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Abstract

Temporal action localization is an important task of computer
vision. Though a variety of methods have been proposed,
it still remains an open question how to predict the tem-
poral boundaries of action segments precisely. Most works
use segment-level classifiers to select video segments pre-
determined by action proposal or dense sliding windows.
However, in order to achieve more precise action boundaries,
a temporal localization system should make dense predic-
tions at a fine granularity. A newly proposed work exploits
Convolutional-Deconvolutional-Convolutional (CDC) filters
to upsample the predictions of 3D ConvNets, making it pos-
sible to perform per-frame action predictions and achieving
promising performance in terms of temporal action localiza-
tion. However, CDC network loses temporal information par-
tially due to the temporal downsampling operation. In this
paper, we propose an elegant and powerful Temporal Preser-
vation Convolutional (TPC) Network that equips 3D Con-
vNets with TPC filters. TPC network can fully preserve tem-
poral resolution and downsample the spatial resolution si-
multaneously, enabling frame-level granularity action local-
ization with minimal loss of time information. TPC network
can be trained in an end-to-end manner. Experiment results
on public datasets show that TPC network achieves signif-
icant improvement in both per-frame action prediction and
segment-level temporal action localization.

In recent years, temporal action localization has became a
very important part of computer vision applications. Many
works have been proposed to solve this problem (Escorcia et
al. 2016; Jiang et al. 2014; Idrees et al. 2017; Caba Heilbron,
Carlos Niebles, and Ghanem 2016; Rohrbach et al. 2012;
Oneata, Verbeek, and Schmid 2014; Richard and Gall 2016;
Shou, Wang, and Chang 2016; Singh and Cuzzolin 2016;
Wang, Qiao, and Tang 2014; Wang and Tao 2016; Yeung et
al. 2016; Shou et al. 2017; Qin and Shelton 2017), but how
to perform temporal action localization precisely is still an
open question.The purpose of temporal action localization is
to determine the boundaries and classes of action segments
in untrimmed videos. Most works extract various features
on action segments pre-determined by action proposals or
sliding windows and use them to train segment-level action
classifiers.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently, it is claimed that action prediction at a fine gran-
ularity is important for achieving precise action localiza-
tion (Shou et al. 2017). There exist some techniques can
be adapted to achieve this goal: (1) classifying each frame
using 2D CNN without consideration of temporal informa-
tion; (2) using Recurrent Neural Network to model the tem-
poral structure; (3) 3D CNN. 3D CNN is preferred because
it can explicitly model the spatio-temporal information in
raw videos. 3D CNN crushes the video in order to classify
it. To perform frame-level predictions, one needs to upsam-
ple the output of 3D CNN in temporal domain. In (Shou
et al. 2017), a Convolutional-De-Convolutional (CDC) layer
is proposed to upsample the temporal resolution. By stack-
ing CDC layers on top of 3D ConvNets, the resulting net-
works are able to make frame-level predictions. CDC net-
work achieves promising performance in both action predic-
tions at the frame granularity and segment-level action lo-
calization. However, directly upsampling the output of the
classification networks cannot recover the degraded tempo-
ral information by downsampling, which harms precise tem-
poral localization.

Therefore, we believe no-downsampling architectures are
better than downsampling-upsampling architectures. The
most intuitive solution to omit the downsampling is reduc-
ing the temporal pooling stride to 1. However, this operation
changes the temporal receptive field of convolutional filters
after the modified pooling layers. This reduces the amount
of temporal context that can inform the prediction produced
by each unit and also prevents us from using pre-trained
models. In order to preserve the temporal receptive field of
subsequent layers and take advantage of pre-trained weights
rather than train networks from scratch, we replace standard
3D convolutional filters with Temporal Preservation Convo-
lutional (TPC) filters. TPC filters can easily and explicitly
control the temporal receptive field of convolutional filters
when using the same kernel size as original convolutional
filters. Therefore, TPC can enlarge the temporal resolution
of neural network feature responses to cooperate with pool-
ing layers with a stride of 1 to preserve temporal length of
videos and make use of pre-trained weights. With TPC, C3D
is upgraded to form our TPC network, which can model
spatio-temporal information with minimal temporal infor-
mation loss to make fine-grained action predictions that can
be used to refine boundaries of action proposals to precisely
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localize action segments. Refinement process is shown in
Fig. 2.

It is worth noting that C3D is designed to label video
clips, and needs careful design to conduct frame-level ac-
tion classification which we believe is important for action
localization. The design of temporal preservation architec-
ture, which enables C3D to provide per-frame classification,
is non-trivial and needs innovative idea and insight on this
task. Although TPC is conceptually simple in form, it is
able to preserve temporal resolution without exploiting up-
sampling explicitly as CDC. Our contributions can be con-
cluded as follows: (1) To the best of our knowledge, in com-
puter vision area, this is the first work to apply TPC filters,
which can fully preserve temporal resolution and downsam-
ple spatial resolution simultaneously, allowing network to
infer high-level action semantics with minimal temporal in-
formation loss. (2) We apply TPC filters to 3D ConvNets
to form TPC networks. Our TPC network can be trained in
an end-to-end manner to generate frame-level action predic-
tions which can be used to refine action segments. (3) TPC
network achieves competitive results in both per-frame ac-
tion localization and segment-level action localization.

Related Work

Action recognition: Improved Dense Trajectory Feature
(iDTF) (Wang et al. 2011; Wang and Schmid 2013) con-
sisting of HOG, HOF, MBH features extracted along dense
trajectories has been in a dominant position in the field
of action recognition. Recently, 2D Convolutional Neu-
ral Networks (2DCNN) trained on ImageNet (Krizhevsky,
Sutskever, and Hinton 2012) to perform RGB image classi-
fication such as AlexNet (Krizhevsky, Sutskever, and Hinton
2012), VGG (Simonyan and Zisserman 2015), ResNet (He
et al. 2016) have gradually shown their power, but their per-
formance is limited since they can only capture appearance
information. In order to model motion, two-stream Con-
vNets taking both RBG and optical flow as input have signif-
icantly boost the performance (Feichtenhofer, Pinz, and Zis-
serman 2016; Wang et al. 2016; Simonyan and Zisserman
2014). To model spatio-temporal feature better, 3D CNN ar-
chitecture called C3D is proposed to extract spatio-temporal
abstraction of high-level semantics directly from raw videos
(Tran et al. 2015).

Temporal action localization: A typical framework used
in many state-of-the-art systems (Oneata, Verbeek, and
Schmid 2014; Singh and Cuzzolin 2016; Wang, Qiao, and
Tang 2014; Wang and Tao 2016) extracts various features
and train a classifier such as Support Vector Machine (SVM)
to classify action segments pre-determined by action propos-
als or densely sliding windows.

In recent years, deep networks improved performance of
temporal localization through end-to-end learning from raw
video clips directly to localize action segments. A Long
Short Term Memory (LSTM)-based agent is trained using
REINFORCE to learn both which frame to look next and
when to emit an action segment prediction in (Yeung et al.
2016). A temporal action proposal framework is designed
based on LSTM that takes pre-extracted CNN features in

(Escorcia et al. 2016). In (Yeung et al. 2015), a LSTM net-
work equipped with attention mechanism proposed to model
these temporal relations via multiple input and output con-
nections. In (Yuan et al. 2016), a Pyramid of Score Distri-
bution Feature (PSDF) capturing the motion information at
multiple resolutions centered at each sliding window is pro-
posed and incorporated into the RNN to improve temporal
consistency. Sun et al. (Sun et al. 2015) uses web images as
prior to train LSTM model to improve action localization
performance with only video-level annotations. Although
RNN can make use of temporal information to make frame-
level prediction, they are usually placed on top of CNN
which take a single frame as input rather than directly mod-
eling spatio-temporal abstraction of high-level semantics di-
rectly from from raw videos. In addition, RNN based model
produces frame-level smoothing that is actually harmful, not
beneficial to the task of precise action localization as (Yeung
et al. 2016) claimed.

Based on C3D (Tran et al. 2015), an end-to-end Segment-
CNN (S-CNN) action localization framework is proposed to
improve action localization performance. S-CNN achieves
promising results by capturing spatio-temporal informa-
tion simultaneously. In (Shou et al. 2017), a fine-grained
action localization framework called Convolutional-De-
Convolutional (CDC) is designed to detect actions in every
frame. Then frame-level action predictions are used to refine
the action segment boundaries generated by S-CNN.

Semantic segmentation, audio application and atrous
convolution: (Chen et al. 2014; 2016) apply the atrous con-
volution with upsampled filters to dense feature extraction
for image segmentation. Atrous convolution allows to ex-
plicitly control the resolution at which feature responses are
computed within convolutional neural networks. It also al-
lows to effectively enlarge the field of view of filters to
incorporate larger context without increasing the number
of parameters or the amount of computation. Considering
atrous convolution as a powerful tool in dense predict tasks,
it shall have the potential to be adapted for making dense
predictions in time for our precise temporal action localiza-
tion task. However, unlike the image segmentation task in
which keeping spatial resolution is import, our precise ac-
tion localization task needs to preserve temporal resolution
and downsample spatial resolution simultaneously. To this
end, we propose TPC which allows us to preserve tempo-
ral resolution when downsampling spatial resolution at the
same time. Our TPC filter can be be regarded as a special
case of 3D atrous convolution in the temporal domain.

1D temporal atrous convolution is also applied to speech
recognition (Sercu and Goel 2016) and audio generation
(van den Oord et al. 2016). However, TPC filter is somewhat
different from the 1D temporal dilated convolutions (TDC)
used in audio area both in form and motivation. TDC is a 1D
convolution filter that used in audio application while TPC is
a 3D convolution filter used in video application which can
preserve temporal resolution and downsample spatial reso-
lution simultaneously, allowing network to infer high-level
semantics (spatial dimension) with minimal temporal infor-
mation loss simultaneously. TPC also allows us to use pre-
trained model weights.
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Figure 1: Illustration of temporal preservation convolution. We only show their temporal dimension since spatial dimension is
the same. Each box represents the feature maps corresponding to one frame. Bottom line represents input layer while top line
represents output layer. (a) Standard temporal convolution on a low resolution feature map that downsampled by pooling layer
by a factor of 2. (b) Temporal preservation convolution on a high resolution feature map that is not downsampled. To have the
same temporal receptive field size, we need a temporal sample rate = r, here r = 2.

Temporal preservation networks

C3D architecture which consists of five stages 3D ConvNets
and three Fully Connected (FC) layers, has been shown that
it can learn spatio-temporal patterns from raw video and
has promising performance in action recognition (Tran et al.
2015). However, C3D architecture loses temporal informa-
tion due to temporal downsampling from conv1a to pool5
layer, and the temporal length of output results in L/16
given an input video segment of temporal length L, which
prevents us from frame-level predictions. In order to pre-
dict actions at frame-level, CDC network (Shou et al. 2017)
stacks three CDC layers on top of 3D ConvNets part of C3D
(3D ConvNets + 3 FCs −→ 3D ConvNets + 3 CDCs). A
CDC filter makes two copies of the fully connected (FC)
layers of C3D 1 to upsample the temporal length by a factor
of 2. After temporal upsampling by three times, the temporal
length is upsampled to L from L/8 2 (L/8×2×2×2 −→ L).
However, CDC network still crushes the temporal resolu-
tion during the temporal downsampling-upsampling process
(L → 8/L → L), which is harmful to precise temporal lo-
calization. In addition, each CDC layer’s parameter number
is twice that of the corresponding FC layer in C3D, resulting
in a higher possibility of overfitting.

In order to make frame-level action predictions with min-
imal temporal information loss, we had better preserve tem-
poral resolution throughout the whole forward propagation
process rather than using the downsampling-upsampling
framework. To this end, we propose TPC filter and use it
to construct a TPC network to make frame-level action pre-
dictions.

Temporal preservation convolution

In this section, we will introduce TPC filter and explain how
we build a TPC network with the TPC filters. Why is tem-
poral resolution reduced in C3D? It has direct relationship
with pooling filters whose temporal stride is bigger than 1.
To preserve the resolution from beginning to end, we need
to reduce all pooling layers’ pooling stride to 1. We will
modify the structure inside 3D ConvNets rather than modify

1FC layers in C3D have been transformed to convolutional lay-
ers following (Long, Shelhamer, and Darrell 2015)

2CDC network keeps temporal length by set pooling stride to
1 in pool5 layer, so its temporal length after pool5 is twice that of
C3D

three FC layers as CDC network does. TPC network’s oper-
ations in spatial dimension are the same as that of C3D, so
we mainly consider the temporal dimension.

The modified network can preserve temporal length from
beginning to end. However, we can notice that the tempo-
ral receptive field 3 of the convolutional filters after mod-
ified pooling layers is smaller than that of standard filters.
However, contextual information is very important in dis-
ambiguating local cues (Galleguillos and Belongie 2010).
And this also means we can not use the pre-trained model
from C3D, but training a network with a small data set from
scratch is very difficult. For these two reasons, we need to
increase the convolutional filters’ temporal receptive field
size to match that of the original convolutional filters. To
this end, we replace the standard 3D convolutional filters in
C3D with our TPC filters which can enlarge the temporal
receptive field of filters to incorporate larger context without
increasing the number of parameters.

Considering only temporal dimension, temporal preser-
vation convolution can be defined as Equation 1, where x[t]
4 is the feature map corresponding to the t-th frame, w[k]
is convolutional filter, K is the size of filter, r stands for
the stride with which filters sample input. Standard con-
volution is a special case for stride r = 1. We illustrate
TPC in Fig. 1, the convolutional filter samples in previous
layer’s feature maps’ temporal dimension at a stride of 2.
TPC filter can also be treated as a bigger filter with fixed
zero-value which not updated when network parameters are
adjusted. The other parameters are initialized with the pre-
trained model and are trainable.

y[t] =

K∑
k=1

x[t+ r · k]w[k] (1)

The idea of our TPC is similar to that of atrous convo-
lution used in 2D image segmentation (Chen et al. 2014;
2016), but TPC is performed on temporal dimension rather
than spatial dimension. In temporal dimension, TPC is
very similar to the 1D temporal atrous convolution used in
(van den Oord et al. 2016; Sercu and Goel 2016). In order
to be consistent with (Chen et al. 2014; 2016), we assign the

3We name 3D convolutional filters’ receptive field’s temporal
dimension as temporal receptive field for convenience

4The shape of x[t] is (number of channels, height, width).
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Table 1: Networks architecture comparison. Illustration of output shape and filter size of each layer. We denote layer-wise output
shape using the form of (number of channels × temporal length × height × width). Filter shape using (temporal length× height
× width, temporal atrous rate) for convolutional layers, and (temporal length× height × width, stride (temporal stride, height
stride, width stride)) for pooling layers.

Networks architecture

Layers C3D CDC Our TPN
Blocks Output size Blocks Output size Blocks Output size

input raw input video 3× L× 112× 112
conv1 3× 3× 3, 1 64× L× 112× 112 3× 3× 3, 1 64× L× 112× 112 3× 3× 3, 1 64× L× 112× 112

pool1 3× 2× 2
64× L× 56× 56

3× 2× 2
64× L× 56× 56

3× 2× 2
64× L× 56× 56stride (1, 2, 2) stride (1, 2, 2) stride (1, 2, 2)

conv2 3× 3× 3, 1 128× L× 56× 56 3× 3× 3, 1 128× L× 56× 56 3× 3× 3, 1 128× L× 56× 56

pool2 3× 2× 2
128× L/2× 28× 28

3× 2× 2
128× L/2× 28× 28

3× 2× 2
128× L× 28× 28stride (2, 2, 2) stride (2, 2, 2) stride (1, 2, 2)

conv3_x
[
3× 3× 3, 1
3× 3× 3, 1

]
256× L/2× 28× 28

[
3× 3× 3, 1
3× 3× 3, 1

]
256× L/2× 28× 28

[
3× 3× 3, 2
3× 3× 3, 2

]
256× L × 28× 28

pool3 3× 2× 2
256× L/4× 14× 14

3× 2× 2
256× L/4× 14× 14

3× 2× 2
256× L × 14× 14stride (2, 2, 2) stride (2, 2, 2) stride (1, 2, 2)

conv4_x
[
3× 3× 3, 1
3× 3× 3, 1

]
512× L/4× 14× 14

[
3× 3× 3, 1
3× 3× 3, 1

]
512× L/4× 14× 14

[
3× 3× 3, 4
3× 3× 3, 4

]
512× L × 14× 14

pool4 3× 2× 2
512× L/8× 7× 7

3× 2× 2
512× L/8× 7× 7

3× 2× 2
512× L × 7× 7stride (2, 2, 2) stride (2, 2, 2) stride (1, 2, 2)

conv5_x
[
3× 3× 3, 1
3× 3× 3, 1

]
512× L/8× 7× 7

[
3× 3× 3, 1
3× 3× 3, 1

]
512× L/8× 7× 7

[
3× 3× 3, 8
3× 3× 3, 8

]
512× L × 7× 7

pool5 3× 2× 2
512× L/16× 4× 4

3× 2× 2
512× L/8× 4× 4

3× 2× 2
512× L × 4× 4stride (2, 2, 2) stride (1, 2, 2) stride (1, 2, 2)

fc6/cdc6/conv6 1× 4× 4, 1 4096× L/16× 1× 1
1× 4× 4

4096× L/4× 1× 1 1× 4× 4, 1 4096× L × 1× 1(2 copies)

fc7/cdc7/conv7 1× 1× 1, 1 4096× L/16× 1× 1
1× 1× 1, 1

4096× L/2× 1× 1 1× 1× 1, 1 4096× L × 1× 1(2 copies)

fc8/cdc8/conv8 1× 1× 1, 1 (K + 1)× L/16× 1× 1
1× 1× 1, 1

(K + 1)× L× 1× 1 1× 1× 1, 1 (K + 1)× L × 1× 1(2 copies)

sampling stride as Temporal Atrous Sampling Rate (TASR).
Comparisons of architecture of C3D (Tran et al. 2015), CDC
(Shou et al. 2017) and our TPC network are shown in Ta-
ble 1. For C3D, temporal length is downsampled in pooli
layers(i = 2, 3, 4, 5) by a factor of 2 and eventually reduced
to L/16. CDC network first downsamples temporal resolu-
tion to L/8 and then stacks three CDC layers to upsample to
L. Based on C3D, TPC network reduces the pooling stride
to 1 in pooli layers(i = 2, 3, 4, 5), and set TASR = 2 for
conv3a and conv3b (same as Fig. 1), TASR = 4 for conv4a
and conv4b, and TASR = 8 for conv5a and conv5b to keep
the temporal length be L from beginning to end. In this way,
TPC network can preserve as much temporal precision as
possible.

More details to construct TPC newtork. To make it
easier to align the output and the input in the temporal di-
mension, we modify the temporal dimension of all pooling
layers’ kernel size from 2 to 3. In our descriptions above,
details of the convolutional and pooling layers have been
clarified. As explained in (Long, Shelhamer, and Darrell
2015), the FC layer is a special case of convolutional layer,
and we can transform FC6 (weights shape: 4096 × 8192),
FC7 (weights shape: 4096 × 4096) to conv6 (filter shape:
4096×512×4×4), conv7 (filter shape: 4096×4096×1×1)
respectively. Now conv6 can slide on L feature maps of size
512×4×4 stacked in time and output L feature maps of size
4096 × 1 × 1. Conv6, conv7 layers can be initialized with
FC6, FC7, but conv8 can not be adapted from FC8 since out-

put classes are not same in conv8 and FC8, so we randomly
initialize conv8. We perform softmax operation and compute
softmax loss for each frame separately. Given a mini-batch
with N training segments, batch output O and label y, the
total loss L is defined as Equation 2. L can be optimized by
standard backpropagation (BP) algorithm.

L =
1

N

N∑
n=1

L∑
t=1

K+1∑
c=1

− y(c)n [t] log

⎛
⎝ exp

(
O

(c)
n [t]

)

∑K+1
j=1 exp

(
O

(j)
n [t]

)
⎞
⎠

(2)

Model training and prediction

Training data construction. Training data consists of video
segments with length L. L can be an arbitrary value because
TPC network is a fully convolutional network. We chose
L = 64 frames in practical due to the Graphics Process-
ing Unit (GPU) memory limitation. Following (Shou et al.
2017), we slide temporal window of size L on untrimmed
videos and only keep segments include at least one frame be-
longs to actions to prevent including too many background
frames. To construct a balanced training dataset, we re-
sample the segments belong to minority classes to ensure
each action class has about 80K frames.

Model training. We implement TPC network based on
Keras (Chollet and others 2015) and C3D (Tran et al. 2015).
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Table 2: Frame-level action localization mAP on THUMOS’14.
Method mAP Method mAP

Single-frame CNN(Simonyan and Zisserman 2015) 34.7 TPC-2 45.5
Two-stream CNN(Simonyan and Zisserman 2014) 36.2 TPC-3 45.1

LSTM(Donahue et al. 2015) 39.3 TPC-4 45.0
MultiLSTM(Yeung et al. 2015) 41.3 TPC-2,3 46.4

Conv & De-conv(Shou et al. 2017) 41.7 TPC-3,4 45.7
CDC(Shou et al. 2017) 44.4 TPC 49.5

Codes and models will be shared online. We use Stochas-
tic Gradient Descent (SGD) to train TPC network. We first
freeze the layers before conv8 and train conv8 with learn-
ing rate set to 0.0001, then train all the layer with learning
rate set to 0.00001. We set momentum to 0.9 and weight de-
cay to 0.0005. We use C3D (Tran et al. 2015) pre-trained
on Sports-1M (Karpathy et al. 2014) to initialize TPC net-
work from conv1 to conv7. We randomly initialize weights
for conv8.

Frame-level action predictions. During testing, we slide
TPC network on the whole video without overlapping. Then,
we get the action predictions for all the frames of the whole
video. The difference between TPC network frame-level
features and 2D CNN frame-level features is that ours are
calculated taking into account whole video segment infor-
mation, so our features are more robust to noise. Com-
pared to 2D CNN+LSTM framework, our frame-level fea-
tures align more precisely with input since LSTM smooths
temporal information (Yeung et al. 2016).

Segment-level action predictions. In order to further ver-
ify the effectiveness of TPC network, we carry out segment-
level action localization with TPC network’s frame-level ac-
tion predictions. Here we use two different methods.

For a direct and fair comparison, we first follow (Shou
et al. 2017) and apply TPC network on proposal segments
generated by (Shou, Wang, and Chang 2016). We apply the
same strategy that using frame-level predictions to refine
segment proposals as (Shou et al. 2017). We set the cate-
gory of one segment to the maximum average confidence
score over all frames in the video segment. Only the seg-
ments not assigned to background class are kept for further
boundary refinement. We start from boundaries of each side
and move to the middle of the segment, and shrink the tem-
poral boundaries until reach a frame with confidence score
lower than the threshold. For more details about the refine-
ment process and the confidence score threshold selecting
method please refer to (Shou et al. 2017).

In order to make better use of frame-level prediction re-
sults, we design a new frame grouping method that gets ac-
tion segments from untrimmed videos by thresholding on
confidence scores and group adjacent frames. First, we take
threshold processing on classification scores of all frames
in the test video. As a result, we got a string of ”0” and
”1” (0 indicates below the threshold, and 1 inversely). Sec-
ond, we group the adjacent ”1” to get the segment-level out-
puts. Then we use NMS to post-process these segments. For
threshold value selection, we set multiple different threshold
values (uniformly selected from 0 to 1) instead of dataset-
dependent. We denote the frame grouping method as FGM.

Evaluation

We evaluate TPC network on the challenging dataset THU-
MOS’14 (Jiang et al. 2014; Idrees et al. 2017). Temporal
action detection task in THUMOS’14 challenge is dedicated
to localize the action instances in untrimmed video and in-
volves 20 action classes. Training set consists of 2755 well
trimmed videos of these 20 action classes from UCF101
dataset (Soomro, Zamir, and Shah 2012). Validation set con-
sists of 1010 untrimmed videos with temporal annotations in
form of (video name, action segment start time, action seg-
ment ending time, action category). Test set consists of 1574
untrimmed videos. Same as (Shou, Wang, and Chang 2016;
Shou et al. 2017), we only keep the videos that contain ac-
tion instances of interest for testing. We evaluate TPC net-
work on frame-level action localization and segment-level
action localization tasks.

Frame-level action localization

First, we evaluate TPC network in predicting action labels
for every frame in the whole video. This task can take mul-
tiple frames as input to take into account temporal infor-
mation.Following (Yeung et al. 2015), we evaluate frame-
level prediction as a retrieval problem. For each action class,
we rank all the images in the test set by their confidence
scores and compute Average Precision (AP) for this class.
And mean AP (mAP) is computed by average the AP of 20
action classes.

In Table 2, we compare our TPC network with state-
of-the-art methods. All the results are quoted from (Ye-
ung et al. 2015; Shou et al. 2017). Single-frame CNN
stands for frame-level VGG-16 2D CNN model in (Si-
monyan and Zisserman 2015). Two-stream CNN is the
frame-level CNN model proposed in (Simonyan and Zisser-
man 2014) using optical flow and RGB images to perform
action recognition. LSTM represents the basic 2D CNN +
LSTM model proposed in (Donahue et al. 2015). MultiL-
STM stands for an extended LSTM using temporal atten-
tion mechanism proposed in (Yeung et al. 2015). Multi-
LSTM uses THUMOS’14 extended version dataset Multi-
THUMOS with much more annotations (Yeung et al. 2015)
to train their network. Conv & De-conv stands for the base-
line method in (Shou et al. 2017) replacing CDC layers with
de-convolutional layers. CDC stands for the convolutional-
de-convolutional network proposed in (Shou et al. 2017). We
denote our TPC network as TPC. Among these methods,
Single-frame CNN only takes into account appearance in-
formation in a single frame, Two-stream CNN uses appear-
ance information in a single frame and motion information
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from two adjacent frames. LSTM and MultiLSTM can make
use of temporal information to make frame-level predictions
but LSTM based model produces frame-level class proba-
bilities smoothing what is actually harmful, not beneficial to
the task of precise action localization as (Yeung et al. 2016)
claimed. Conv & De-conv, CDC and our TPC are all based
on 3D CNN, can model appearance information and tempo-
ral information simultaneously. However, Conv & De-conv,
CDC network both lose temporal information, which leds to
inferior results. Our TPC network equipped with TPC filters
can perform frame-level predictions with minimal temporal
information loss, achieving promising performance.

In addition, in order to verify the effectiveness of TPC
on temporal information preservation and support our claim
that preserving temporal resolution is important for precise
localization, we compare TPC with TPC’s variants that only
use TPC filters on one or two layers. (1) TPC-2: we only
use TPC in conv2. (2) TPC-3: we only use TPC in conv3.
(3) TPC-4: we only use TPC in conv4. (4) TPC-2,3: we use
TPC in conv2 and conv3. (5) TPC-3,4: we use TPC in conv3
and conv4. Complete TPC network use TPC filters on conv2,
conv3 and conv4 (i.e., TPC-2,3,4). For the five variants, we
apply linear interpolation to upsample predictions to out-
put frame-level predictions for both training and testing. We
train them using the same training data as TPC.

Ablation experiment results suggest that preserving tem-
poral information at early stage helps preserve more details
and brings better result, but not that much. Preserving more
time information with more TPC layers, we get better local-
izaiton results. TPC-2,3,4 brings notable performance im-
provement, suggesting that preserving the temporal resolu-
tion in all layers brings minimal temporal information loss
and better performance.

Temporal action localization

Given frame-level action predictions, we can get segment-
level action localization results using various strategies. For
more direct comparison, we first use the same strategy as
CDC (Shou et al. 2017). First, we generate action segment
proposals using the S-CNN(Shou, Wang, and Chang 2016);
second, each segment is set to an action category; then, non-
background segments’ boundaries are refined with frame-
level action predictions and confidence scores are calculated
by averaging confidence scores of all the frame in refined
segments; finally, we perform post-processing steps such as
non-maximus suppression. We evaluate our model on THU-
MOS’14 dataset.

We perform evaluation using mAP as frame-level action
localization evaluation. For each action class, we rank all the
predicted segments by their confidence results and calculate
the AP using official evaluation code. One prediction is cor-
rect when its temporal overlap intersection-over-union (IoU)
with a ground truth action segment is higher than the thresh-
old, so evaluation under various IoU threshold is necessary.
We evaluate our model under IoU threshold from 0.3 to 0.7.
Results are shown in Table 3, our model denoted as TPC
achieves better results than other methods.

As shown in Table 2 and Table 3, TPC achieves clearly
improvement over other baselines on frame-level task but

the improvement is far less significant on segment-level task.
The reason might be that proposals by S-CNN(Shou, Wang,
and Chang 2016) help CDC(Shou et al. 2017) much more.
Proposals from (Shou, Wang, and Chang 2016) help CDC
or TPC filter video segments which might be background
frames. TPC performs much better than CDC on frame-level
task, which means that TPC also does much better on the
filtered frames. So proposals do not improve TPCs perfor-
mance that much as CDC. To verify this idea, we perform
FGM on both TPC and CDC frame-level classification re-
sults to get segment-level detections. Results are shown in
Table 3, TPCs performance improves significantly after us-
ing the new frame grouping method. The reason for the sig-
nificant improvement is that proposals from (Shou, Wang,
and Chang 2016) have false negatives, and TPC can han-
dle these false negative frames. CDCs(Shou et al. 2017) per-
formance decrease (when IoU = 0.3, 0.4, 0.5) because their
inferior performance outside the proposals. Overall,results
suggest that frame-level results indeed contributes to precise
segment-level localization.

Qualitative experiment results are shown in Fig. 2. This
results suggest that TPC perform better on frame-level clas-
sification, and this better results lead to better segment-level
results. We also can clearly observe that CDC suffered from
checkerboard artifacts brought by the deconvolution oper-
ations (Odena, Dumoulin, and Olah 2016). Our TPC is not
affected by this problem because TPC can preserve temporal
length and does not need to use deconvolution to upsample
in time.

Discussion

TPC network allows us to compute feature responses at the
original video temporal resolution, but it indeed increases
computational overhead. In order to give a fair comparison,
we implemented CDC network (Shou et al. 2017) in our ex-
periment environments. On a NVIDIA Titan X GPU with
12GB memory, our TPC can predict around 250 frames per
second (FPS) while CDC network predicts around 390 FPS.
Although our method is not as fast as CDC network, it is
enough for real-time application. After all, our TPC network
can process 10 seconds video clip of 25 FPS within one sec-
ond.

Conclusion

In this paper, we propose a TPC filter to replace the stan-
dard convolutional filters in 3D ConvNets. Then we use
TPC filters to construct our TPC network. Our TPC network
can make more precise frame-level action predictions since
it preserve all the temporal information. We also evaluate
our model on segment-level action localization task. Exper-
iments on frame-level and segment-level action localization
tasks both suggest that our model achieves superior results
compared with previous works. TPC network can predict
around 250 frames per second which is good news for real-
time applications. In addition, our TPC filter can be adapted
for other applications, such as combined with the spatial
atrous convolutional filter to perform video segmentation.
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Table 3: Segment-level action localization mAP on THUMOS’14. IoU threshold values are ranged from 0.3 to 0.7. ’-’ in the
table indicates that results of that IoU value are not available in the corresponding papers.

IoU threshold 0.3 0.4 0.5 0.6 0.7
Wang et al.(Wang, Qiao, and Tang 2014) 14.6 12.1 8.5 4.7 1.5

Heilbron et al.(Caba Heilbron, Carlos Niebles, and Ghanem 2016) - - 13.5 - -
Escorcia et al.(Escorcia et al. 2016) - - 13.9 -

Oneata et al.(Oneata, Verbeek, and Schmid 2014) 28.8 21.8 15.0 8.5 3.2
Richard and Gall(Richard and Gall 2016) 30.0 23.2 15.2 - -

Yeung et al.(Yeung et al. 2016) 36.0 26.4 17.1 - -
Yuan et al.(Yuan et al. 2016) 33.6 26.1 18.8 - -

S-CNN(Shou, Wang, and Chang 2016) 36.3 28.7 19.0 10.3 5.3
Conv & De-conv(Shou et al. 2017) + S-CNN(Shou, Wang, and Chang 2016) 38.6 28.2 22.4 12.0 7.5

CDC(Shou et al. 2017) + S-CNN(Shou, Wang, and Chang 2016) 40.1 29.4 23.3 13.1 7.9
TPC-2 + S-CNN(Shou, Wang, and Chang 2016) 37.8 28.9 22.6 13.7 7.8
TPC-3 + S-CNN(Shou, Wang, and Chang 2016) 37.6 29.0 22.3 13.3 7.4
TPC-4 + S-CNN(Shou, Wang, and Chang 2016) 37.6 28.7 22.1 12.7 6.9

TPC-2,3 + S-CNN(Shou, Wang, and Chang 2016) 39.8 30.7 24.1 13.9 7.8
TPC-3,4 + S-CNN(Shou, Wang, and Chang 2016) 38.5 29.3 22.9 13.5 7.6

TPC + S-CNN(Shou, Wang, and Chang 2016) 41.9 32.5 25.3 14.7 9.0

CDC(Shou et al. 2017) + FGM 36.1 28.2 20.9 14.9 8.1
TPC + FGM 44.1 37.1 28.2 20.6 12.7

Figure 2: Illustration of the process of temporal boundaries refinement using frame-level predictions. Horizontal axis stands for
time and vertical axis stands for confidence score. From the top to the bottom: (1) frame-level ground truth for a JavelinThrow
instance in an input video; (2) corresponding proposal generated from (Shou, Wang, and Chang 2016); (3) frame-level predic-
tions of CDC (Shou et al. 2017) and refined action instance using CDC; (4) frame-level predictions of TPC and refined action
instance using TPC.
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