an image
Parameter: Resnet fully-connected layer θR,

attention layer θa, LSTM layer θL and
prediction layer θp, iteration number
iter

Output: Soft confidence vector ỹ

Randomly initialize parameters
Train θR by log-likelihood cross-entropy loss and
obtain vprob

repeat
for t = 1; t ≤iter; t++ do

Obtain the context vector zt by (4) and (5)
Obtain the hidden state ht by (6)
Obtain the soft confidence vector pt by (7)
Obtain the hard predicted label vector ỹt by

(9)
Update the candidate pool by (10)
Compute the log-likelihood cross-entropy
between vprob and y

Perform gradient descent on θa, θL and θp
vpred = pt

until θa, θL and θp converge

generates a weight αi, αi ∈ [0, 1], which represents the im-
portance weight of feature i in the input image, and predicts
the label at this time step. To be more specific, we have:

εi,t = fatt(vi,ht−1)

αi,t =
eεi,t∑m
j=1 e

εj,t
,

(4)

where fatt is the same as the model in (Xu et al. 2015), and
ht−1 would be detailed later in Sec. .

With αi,t, we derive the context vector zt with the soft
attention mechanism:

zt =
m∑

i=1

αi,tvi. (5)

Later, our experiments will visualize and evaluate the
contribution of our attention model for multi-label classifi-
cation.

Confidence-Ranked LSTM Mpred As an extension of
recurrent neural network (RNN), LSTM additionally con-
sists of three gate neurons: forget, input, and output gates.
The forget gate is to learn proper weights for erasing the
memory cell, the input gate is learned to describe the input
data, while the output gate aims to control how the memory
should be omitted.

In order to exploit and capture the dependency between
labels, the LSTM model Mpred in our network architecture
needs to identify which label would exhibit a high confi-
dence at each time step. Thus, we concatenate the soft con-
fidence vector vpred from the previous time step (note that
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vpred = vprob when t=1, and vpred = pt−1 otherwise), the
context vector zt and the previous predicted hard label vec-
tor ˜̃yt−1 for deriving the current hidden state vector ht. This
state vector is thus controlled by the aforementioned three
gate components. By observing the long-term dependency
between labels via the above structure, we can exploit and
utilize the resulting label correlation for improved multi-
label classification.

We note that, to predict multi-label outputs using LSTM,
we pass ht through an additional prediction layer consisting
of two fully-connected layers, and result in a soft confidence
vector pt ∈ R

c at time t. The hard predicted label lt =
argmax pt indicates the most confident class at the time
step t, which is then appended to the hard predicted label
vector ỹt. In the testing phase, by collecting l till the ultimate
condition, which will be described later in the next section,
the final predicted multi-label vector ỹ can be obtained.

More specifically, we calculate:

ht = fLSTM (vpred, zt, ỹt−1,ht−1), (6)

where fLSTM denotes the LSTM model. In order to predict
pt, we have:

pt = fpred(vpred, zt, ỹt−1,ht), (7)

On the other hand, the cross-entropy loss function to min-
imize at the output layer at time t is:

Lt = −
c∑

i=1

yilog(σ(pt,i)) + (1− yi)log(1− σ(pt,i)), (8)

where yi ∈ y , pt,i ∈ pt, and σ is the sigmoid function.
It is worth noting that, the main difficulty of applying

LSTM for multi-label classification is its requirement of the
ground truth label order during the training process. By sim-
ply calculating the cross-entropy between the confidence
vector pt and the ground truth multi-label vector y, one
would not be able to define the order of label prediction for
learning LSTM. Moreover, it would be desirable if the la-
bel order would reflect semantic dependency between labels
presented in training image data.

With the above observation, we view our Mpred in the
proposed network architecture as confidence-ranked LSTM.
Once the previous soft confidence vector pt−1 and hard pre-
dicted label vector ỹt−1 are produced, our model would up-
date ht and the attention layer Matt. As a result, we will be
able to produce pt accordingly. In other words, our model
achieves the visually attention of objects of semantic inter-
est in the input image, which does not require one to pre-
define any specific label order. Therefore, unlike previous
works like (Wang et al. 2016), the training of our model does
not require the selection of ground truth labels in a predeter-
mined order. Instead, we calculate the loss by comparing the
soft confidence vector with the ground truth label vector di-
rectly. With our visual attention plus LSTM components, the
training process would be consistent with the testing stage.
Since the above process relies on visual semantic informa-
tion for multi-label prediction, one of the major advantages
of our model that possible error propagation problems when
applying RNN-based approaches can be alleviated.

Order-Free Training and Testing

Training We now explain how our model achieves order-
free learning and prediction. As shown in Fig. 2, our network
design produces outputs of labels [l1, ...lT ] at time T , where
each li denotes the label with the highest confidence at the
i-th time step. To avoid duplicate label outputs at different
time steps, we apply the concept of candidate label pool as
follows.

To initialize the inference process for multi-label learning
using our model, the candidate label pool would simply be
C containing all labels. At each time step, the most confident
label lt would be selected from the candidate pool, and thus
this candidate pool will be updated by removing lt from it.
More specifically, for lt, we denote it as:

lt = argmax
C′
t

pt,

ỹt = ỹt−1 + lt
(9)

C′
t = C′

t−1 − {lt−1}. (10)

where C′
0 denotes the full set of labels C, and C′

t is the set
of candidate labels to be predicted at time t. From the above
label update process, the cardinal of the candidate label set
would be subtracted by one at each time step.

Testing We note that, the labels to be predicted during the
testing stage can be obtained sequentially using the learned
model. However, even with the introduction of the attention
layers, prediction error at a time step would be propagated
and significantly degrade the prediction performance.

Inspired by (Wang et al. 2016), we apply the technique
of beam search to alleviate the above problem, and thus the
predicting process would be more robust to intermediate pre-
diction errors. More precisely, beam search would keep the
best-K prediction paths at each time step. At time step t+1,
it then searches from all K × c successor paths generated
from the K previous paths, updates the path probability for
all K × c successor paths, and maintains the best-K candi-
dates for the following time steps.

In our work, a prediction path represents a sequence
of predicted labels with a corresponding path probability,
which can be calculated by multiplying the probabilities of
all the nodes along the prediction path. At each time step
t given a prediction path [l1, l2, · · · , lt−1] and image I , its
path probability before predicting lt is calculated as:

Ppath = P (l1|I)× P (l2|I, l1)× · · ·
×P (lt−1|l1, l2, · · · , lt−2).

(11)

Finally, the prediction process via beam search would
terminate under the following two conditions:
1. The probability output of a particular prediction path is
below a threshold (which is determined by cross-validation).
2. The length of the prediction path reaches a pre-defined
maximum length (which is the largest number of labels in
the training set).
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Table 1: Evaluation of NUS-WIDE. Note that Macro/Micro
P/R/F1 scores are abbreviated as O/C-P/R/F1, respectively.
Ours (w/o attention) and Frequency/Rare-first (w/ atten)
denote our method with the attention layer removed and
using associated pre-defined label orders, respectively.

Method C-P C-R C-F1 O-P O-R O-F1
KNN 32.6 19.3 24.3 43.9 53.4 47.6
Softmax 31.7 31.2 31.4 47.8 59.5 53.0
WARP 31.7 35.6 33.5 48.6 60.5 53.9
CNN-RNN 40.5 30.4 34.7 49.9 61.7 55.2
Resnet-baseline 46.5 47.6 47.1 61.6 68.1 64.7
Frequency-first (w/ atten) 48.9 48.7 48.8 62.1 69.4 65.5
Rare-first (w/ atten) 53.9 51.8 52.8 55.1 65.2 59.8
Ours (w/o atten) 60.8 49.5 54.5 68.3 72.4 70.2
Ours 59.4 50.7 54.7 69.0 71.4 70.2

Experiments

Implementation

To implement our proposed architecture, we apply a ResNet-
152 (He et al. 2016) network trained on Imagenet with-
out fine-tuning, and use the bottom fourth convolution layer
for visual feature extraction. We also add a fully-connected
layer with dimension of c after the convolutional layer. We
employ the Adam optimizer with the learning rate at 0.0003,
and the dropout rate at 0.8 for updating fpred. We perform
validation on the stopping threshold for beam search. As for
the parameters for attention and LSTM models, we follow
the settings of (Xu et al. 2015) for implementation.

To evaluate the performance of our method and to
perform comparisons with state-of-the-art methods, we
report results on the benchmark datasets of NUS-WIDE and
MS-COCO as discussed in the following subsections.

NUS-WIDE

NUS-WIDE is a web image dataset which includes 269,648
images with a total of 5,018 tags collected from Flickr. The
collected images are further manually labeled into 81 con-
cepts, including objects and scenes. We follow the setting of
WARP (Gong et al. 2013) for experiments by removing im-
ages without any label, i.e., 150,000 images are considered
for training, and the rest for testing.

We compare our result with state-of-the-art NN-based
models: WARP (Gong et al. 2013) and CNN-RNN (Wang
et al. 2016). We also also perform several controlled experi-
ments: (1) removing the attention layer, and (2) fixing orders
by different methods as suggested by (Jin and Nakayama
2016) during training. Frequency-first indicates the labels
are sorted by frequency, from high to low, and rare-first is ex-
actly the reverse of frequency-first. The results are listed in
Table 1. From this table, we see that our model performed fa-
vorably against baseline and state-of-the art multi-label clas-
sification algorithms. This demonstrates the effectiveness of
our method in learning proper label ordering for sequential
label prediction. Finally, our full model achieved the best

Table 2: Performance comparisons on MS-COCO. Ours
(w/o attention) and Ours Frequency/Rare-first (w/ atten)
denote our method with the attention layer removed and
using associated pre-defined label orders, respectively.

Method C-P C-R C-F1 O-P O-R O-F1
Softmax 59.0 57.0 58.0 60.2 62.1 61.1
WARP 59.3 52.5 55.7 59.8 61.4 60.7
CNN-RNN 66.0 55.6 60.4 69.2 66.4 67.8
Resnet-baseline 58.3 49.3 53.4 63.9 58.4 61.0
Frequency-first (w/ atten) 55.8 54.7 55.2 61.4 62.6 62.0
Rare-first (w/ atten) 59.5 56.5 58.0 57.3 56.7 57.0
Ours (w/o atten) 69.9 52.6 60.0 73.4 60.3 66.2
Ours 71.6 54.8 62.1 74.2 62.2 67.7

performance, which further supports the exploitation of vi-
sually attended regions for improved multi-label classifica-
tion.

In Fig. 3(a), we present example images with correct label
prediction. We see that our model was able to predict labels
depending on what it was actually attended to. For example,
since ‘person’ is a frequent label in the dataset, CNN-RNN
framework tended to predict it first, because their label order
was defined by label occurrence frequency observed during
the training stage. In contrast, our model was able to pre-
dict animal and horses first, which were actually easier to
be predicted based on their visual appearance in the input
image. On the other hand, examples of incorrect predictions
are shown in Fig 3(b). It is worth pointing out that, as can
be seen from these results, the prediction results were ac-
tually intuitive and reasonable, and the incorrect prediction
was due to the noisy ground truth label. From the above ob-
servations, it can be successfully verified that our method is
able to identify semantic ordering and visually adapt to ob-
jects with different sizes, even given noisy or incorrect label
data during the training stage.

MS-COCO

MS-COCO is the dataset typically considered for image
recognition, segmentation and captioning. The training set
consists of 82,783 images with up to 80 annotated object la-
bels. The test set of this experiment utilizes the validation set
of MS-COCO (40,504 images), since the ground truth labels
of the original test set in MS-COCO are not provided. , In the
experiments, we compare our model with the WARP (Gong
et al. 2013) and CNN-RNN (Wang et al. 2016) models in
Table 2. It can be seen that the full version of our model
achieved performance improvements over the Resnet-based
baseline by 4.1% in C-F1 and by 5.6% in O-F1.

In Figures 3(c) and 3(d), we also present example images
with correct and incorrect prediction. It is worth noting that,
in the upper left example in Fig. 3(c), although the third
attention map corresponded to the label prediction of surf-
board, it did not properly focus on the object itself. Instead,
it took the surrounding image regions into consideration.
Combining the information provided by the hidden state, it
still successfully predicted the correct label. This illustrates
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Figure 3: Examples images with correct label prediction in NUS-WISE (a) and MS-COCO (c), those with incorrect prediction
are shown in (b) and (d), respectively. For each image (with ground truth labels noted below), the associated attention maps are
presented at the right hand side, showing the regions of interest visually attended to. Note that some incorrect predicted labels
(in red) were expected and reasonable due to noisy ground truth labels, while the resulting visual attention maps successfully
highlight the attended regions.

the ability of our model to utilize both local and global in-
formation in an image during multi-label prediction.

Conclusion

We proposed a deep learning model for multi-label clas-
sification, which consists of a visual attention model and
a confidence-ranked LSTM. Unlike existing RNN-based
methods requiring predetermined label orders for training,
the joint learning of the above components in our proposed
architecture allows us to observe proper label sequences
with visually attended regions for performance guarantees.
In our experiments, we provided quantitative results to sup-
port the effectiveness of our method. In addition, we also
verified its robustness in label prediction, even if the train-
ing data are noisy and incorrectly annotated.
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