
Action Recognition with Coarse-to-Fine
Deep Feature Integration and Asynchronous Fusion

Weiyao Lin,1∗ Yang Mi,1 Jianxin Wu,2 Ke Lu,3 Hongkai Xiong1

1 Department of Electronic Engineering, Shanghai Jiao Tong University, China
2 National Key Laboratory for Novel Software Technology, Nanjing University, China

3 University of Chinese Academy of Sciences, China
{wylin, deyangmiyang, xionghongkai}@sjtu.edu.cn, wujx2001@nju.edu.cn, luk@ucas.ac.cn

Abstract

Action recognition is an important yet challenging task in
computer vision. In this paper, we propose a novel deep-
based framework for action recognition, which improves the
recognition accuracy by: 1) deriving more precise features
for representing actions, and 2) reducing the asynchrony be-
tween different information streams. We first introduce a
coarse-to-fine network which extracts shared deep features
at different action class granularities and progressively inte-
grates them to obtain a more accurate feature representation
for input actions. We further introduce an asynchronous fu-
sion network. It fuses information from different streams by
asynchronously integrating stream-wise features at different
time points, hence better leveraging the complementary in-
formation in different streams. Experimental results on ac-
tion recognition benchmarks demonstrate that our approach
achieves the state-of-the-art performance.

1 Introduction

Action recognition, which aims at identifying the action
class label for an input action video, has attracted much at-
tention due to its importance in many applications. Although
the recent advances in deep convolutional networks (Con-
vNets) have brought some improvements on action recogni-
tion (Tran et al. 2015; Zhu et al. 2016), it remains challeng-
ing due to the large variation of video scenarios and the in-
terferences from noisy contents unrelated to the video topic.

In this paper, we focus on two key issues for improving
the performance over the existing ConvNet frameworks: (1)
deriving more precise features to better represent actions,
(2) reducing the asynchrony among information streams to
better leverage the stream-wise complementary information.

First, good features are crucial to reliable action recog-
nition. Although features automatically learned from Con-
vNets have shown big improvements in many domains (Liu
et al. 2016; Deng et al. 2009; Song et al. 2017), they make

∗This work is supported in part by National Key Research
and Development Program of China (2017YFB1002203), NSFC
(61471235, 61571297, 61572316, 61720106001), Shanghai ‘The
Belt and Road’ Young Scholar Exchange Grant (17510740100),
and Tencent research grant. Corresponding author is Weiyao Lin.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a)

(b)

Figure 1: (a) Illustration of different action class granularity.
(b) Illustration of the asynchronous pattern between streams:
The appearance stream is most indicative about “fall down”
after the object has lied down, while the motion stream
shows the strongest “fall down” pattern when the object is
in the process of going down. (Best viewed in color)

less progress in action recognition due to the high com-
plexity of video data. Some recent studies attempted to im-
prove the deep feature representation of an action by in-
cluding additional information sources (Duta et al. 2017;
Shi et al. 2017; Kataoka et al. 2016), selecting spatial-
temporal attention parts (Kar et al. 2017; Sharma, Kiros,
and Salakhutdinov 2015; Zhu et al. 2016), or incorporat-
ing more proper temporal information (Wang et al. 2016b;
Cherian et al. 2017). However, since most of them focus on
learning features to directly describe actions’ individual ac-
tion classes, they have limitations in precisely differentiating
the ambiguity among action classes due to the large intra-
class variations and subtle inter-class differences of actions.

In this paper, we introduce the idea of action class granu-
larity where a coarser action class granularity includes more

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

7130

action classes and a finer action class granularity contains
fewer action classes. We argue that features learned for dif-
ferent action class granularities can provide useful informa-
tion in discriminating action classes. For example, in Fig. 1a,
since the input action clip “marathon” is visually similar to
“playing soccer”, they will be easily confused if directly de-
riving features to recognize their individual action classes.
However, if we relax the recognition requirement from indi-
vidual action classes to action class groups (i.e., coarser ac-
tion class granularities), we are able to obtain shared features
for representing a set of action classes. These shared features
are able to provide more discriminative power as ambigu-
ous action clips may correspond to different groups of action
classes in coarser action class granularities (cf. Fig. 1a).

Based on this intuition, we propose a coarse-to-fine net-
work which first extracts deep features from different action
class granularities, and then progressively integrates them
from coarse granularities to fine ones to obtain a precise fea-
ture representation for input actions (cf. Fig. 1a). It should
be noted that since the action classes in each granularity are
only used to derive proper features, they are automatically
determined and dynamic for different input video clips.

Second, combining multiple information streams (such
as two-stream ConvNets (Simonyan and Zisserman 2014))
has shown strong performance and thus has become a main-
stream framework in action recognition. However, most ex-
isting works only focus on introducing more information
streams (Shi et al. 2017; Kataoka et al. 2016) or strength-
ening the correlation among streams (Wang et al. 2016b;
Wu et al. 2015; Sun et al. 2017), while the asynchronous
issue among different information streams is less studied.

We argue that many actions have asynchronous patterns
in different information streams, which affects the perfor-
mance of action recognition. For example, Fig. 1b shows
two information streams for an action clip “fall down” (one
appearance stream and one motion stream). Apparently, the
appearance stream shows the most indicative pattern about
“fall down” after the object has lied down on the floor.
Comparatively, the motion stream shows the strongest “fall
down” pattern when the object is in the process of going
down. If we simply combine the overall information in both
streams or fuse the stream-wise information at the same time
point, the indicative patterns appear at different time cannot
be fully utilized and the performance is restrained. There-
fore, we further introduce an asynchronous fusion network,
which asynchronously integrates stream-wise features from
different time points, hence better leveraging the comple-
mentary information in multiple streams.

Overall, our contribution to action recognition are 3 folds:

1. We propose a coarse-to-fine network which extracts and
integrates deep features from multiple action class granu-
larities to obtain a more precise representation for actions.

2. We propose an asynchronous fusion network which in-
tegrates stream-wise features at different time points for
better leveraging the information in multi-streams.

3. We combine the proposed coarse-to-fine and asyn-
chronous fusion networks into an integrated framework
which achieves the state-of-the-art performance.

2 Related Works

Action recognition has been studied for years. Early works
focus on developing good hand-crafted features for repre-
senting actions, such as 3D SIFT (Scovanner, Ali, and Shah
2007) and dense trajectory (Wang et al. 2013). The perfor-
mances for these methods are often restrained due to the lim-
ited differentiation capability of hand-crafted features.

With the development of deep ConvNets, many ConvNet-
based methods were recently proposed for action recogni-
tion, which utilize ConvNets to automatically obtain the fea-
ture representation for actions. Ji et al. (Ji et al. 2013) utilize
a 3D ConvNet to recognize actions in video. Simonyan and
Zisserman (Simonyan and Zisserman 2014) propose a two-
stream framework which uses two ConvNets to respectively
extract features from two information streams (i.e., appear-
ance and motion) and fuse them for recognition. Based on
this framework, recent researches further improve the effec-
tiveness of ConvNet features by including additional infor-
mation sources (Shi et al. 2017; Kataoka et al. 2016), select-
ing spatial-temporal attention parts (Kar et al. 2017; Sharma,
Kiros, and Salakhutdinov 2015; Zhu et al. 2016), or incorpo-
rating more proper temporal information (Wang et al. 2016b;
Wu et al. 2015; Cherian et al. 2017; Bilen et al. 2016).

Most of the existing works are targeted at learning
features for directly describing actions’ individual action
classes, while the shared characteristics in different action
class granularities are less studied. This restrains them from
precisely distinguishing the subtle difference among am-
biguous actions. Although some methods (Wu et al. 2016)
obtain different levels of generality by integrating features
in multi-ConvNet layers, they still focus on directly repre-
senting the individual action classes and do not consider the
shared characteristics in different action class granularities.

Besides the derivation of proper features, other researches
focus on the proper combination of multiple information
streams to boost the action recognition performance (Feicht-
enhofer, Pinz, and Wildes 2016; Wu et al. 2015; Feichten-
hofer, Pinz, and Zisserman 2016; Sun et al. 2017). For ex-
ample, Feichtenhofer et al. (Feichtenhofer, Pinz, and Wildes
2016) introduce residual connections between information
streams to remedy the deficiency of late fusion strategy in
the two-stream framework. Wu et al. (Wu et al. 2015) also
improve the fusion efficiency of the two-stream framework
by performing both sequence level fusion and video-level
fusion over the information streams. However, most of these
works fuse stream-wise information that happen simultane-
ously, which have limitations in handling the longer-term
asynchronous pattern among information streams. As will
be shown in this paper, the asynchrony among information
streams is a non-trivial factor which can bring noticeable
performance gains for action recognition.

3 Overview

The framework of our approach is shown in Fig. 2. Af-
ter obtaining appearance and motion streams from an in-
put video, we first input each spatial frame from the ap-
pearance stream and each short-term optical flow stack from
the motion stream into a coarse-to-fine network (detailed in

7131

Figure 2: Framework of the approach. The coarse-to-fine
network (detailed in Fig. 3) extracts a more precise feature
representation for each frame/optical flow stack. These fea-
tures are then fused by asynchronous fusion networks (de-
tailed in Fig. 5) to obtain action prediction results.

Sec. 4), which integrates deep features from multiple action
class granularities and creates a more precise feature rep-
resentation. The extracted features are then fed into asyn-
chronous fusion networks (detailed in Sec. 5), where each
asynchronous fusion network integrates stream-wise fea-
tures at different time points within a period and obtains an
action class prediction result. Finally, action prediction re-
sults from different asynchronous fusion networks are com-
bined to decide the final action class of the input video.

Note that the framework of our approach is integrated
where the major components in the coarse-to-fine and asyn-
chronous fusion networks can be jointly trained.

4 Coarse-to-Fine Network

The structure of the coarse-to-fine network is shown in
Fig. 3. Basically, the network includes three major modules:
first, a multi-granularity feature extraction module is applied
over a ConvNet to extract deep features from different ac-
tion class granularities. Second, in order to guarantee the
extraction of proper features in the feature extraction mod-
ule, an adaptive class group forming module is introduced.
This module adaptively forms a suitable action class group
for each action class granularity of an input frame/optical
flow stack, so as to guide the feature extraction module to
create the desired features. Third, a coarse-to-fine integra-
tion module is connected to the feature extraction module,
which progressively integrates features from coarse action
class granularities to fine ones and outputs a precise feature
representation for the input frame/optical flow stack.

It should be noted that the adaptive class group forming
module is only used in the training stage, while the multi-
granularity feature extraction and coarse-to-fine integration
modules are applied in both training and testing stages.

4.1 Multi-granularity feature extraction

The multi-granularity feature extraction module aims to ex-
tract deep features from different action class granularities.

Figure 3: Structure of the coarse-to-fine network.

Since side output layers have shown their effectiveness in
encoding multi-scale information in skeleton & boundary
detection (Shen et al. 2017; Xie and Tu 2015), we borrow
them into action recognition and construct three side output
flows to extract features in three action class granularities.

Specifically, we derive side output maps from the last
convolutional layer in stages 3, 4, and 5 of VGG-16 Conv-
Net (i.e., conv3 3, conv4 3, conv5 3). The side output maps
from different stages are then sliced and concatenated into
three scale-specific side map groups (Shen et al. 2017),
where each side map group corresponds to one action class
granularity. In order to ensure output maps from different
stages to have the same size, upsampling layers are applied
on side output maps before map concatenating. Finally, the
scale-specific side map groups are input into a fully con-
nected (FC) layer respectively to obtain features for the three
action class granularities (FC1 in Fig. 3). Note that differ-
ent from the previous side output works (Shen et al. 2017;
Xie and Tu 2015), our approach utilizes an FC layer in the
side output flow to obtain features for describing actions.

4.2 Adaptive class group forming

The adaptive class group forming module is a key part of
the coarse-to-fine network, which aims to form suitable ac-
tion class groups to guide the feature extraction process
in the multi-granularity feature extraction module. In this
paper, we introduce an additional smaller ConvNet (i.e.,
CNN M 2048 (Chatfield et al. 2014)) to form action class
groups in different granularities.

Specifically, we first use the CNN M 2048 ConvNet to
predict the action class label of an input frame/optical flow
stack, and then use the top 5, top 3, and top 1 action classes
in the predicted result to form the action class groups in the
three action class granularities, respectively.

Three important issues need to be mentioned about the
adaptive class group forming module: (1) The adaptive class
group forming module is only applied in the training stage
which helps to construct a reliable multi-granularity fea-
ture extracion network. During the testing stage, the fea-
ture extraction module will directly output features without

7132

Figure 4: Examples of the adaptively formed action class
groups for different inputs (best viewed in color).

the guidance of action class groups. (2) The CNN M 2048
ConvNet is pre-trained on the same dataset and is fixed dur-
ing the training process. We fix the CNN M 2048 ConvNet
in training in order to create stable action class groups. (3)
When forming action class groups, if the groundtruth label
of an input frame/optical flow stack is not listed in the top
ranked action group in CNN M 2048’s prediction result, we
will mandatorily include it into the action class group to
avoid the feature extraction module deriving irrelevant fea-
tures to the input frame/optical flow stack.

After action class groups are constructed in the adaptive
class group forming module, they are used to guide the fea-
ture extraction process by a cross-entropy loss (De Boer et
al. 2005), which forces the feature extraction module to cre-
ate shared features that best describe the constructed action
class groups in multiple granularities:

Lv(W) =− 1

N

3∑

k=1

∑

n∈Gk

αk log p̂(n|W, k) (1)

where W is the parameter set for the multi-granularity fea-
ture extraction module. N is the total number of action
classes. Gk is the constructed action class group for the
kth action class granularity and αk is the weight measur-
ing the relative importance of the kth action class granular-
ity. p̂(n|W, k) is the probability for the nth action class pre-
dicted by the features from kth action class granularity. Note
that in order to create action prediction results p̂(n|W, k),
two additional fully connected layers are added to the fea-
ture output layer of the multi-granularity feature extraction
module in the training stage (FC2 & FC3 in Fig. 3).

We argue that by introducing the CNN M 2048 ConvNet
to form action class groups, we can have three advantages:

1. Since the CNN M 2048 ConvNet is pre-trained on the
same dataset, it has the capability to properly parse the
action class contents of an input frame/optical flow stack.
Thus, it is able to create informative action class groups
which are relatively more similar for same-class inputs
and less similar for different-class inputs (cf. the action
class groups for the two “Baseball Pitching” inputs and
the “Throw Discus” input in Fig. 4). Therefore, when

using these action class groups to guide the feature ex-
traction process, we are able to obtain more distinguish-
able features. Note that the CNN M 2048 ConvNet does
not need to be perfectly trained. From our experiments,
CNN M 2048 roughly trained from partial data is already
able to create good results (cf. Sec. 6.1).

2. Since the ground-truth action class of an input
frame/optical flow stack is included in each of its ac-
tion class groups (cf. the red and blue bold action classes
in Fig. 4), features guided by these action class groups
are able to capture the characteristics of the input’s true
action class in different aspects. Therefore, by integrat-
ing features from multiple action class granularities (cf.
Sec. 4.3), the feature representation is properly strength-
ened, which has stronger capability to predict the correct
action class for the input sample.

3. Moreover, by introducing CNN M 2048 ConvNet into
our coarse-to-fine network, we are also taking the ad-
vantage of properly combining two ConvNets (i.e.,
CNN M 2048 and VGG-16) to boost action recognition
performances. As will be shown in the experimental re-
sults, our approach provides a more proper way to com-
bine ConvNets, which has obviously better performance
than only using a single ConvNet or combining ConvNets
in simpler ways (Xiao et al. 2015; Wang et al. 2016a).

4.3 Coarse-to-fine integration

After obtaining features from multiple action class granu-
larities, we further utilize a coarse-to-fine integration mod-
ule to progressively integrates features from different action
class granularities and outputs a precise feature representa-
tion. In this paper, we utilize a Long Short Term Memory
(LSTM) network to perform coarse-to-fine integration due
to its effectiveness in fusing sequential inputs (Donahue et
al. 2015; Graves, Mohamed, and Hinton 2013).

Specifically, we utilize an LSTM model with three units,
where each unit takes features xt from one action class
granularity and creates hidden state outputs ht to influence
the next unit (cf. Fig. 3). The hidden state output from the
last unit will be the final integrated feature for the input
frame/optical flow stack. The entire process is described by:

h1 = FΦ1
(x1, 0)

h2 = FΦ2
(x2,h1)

h3 = FΦ3 (x3,h2)

(2)

where xt and ht (t = 1, 2, 3) are the input features and hid-
den state results for tth LSTM unit. Φt = {Mt,bt} is the
parameter set for tth unit and FΦt

is the operation of tth unit
to create hidden state outputs (Donahue et al. 2015).

In the training stage, we utilize the following loss function
to train LSTM model to create the desired results.

Ll(Φ1,Φ2,Φ3) = − β

N
(log p̂(ng|Φ1)

+ log p̂(ng|Φ1,Φ2) + log p̂(ng|Φ1,Φ2,Φ3))
(3)

where Φ1,Φ2,Φ3 are the parameter sets for the three units
in LSTM. β is the weight measuring the relative importance

7133

Figure 5: Structure of asynchronous fusion network and its
relation with coarse-to-fine networks.

of the LSTM model. ng is the ground-truth action class label
for an input sample. N is the total number of action classes.
p̂(ng|Φ1..Φt) is the predicted probability for the ground-
truth class from the tth unit. Similar to Eq. 1, in order to
create action prediction probability p̂(ng|Φ1..Φt), an addi-
tional fully connected layer is added to the output of each
LSTM unit in the training stage (cf. FC1′ in Fig. 3).

4.4 Loss function for coarse-to-fine network

The loss function for the coarse-to-fine network is shown by:

LC(ΨC) = Lv(W) + Ll(Φ1,Φ2,Φ3) (4)
where Lv(W) and Ll(Φ1,Φ2,Φ3) are the losses for the
multi-granularity feature extraction and coarse-to-fine inte-
gration modules, respectively. ΨC = {W,Φ1,Φ2,Φ3} is
the parameter set for the entire coarse-to-fine network.

Note that the coarse-to-fine network can be jointly trained
with the asynchronous fusion network in our approach.
Therefore, Eq. 4 can be further combined with the loss of the
asynchronous fusion network to construct a final loss func-
tion for the entire approach, as will be discussed in Sec. 5.

5 Asynchronous Fusion Network

The structure of the asynchronous fusion network is shown
in Fig. 5. Basically, the asynchronous fusion network aims
to fuse an input feature at time t in one stream with multi-
ple input features around t in another stream, so as to lever-
age the stream-wise complementary information at differ-
ent time points. It mainly includes two modules: First, the
stream-wise feature fusion module is used to fuse two input
features from different streams. Second, the asynchronous
integration module is used to integrate the fused outputs
over different time and create an action class prediction re-
sult for the period of the input features.

5.1 Stream-wise feature fusion

Since inputs from different information streams have differ-
ent characteristics, simply concatenating them may create
less effective fusion results. Therefore, we utilize a Conv-
Net to fuse features from different streams due to its ef-
fectiveness in fusing multi-stream inputs (Feichtenhofer,

Pinz, and Zisserman 2016). Since input features are only
1-dimensional vectors, we simply view them as two 1-
dimensional feature maps and apply a single layer ConvNet
with 1× 1 kernel to create the fused output.

Note that: (1) In our asynchronous fusion network, an in-
put feature in one stream is fused with 5 input features from
another stream. Therefore, five 1-layer ConvNets are used to
fuse stream-wise features (cf. Fig. 5). (2) Moreover, the five
input features to be fused also have Δ (Δ = 5) time inter-
vals to each other. This enables us to capture the longer-term
asynchronous patterns between streams.

5.2 Asynchronous integration

After obtaining stream-wise fusion results with different
time intervals, the asynchronous integration module will se-
quentially integrate them and create an action prediction re-
sult for the period of the input features. In this paper, we
utilize a five-unit LSTM to perform integration (cf. Fig. 5)
since it has good capability in integrating sequential in-
puts (Donahue et al. 2015).

5.3 Loss function for the asynchronous fusion
network & the entire framework

The entire asynchronous fusion network can be trained by:

LA(ΨA) = − γ

N

T∑

t=1

log p̂(ng|Φ1, ..,Φt,K1, ..,Kt) (5)

where N is the total number of action classes. ng is
the ground-truth class label of input video. T = 5
is the total number of LSTM units and 1-layer Con-
vNets. Φt and Kt are the parameter sets for the tth
LSTM unit and tth 1-layer ConvNet, respectively. ΨA =
{Φ1, ...,ΦT ,K1, ...,KT } and γ are the parameter set and
weight for the entire asynchronous fusion network, respec-
tively. p̂(ng|Φ1, ...,Φt,K1, ...,Kt) is the predicted proba-
bility for the ground-truth class from the tth LSTM unit.

Moreover, the asynchronous fusion network can be jointly
trained with the coarse-to-fine network by combining their
loss functions. Therefore, the overall framework of our ap-
proach can be trained by:

(ΨC,s1 ,ΨC,s2 ,ΨA)∗ =

argmin (
T∑

t=1

Lt
C(ΨC,s1) + LC(ΨC,s2) + LA(ΨA))

(6)

where ΨC,s1 , ΨC,s2 are the parameter sets of the coarse-to-
fine networks for the first and second information streams.
ΨA is the parameter set of the asynchronous fusion network.
LC(·) and LA(·) are the loss functions of the coarse-to-fine
and asynchronous fusion networks (cf. Eqs. 4 and 5). T = 5
is the total number of inputs in the first stream (cf. Fig. 5).
Note that since the five coarse-to-fine networks in the first
stream share weights, we use the same parameter set ΨC,s1
to calculate the loss of each input Lt

C(ΨC,s1), t = 1, ..., 5.
Besides, it should also be noted that our approach actu-

ally requires to construct two independent models, where

7134

one model fuses an appearance-stream input with multiple
motion-stream inputs, and another model fuses a motion-
stream input with multiple appearance-stream inputs. The
action prediction results from both models and at different
time periods are then combined to decide the final label of
an input video (cf. Fig. 2). In this paper, we follow the main-
stream two-stream methods (Wang et al. 2016b) to combine
action prediction results, which adds the action prediction
results from different models & periods and selects the class
with the largest overall prediction score as the final result.

6 Experimental Results

6.1 Datasets & experimental settings

Datasets. We perform experiments on two benchmark
datasets: UCF101 (Soomro, Zamir, and Shah 2012) and
HMDB51 (Kuehne et al. 2011). UCF101 dataset is a
commonly used dataset for action recognition. It contains
13, 320 video clips in 101 action classes. HMDB51 dataset
is a large collection of realistic videos, which contains 6, 766
video clips in 51 action classes.

Experimental settings. We implement our approach on
Caffe (Jia et al. 2014). The batch size and momentum are set
to be 16 and 0.9, respectively. The weight parameters for dif-
ferent granularities in the coarse-to-fine network (α1, α2, α3

in Eq. 1) are set to be 0.1, 0.1, 1 respectively. Besides, the
weight parameters for the LSTM models in the coarse-to-
fine and asynchronous fusion networks (β and γ in Eqs. 3
and 5) are set as 2 to let the networks focus more on the
reliability on their final outputs.

We use the same method as (Wang et al. 2016b; Wang,
Qiao, and Tang 2015; Wang, Farhadi, and Gupta 2016) to
construct optical flow stacks and perform data augmenta-
tion. Moreover, the VGG-16 models in both appearance
and motion streams are initialized with a pre-trained model
from ImageNet (Deng et al. 2009). When training the entire
framework, we set the initial learning rate as 10−2 and is de-
creased to its 1/10 for every 20K iterations. The maximum
iteration is 100K. Besides, the CNN M 2048 ConvNet used
to construct action class groups are trained with 1/8 of the
training data and 10K iterations.

During evaluation, we sample 12 periods from each video,
where each period includes 5 frames and 5 corresponding
optical flow stacks with temporal distance Δ = 5 (cf. Fig. 5).
The prediction results from these periods are combined to
obtain the final result.

6.2 Results for the coarse-to-fine network

In order to evaluate the effectiveness of our coarse-to-fine
network, we compare six methods: (1) The standard two-
stream approach (Simonyan and Zisserman 2014) (Two-
stream baseline). (2) Combining 2 two-stream networks
(VGG-16 and CNN M 2048) by fusing their fully connected
layers for recognition (Xiao et al. 2015; Wang et al. 2016a)
(Direct combine ConvNets). (3) Delete the adaptive class
group forming module and only use the loss function in Eq. 3
to train the coarse-to-fine network (CO2FI-no class group-
ing). (4) Delete the coarsest action class granularity and only

Table 1: Results of coarse-to-fine network (split1)
Methods Appearance Motion 2-stream

UCF101

Two-stream baseline 79.2% 84.8% 89.8%
Direct combine ConvNets 80.1% 85.4% 90.6%
CO2FI-no class grouping 79.1% 85.2% 90.0%
CO2FI-two granularities 81.0% 86.9% 91.7%

CO2FI-no coarseness 79.5% 85.4% 90.4%
CO2FI-complete 81.7% 87.9% 92.8%

HMDB51
Two-stream baseline 48.1% 55.4% 58.4%

CO2FI-complete 55.5% 63.0% 67.9%

use the two finer action class granularities in our coarse-to-
fine network for recognition (CO2FI-two granularities). (5)
Use three action class granularities in the coarse-to-fine net-
work, but each granularity only contains a single ground-
truth action class (CO2FI-no coarseness). (6) The complete
version of our coarse-to-fine network (CO2FI-complete).

Table 1 compares the action recognition results on split 1
of UCF101 and HMDB51 datasets, where the mean classi-
fication accuracy for appearance stream, motion stream, and
two-streams are listed. Note that in order to delete the effect
of the asynchronous fusion network in this experiment, we
directly add a softmax layer after the coarse-to-fine network
to obtain recognition results. From Table 1, we can observe:

(1) The performance of the CO2FI-no class grouping
method is similar to two-stream baseline and is obviously
lower than the complete version of our approach (CO2FI-
complete). This implies that without the guidance of the
adaptive class group forming module, the coarse-to-fine net-
work will construct less precise features and bring few im-
provements. Besides, the Direct combine ConvNets method
also achieves less obvious improvements. This further indi-
cates that satisfactory results cannot be easily obtained with-
out a proper way to combine ConvNets.

(2) Comparing the CO2FI-no coarseness method with the
CO2FI-two granularities method, we can see that less no-
ticeable improvements are obtained if each action class gran-
ularity only contains one ground-truth action class (CO2FI-
no coarseness). Comparatively, when each action class gran-
ularity includes more action classes, more obvious improve-
ments are achieved with only two action class granularities
(CO2FI-two granularities). This indicates that the shared
characteristics from multiple action classes are the key parts
to improve feature representations, and the improvements
are restrained if these shared characteristics cannot be ob-
tained (as in CO2FI-no coarseness).

(3) The complete version of our coarse-to-fine network
(CO2FI-complete), which obtains features by including
more action class granularities with different coarseness,
has the largest improvement over the baseline. This further
demonstrates the effectiveness of our approach.

6.3 Results for the asynchronous fusion network

Table 2 shows the performance of our asynchronous fusion
network. In Table 2, the upper part shows the results by ap-
plying the fusion network on the baseline two-stream Conv-
Net (i.e., Baseline+SYN, Baseline+ASYN), and the lower
part shows the results by combining our fusion network with

7135

Table 2: Results of asynchronous fusion network (split 1)
Methods UCF101 HMDB51
Two-stream baseline 89.8% 58.4%
Baseline+SYN 89.7% –
Baseline+ASYN (Δ = 1) 90.3% –
Baseline+ASYN (Δ = 5) 91.0% 60.9%

CO2FI 92.8% 67.9%
CO2FI+ASYN (Δ = 5) 93.7% 69.5%

the coarse-to-fine network (CO2FI+ASYN). Moreover, SYN
refers to the method that fuses two stream-wise features at
the same time point. ASYN (Δ = 1) and ASYN (Δ = 5)
mean using our asynchronous fusion network to fuse stream-
wise features, where the temporal distances of input features
being fused are 1 and 5 (cf. Fig. 5).

From the upper part of Table 2, we can see that sim-
ply fusing features at the same time point brings no im-
provements (Baseline+SYN). When we only fuse stream-
wise features that are temporally close to each other (Base-
line+ASYN (Δ = 1)), the improvements are still less ob-
vious since the longer-term asynchronous patterns are not
properly captured. Comparatively, when fusing stream-wise
features with larger temporal distances (Baseline+ASYN
(Δ = 5)), we can obtain more noticeable improvements.
This demonstrates that the asynchrony between different in-
formation streams indeed affects action recognition perfor-
mances. Moreover, from the lower part of Table 2, we can
also observe that when combining our asynchronous fusion
network with the coarse-to-fine network, we can obtain fur-
ther improved recognition performances by leveraging both
mutli-granularity features and stream-wise complementary
information (CO2FI+ASYN (Δ = 5)).

Fig. 6 further shows an example about the effect of the
asynchronous fusion network. In Fig. 6, since the two infor-
mation streams of the “Highjump” video have asynchronous
patterns, they create high prediction scores for the ground-
truth action class at different time points (e.g., t3 for appear-
ance stream and t2 for motion stream in Fig. 6). If we sim-
ply sum up the prediction scores over time or only consider
the stream-wise correlation at the same time, the final recog-
nition result will be confused with other action classes (cf.
Overall score w/o ASYN). Comparatively, if we consider the
asynchrony between streams and allow stream-wise feature
fusion at different time, the complementary information be-
tween streams can be more properly used, resulting in a cor-
rect result (cf. Overall score with ASYN in Fig. 6).

6.4 Comparison with the state-of-the-art

Table 3 compares our approach (CO2FI+ASYN) with the
state-of-the-art methods. Since many works reported results
by performing a late fusion with hand-crafted IDT fea-
tures (Wang et al. 2013), we also show fusion result of our
approach (CO2FI+ASYN+IDT). Note that in this experi-
ment, we adopt three training/testing splits on both datasets
in order to have a fair comparison with other methods.

From Table 3, we can see that our approach has better per-
formances than most of the state-of-the-art methods. Specif-
ically, when comparing with the most recent works using

Figure 6: An example of the effect of the asynchronous
fusion network: since two streams create high prediction
scores for the ground-truth class “Highjump” at different
time points, the recognition result will be easily confused
if not considering the stream-wise asynchronous pattern.

Table 3: Comparison of different methods (3 splits)
Methods UCF101 HMDB51
C3D (3 nets) [Tran et al. 2015] 85.2% –
AdaScan [Kar et al. 2017] 89.4% 54.9%
TDD+FV [Wang et al. 2015] 90.3% 63.2%
GRP [Cherian et al. 2017] 91.9% 65.4%
Three-stream sDTD [Shi et al. 2017] 92.2% 65.2%
Transformations [Wang et al. 2016] 92.4% 62.0%
Two-Stream Fusion [Feichtenhofer et al. 2016] 92.5% 65.4%
KVMF [Zhu et al. 2016] 93.1% 63.3%
ST-ResNet [Feichtenhofer et al. 2016] 93.4% 66.4%
L2STM [Sun et al. 2017] 93.6% 66.2%
ST-VLMPF [Duta et al. 2017] 93.6% 69.5%
TSN (2 modelities) [Wang et al. 2016b] 94.0% 68.5%
CO2FI + ASYN 94.3% 69.0%
Dynamic Image Networks + IDT [Bilen et al. 2016] 89.1% 65.2%
AdaScan + IDT [Kar et al. 2017] 91.3% 61.0%
TDD + IDT [Wang et al. 2015] 91.5% 65.9%
GRP + IDT [Cherian et al. 2017] 92.3% 67.0%
ST-ResNet + IDT [Feichtenhofer et al. 2016] 94.6% 70.3%
CO2FI + ASYN + IDT 95.2% 72.6%

ResNet (ST-ResNet) or introducing an additional informa-
tion stream (ST-VLMPF), our approach can also obtain sim-
ilar or better results. This demonstrates the effectiveness of
our proposed approach. Note that comparing with ST-ResNet
and ST-VLMPF, we use a relatively short ConvNet (VGG-
16) and do not introduce additional information streams. It
is expected that the performances of our approach can be
further improved if using deeper ConvNets such as ResNet
or including more information streams. Moreover, our ap-
proach fused with IDT (CO2FI+ASYN+IDT) also performs
better than other IDT-fused methods. This furhter indicates
the robustness of our approach in improving performances.

7 Conclusion

This paper presents a novel framework for action recogni-
tion. Our framework consists of two key ingredients: 1) a
coarse-to-fine network, which extracts and integrates deep
features from multiple action class granularities to obtain a
more precise feature representation for actions; 2) an asyn-
chronous fusion network which integrates stream-wise fea-
tures at different time points for better leveraging the infor-

7136

mation in multiple streams. Experimental results show that
our approach achieves the state-of-the-art performance.

References

Bilen, H.; Fernando, B.; Gavves, E.; Vedaldi, A.; and Gould,
S. 2016. Dynamic image networks for action recognition.
In CVPR.
Chatfield, K.; Simonyan, K.; Vedaldi, A.; and Zisserman, A.
2014. Return of the devil in the details: Delving deepinto
convolutional nets. In CoRR abs/1405.3531.
Cherian, A.; Fernando, B.; Harandi, M.; and Gould, S. 2017.
Generalized rank pooling for activity recognition. In CVPR.
De Boer, P.; Kroese, D.; Mannor, S.; and Rubinstein, R.
2005. A tutorial on the cross-entropy method. Annals of
Operations Research 134(1):19–67.
Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database.
In CVPR.
Donahue, J.; Anne Hendricks, L.; Guadarrama, S.;
Rohrbach, M.; Venugopalan, S.; Saenko, K.; and Darrell,
T. 2015. Long-term recurrent convolutional networks for
visual recognition and description. In CVPR.
Duta, I. C.; Ionescu, B.; Aizawa, K.; and Sebe, N. 2017.
Spatio-temporal vector of locally max pooled features for
action recognition in videos. In CVPR.
Feichtenhofer, C.; Pinz, A.; and Wildes, R. 2016. Spa-
tiotemporal residual networks for video action recognition.
In NIPS.
Feichtenhofer, C.; Pinz, A.; and Zisserman, A. 2016. Convo-
lutional two-stream network fusion for video action recog-
nition. In CVPR.
Graves, A.; Mohamed, A. R.; and Hinton, G. 2013. Speech
recognition with deep recurrent neural networks. In ICASSP.
Ji, S.; Xu, W.; Yang, M.; and Yu, K. 2013. 3d convolutional
neural networks for human action recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 35(1):221–231.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
ACM MM.
Kar, A.; Rai, N.; Sikka, K.; and Sharma, G. 2017. Adas-
can: Adaptive scan pooling in deep convolutional neural net-
works for human action recognition in videos. In CVPR.
Kataoka, H.; He, Y.; Shirakabe, S.; and Satoh, Y. 2016. Mo-
tion representation with acceleration images. In ECCVW.
Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; and Serre,
T. 2011. HMDB: a large video database for human motion
recognition. In ICCV.
Liu, J.; Gao, C.; Meng, D.; and Zuo, W. 2016. Two-stream
contextualized cnn for fine-grained image classification. In
AAAI.
Scovanner, P.; Ali, S.; and Shah, M. 2007. A 3-dimensional
SIFT descriptor and its application to action recognition. In
ACM MM.

Sharma, S.; Kiros, R.; and Salakhutdinov, R. 2015. Action
recognition using visual attention. In CoRR abs/1511.04119.
Shen, W.; Zhao, K.; Jiang, Y.; Wang, Y.; Bai, X.; and
Yuille, A. 2017. Deepskeleton: Learning multi-task scale-
associated deep side outputs for object skeleton extraction in
natural images. IEEE Trans. Image Processing.
Shi, Y.; Tian, Y.; Wang, Y.; and Huang, T. 2017. Sequential
deep trajectory descriptor for action recognition with three-
stream CNN. IEEE Trans. Multimedia.
Simonyan, K., and Zisserman, A. 2014. Two-stream convo-
lutional networks for action recognition in videos. In NIPS.
Song, S.; Lan, C.; Xing, J.; Zeng, W.; and Liu, J. 2017.
An end-to-end spatio-temporal attention model for human
action recognition from skeleton data. In AAAI.
Soomro, K.; Zamir, A. R.; and Shah, M. 2012. UCF101:
a dataset of 101 human actions classes from videos in the
wild. In CoRR abs/1212.0402.
Sun, L.; Jia, K.; Chen, K.; Yeung, D. Y.; Shi, B. E.; and
Savarese, S. 2017. Lattice long short-term memory for hu-
man action recognition. In ICCV.
Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri,
M. 2015. Learning spatiotemporal features with 3d convo-
lutional networks. In ICCV.
Wang, H.; Klaser, A.; Schmid, C.; and Liu, C. 2013.
Dense trajectories and motion boundary descriptors for ac-
tion recognition. Intl. Journal Comp. Vision 103(1):60–79.
Wang, J.; Wei, Z.; Zhang, T.; and Zeng, W. 2016a. Deeply
fused nets. In CoRR abs/1605.07716.
Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.;
and Van Gool, L. 2016b. Temporal segment networks: To-
wards good practices for deep action recognition. In ECCV.
Wang, X.; Farhadi, A.; and Gupta, A. 2016. Actions trans-
formations. In CVPR.
Wang, L.; Qiao, Y.; and Tang, X. 2015. Action recogni-
tion with trajectory-pooled deep-convolutional descriptors.
In CVPR.
Wu, Z.; Wang, X.; Jiang, Y.; Ye, H.; and Xue, X. 2015.
Modeling spatial-temporal clues in a hybrid deep learning
framework for video classification. In ACM MM.
Wu, J.; Wang, G.; Yang, W.; and Ji, X. 2016. Action recog-
nition with joint attention on multi-level deep features. In
CoRR abs/1607.02556.
Xiao, T.; Xu, Y.; Yang, K.; Zhang, J.; Peng, Y.; and Zhang, Z.
2015. The application of two-level attention models in deep
convolutional neural network for fine-grained image classi-
fication. In CVPR.
Xie, S., and Tu, Z. 2015. Holistically-nested edge detection.
In ICCV.
Zhu, W.; Hu, J.; Sun, G.; Cao, X.; and Qiao, Y. 2016. A key
volume mining deep framework for action recognition. In
CVPR.

7137

