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Abstract

Vehicle re-identification (re-ID) is to identify the same vehi-
cle across different cameras. It’s a significant but challenging
topic, which has received little attention due to the complex
intra-class and inter-class variation of vehicle images and the
lack of large-scale vehicle re-ID dataset. Previous methods
focus on pulling images from different vehicles apart but ne-
glect the discrimination between vehicles from different vehi-
cle models, which is actually quite important to obtain a cor-
rect ranking order for vehicle re-ID. In this paper, we learn a
structured feature embedding for vehicle re-ID with a novel
coarse-to-fine ranking loss to pull images of the same vehicle
as close as possible and achieve discrimination between im-
ages from different vehicles as well as vehicles from different
vehicle models. In the learnt feature space, both intra-class
compactness and inter-class distinction are well guaranteed
and the Euclidean distance between features directly reflects
the semantic similarity of vehicle images. Furthermore, we
build so far the largest vehicle re-ID dataset “Vehicle-1M”1

which involves nearly 1 million images captured in various
surveillance scenarios. Experimental results on “Vehicle-1M”
and “VehicleID” demonstrate the superiority of our proposed
approach.

Introduction
Recent years have witnessed an explosive growing re-
quirement of vehicle re-identification (re-ID) from massive
surveillance video in public security field. Similar to pedes-
trian re-ID, vehicle re-ID is to identify the same vehicle
across different cameras. As a unique ID of a vehicle, li-
cense plate has been widely used for vehicle re-ID. However,
license plate recognition is quite sensitive to image qual-
ity, camera view and occlusion. Furthermore, license plate
may be removed, altered even faked in some cases, mak-
ing it unreliable to identify a vehicle simply by its license
plate. Therefore, vehicle re-ID by visual appearance is of
great practical value in real-world applications.

Different from vehicle model verification, which is to tell
whether two vehicles belong to the same vehicle model,
vehicle re-ID is more fine-grained and aims to distinguish

Copyright c© 2018, Association for the Advancement of Artificial
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1Available at http://www.nlpr.ia.ac.cn/iva/homepage/jqwang/
Vehicle1M.htm.

Figure 1: The complex intra-class and inter-class variation
for vehicle re-ID. The column from left to right contains im-
ages of the same vehicle, vehicles of the same vehicle model
and vehicles from different vehicle models respectively.

whether two images contain the identical vehicle. It’s a more
challenging task and there are few previous attempts purely
by visual appearance. The main reasons are two-fold. For
one thing, the intra-class and inter-class variation of vehicle
images are quite complex, as illustrated in Fig 1. Images of
the same vehicle may bear little resemblance to each other,
due to illumination change and viewpoint shift. While differ-
ent vehicles may look quite similar, especially when they be-
long to the same vehicle model. In this case, we can only dif-
ferentiate two vehicles based on the special marks, such as
the inspection marks and decorations as shown in the circles
in Fig 1. Additionally, even when two vehicles are from dif-
ferent vehicle models, it can still be hard to distinguish them
since the difference between some vehicle models, such as
“BMW-3-2005” and “BMW-3-2009”, is very subtle. For an-
other, there is a lack of large-scale dataset for vehicle re-ID.
Most existing vehicle datasets, such as CARS196 (Krause et
al. 2013), CARS333 (Xie et al. 2015) and CompCars (Yang
et al. 2015), are designed for vehicle model categorization
and unfit for vehicle re-ID due to the lack of vehicle ID la-
bel. There are only a handful of vehicle re-ID datasets by
now, including VeRi (Liu et al. 2016b), VeRi-776 (Liu et al.
2016c) and VehicleID (Liu et al. 2016a), which are relatively
small and cover limited surveillance scenarios.

Recently, Convolutional Neural Network (CNN) has
achieved state-of-the-art performance in various vision

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6853



Figure 2: Illustration of the structured deep feature embed-
ding for vehicle re-ID. In the input image space, it’s hard
to distinguish different vehicles “V1”,“V2”and “V3”. Even
different vehicle models “A” and “B” are confusing. With the
structured feature embedding, images from the same vehi-
cle are clustered compactly and the discrimination between
different vehicles as well as different vehicle models is en-
hanced.

recognition tasks, such as large-scale image classification
(Hu, Shen, and Sun 2017), face recognition (Liu et al. 2017)
and person re-ID (Zhao et al. 2017) etc. With the supervi-
sion of a carefully designed objective loss, typically con-
trastive loss (Hadsell, Chopra, and LeCun 2006) or triplet
loss (Weinberger and Saul 2009), CNN can learn efficient
deep feature embedding to effectively reduce the intra-class
variation and enlarge the inter-class variation of input im-
ages. The contrastive loss aims to pull matched image pairs
closer and require the distance between mismatched ones
to be larger than a margin. It can ensure intra-class com-
pactness but the inter-class discrimination is weak. While
the triplet loss tries to enforce a distance margin between
matched and mismatched image pairs. It can effectively en-
hance the inter-class discrimination and has gained more
popularity than contrastive loss. Lately Liu et al. (2016a)
adopted an improved version of triplet loss, coupled clusters
loss, to learn effective deep features for vehicle re-ID and
achieved the best performance so far. Nevertheless, the intra-
class compactness is not strong enough to address the large
variation between images of the identical vehicle. Besides,
they ignored the discrimination between vehicles from dif-
ferent vehicle models, which is actually quite important to
obtain a correct ranking order for vehicle re-ID task since
images from different vehicle models definitely do not be-
long to the same vehicle.

In this paper, we propose a novel coarse-to-fine ranking
loss to learn a structured deep feature embedding for vehicle
re-ID. As shown in Fig 2, the feature embedding can pull
images of the identical vehicle together compactly and well
discriminate images from different vehicles as well as vehi-
cles from different vehicle models. Thus the Euclidean dis-
tance between features in the embedding space can directly
reflect the semantic similarity of vehicle images. The coarse-
to-fine ranking loss consists of a vehicle model classification
loss term, a coarse-grained ranking loss term, a fine-grained
ranking loss term and a pairwise loss term, which enables

CNN to learn the feature embedding in a coarse-to-fine man-
ner. Firstly, the vehicle model classification loss can cluster
vehicles of the same vehicle model together and obtain sep-
arability between different vehicle models. The learnt deep
feature can well capture the discriminative vehicle model in-
formation but the unique vehicle details are eliminated. Be-
sides, the discrimination between different vehicle models
is not strong enough. Then we add a coarse-grained ranking
loss, which aims to enforce the distance between vehicles of
the same vehicle model to be smaller than the distance be-
tween those from different vehicle models. It can preserve
moderate difference between vehicles of the same vehicle
model and enhance the distinction between different vehi-
cle models in the meantime. Next, to reduce the large vari-
ation existing in images of the same vehicle and high sim-
ilarity between vehicles within the same vehicle model, we
construct a fine-grained ranking loss which tries to separate
images of the same vehicle from those of different ones by
a distance margin. Finally, to further restrain the variation
between images of the same vehicle, we present a pairwise
loss to pull images of the same vehicle as close as possible
to each other, even mapped to the same point in the feature
space ideally.

In addition, considering the deficiencies of the existing
vehicle datasets and the urgent need of large-scale dataset for
training deep neural network, we build a large-scale dataset
“Vehicle-1M”. It’s so far the largest vehicle re-ID dataset
and covers various real-world surveillance scenarios. Specif-
ically, “Vehicle-1M” includes nearly 1 million images of
55,527 vehicles captured across day and night, from head
or rear, by multiple surveillance cameras installed in several
cities. Besides, apart from vehicle ID label, each vehicle is
attached with one of 400 refined vehicle models, indicating
the make, model and year of the vehicle. The difference be-
tween vehicle models can be quite small, just like the real-
world vehicle re-ID situation. Thus “Vehicle-1M” is suitable
for vehicle model categorization, vehicle model verification
and vehicle re-ID.

Related Work
Here we briefly review literatures in three categories: vehi-
cle re-ID methods, vehicle re-ID datasets and deep feature
embedding methods.

Vehicle Re-ID Methods Though vehicle re-ID has been
discussed for many years, most previous works rely on vari-
ous non-vision based sensors (Kwong et al. 2009; Lin and
Tong 2011). Recently, several vision-based vehicle re-ID
methods have been proposed. Zapletal et al. (2016) solved
the vehicle re-ID task by a linear regressor with color his-
tograms and histograms of oriented gradients. However,
both the hand-crafted features and the linear model they
used are not discriminative enough to address the complex
inter-class and intra-class variation of vehicle images. Liu
et al. (2016b) evaluated hand-crafted features like SIFT and
Color Name as well as deep features extracted from CNN
models for vehicle re-ID. Experiment results demonstrated
that deep features are more discriminative than hand-crafted
features. But the CNN model they used for feature extrac-
tion was trained for vehicle model classification. The learnt
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deep feature could separate vehicles from different vehicle
models but the distinction between different vehicles within
the same vehicle model was nearly eliminated, thus it was
unfit for vehicle re-ID task. Later on, they proposed a pro-
gressive vehicle re-ID method “PROVID”, which adopted a
two-stage search process: coarse-to-fine search in the feature
space and near-to-distant search in the real-world surveil-
lance environment. But “PROVID” required extra license
plate and spatiotemporal label, which limited its application
considerably. Lately, Liu et al. (2016a) presented a deep rel-
ative distance learning method (DRDL) for vehicle re-ID.
They exploited a two-branch CNN supervised by a coupled
clusters loss, which tried to separate images from different
vehicles from those of the identical vehicle by a distance
margin, to learn an Euclidean space where distance can be
directly used to measure the similarity of vehicle images.
Our approach shares the same spirit with it, but we posed
stronger constraints on the compactness between images of
the same vehicle and enforce discrimination not only be-
tween images from different vehicles but also between ve-
hicles from different vehicle models.

Vehicle Re-ID Datasets Zapletal et al. (2016) built the
first vehicle re-ID dataset, including 1232 vehicle image
pairs. But they were annotated ambiguously, with only peo-
ple’s opinion about whether two images likely to be the same
vehicle. The lack of explicit vehicle ID label for each vehi-
cle image made it actually not suitable for vehicle re-ID.
Then Liu et al. (2016b) proposed “VeRi”, which contains
over 40,000 images of 619 vehicles and 10 vehicle types.
Although “VeRi” involves various viewpoint shift, the illu-
mination change and surveillance scenes are limited. Addi-
tionally, it only roughly divides all the vehicles into 10 ve-
hicle types, such as sedan, SUV and truck. Later on, they
extended “VeRi” to “VeRi-776” by collecting more vehi-
cle images and adding license plate and spatiotemporal la-
bel (Liu et al. 2016c). As “VeRi-776” is mainly an exten-
sion of “VeRi”, it has the same limitation. Recently, Liu et
al. (2016a) released a larger dataset “VehicleID”, including
221,763 images of 26,267 vehicles and 250 vehicle models.
But only 90,196 images are attached with vehicle model la-
bel and the vehicle models are not refined enough. Besides,
the illumination change is limited. In this paper, we propose
so far the largest vehicle re-ID dataset “Vehicle-1M”, which
is much larger than the existing datasets in the number of im-
age, vehicle and vehicle model. It involves more challenging
real-world surveillance scenarios and contains 400 refined
vehicle models. The difference between vehicle models can
be quite small, just like real-world vehicle re-ID situation.
Thus, it’s more suitable for evaluating the performance of
vehicle re-ID methods.

Deep Feature Embedding Methods Recently, re-
searchers have designed a series of objective losses for deep
feature embedding and achieved great performance in face
recognition (Sun et al. 2014; Schroff, Kalenichenko, and
Philbin 2015; Wen et al. 2016; Liu et al. 2017), object re-
trieval (Guo et al. 2016; Oh Song et al. 2016), person re-
ID (Zhou et al. 2017; Chen et al. 2017) and other vision
recognition tasks. Sun et al. (2014) jointly utilized classi-
fication loss and contrastive loss to learn deep features for

face recognition. Classification loss enables CNN to learn
separable deep features. But for many vision recognition
tasks, the deep features need to be not only separable but
also discriminative enough to generalize to other unseen
classes. The contrastive loss they used is first proposed in
(Hadsell, Chopra, and LeCun 2006) and can ensure intra-
class compactness but the inter-class discrimination is still
weak. Later schroff et al. (2015) adopted triplet loss to
learn effective deep face representation. Since triplet loss
can effectively enlarge the inter-class variation and reduce
the intra-class variation in the meantime, many subsequent
works focus on improving triplet loss (Liu et al. 2016a;
Oh Song et al. 2016), generalizing triplet loss (Chen et al.
2017) or combing triplet loss with contrastive loss (Zhou
et al. 2017) to learn effective deep features for their target
tasks. Among them, the most similar to our work is (Chen
et al. 2017), which proposed a quadruplet loss consisting of
two triplet loss terms and tried to obtain correct ranking or-
der for pairs w.r.t different probe images. The balance of two
loss terms is controlled implicitly by two margins. However,
the coarse-to-fine ranking loss we present aims to enforce
a correct ranking order w.r.t the same probe image, and the
coarse-grained and fine-grained ranking loss are balanced
explicitly by weighted values. Furthermore, our loss con-
tains a pairwise loss term which can achieve stronger intra-
class compactness.

Structured Deep Feature Embedding
In this paper, we aim to exploit the discriminative CNN
to learn a structured deep feature embedding f(x;W )
for vehicle re-ID. It can map the vehicle image x
into an Euclidean space where the distance D(i, j) =

‖f(xi;W )− f(xj ;W )‖22 directly reflects the semantic sim-
ilarity of image pair (xi, xj). W denotes the weight param-
eter used to extract the deep features for vehicle images. Be-
low we propose a coarse-to-fine ranking loss to learn this
structured feature embedding in a coarse-to-fine manner.

Coarse-to-fine Ranking Loss Formulation
Let {(xi, vi,mi)}Ni=1 be the set of training samples in a
mini-batch, where N denotes the total number of training
samples, vi and mi is the vehicle ID and vehicle model
label of i−th training sample respectively. There are to-
tally V vehicles and M vehicle models, thus vi = 1, ..., V
and mi = 1, ...,M . For a vehicle image pair (xi, xj), if
vi = vj , there will be mi = mj ; if mi �= mj , there will
be vi �= vj . Thus we split all the image pairs in the train-
ing set into three sets: P , Nv and Nm. P = {(xi, xj) |
vi = vj} contains the image pair of the identical vehicle,
Nv = {(xi, xj) | vi �= vj ,mi = mj} consists of the im-
age pair from different vehicles but sharing the same vehicle
model, Nm = {(xi, xj) | mi �= mj} includes the image
pair from different vehicle models. Our coarse-to-fine rank-
ing loss consists of four loss terms and can be formulated
as:

L = C + αRc + βRf + γP, (1)

C is the vehicle model classification loss term used to first
roughly separate vehicles from different vehicle models. Rc

6855



is the coarse-grained ranking loss term added to enhance the
discrimination between vehicles from different vehicle mod-
els and enforce moderate distinction between vehicles from
the same vehicle model. Rf is the fine-grained ranking loss
term utilized to enhance the discrimination between images
from different vehicles within the same vehicle model. P is
the pairwise loss term adopted to further strengthen the intra-
class compactness between images of the identical vehicle.
α, β, γ are the weighted values used to balance the four loss
terms. Additionally, we constrain all the deep features to live
on a d−dimensional hypersphere, i.e. ‖f(x)‖2 = 1.

Classification loss term Here we implement vehicle
model classification loss with cross-entropy loss:

C =
1

N

N∑

i=1

−logpmi , (2)

where mi corresponds to the target class of the input image
xi and pmi

is the predicted probability of image xi belong-
ing to class mi. The vehicle model classification loss can
well separate vehicles from different vehicle models but the
learnt deep features are not discriminative enough to gen-
erate to unseen classes. Besides, it clusters vehicles of the
same vehicle model so tightly that the distinction between
different vehicles is nearly eliminated, which is unfavorable
for vehicle re-ID.

Coarse-grained ranking loss term To enhance the dis-
crimination between vehicles from different vehicle mod-
els and preserve some variation between vehicles within the
same vehicle model, we add the coarse-grained ranking loss:

Rc =
1

Zc

N∑

i=1

∑

(i,j)∈Nv

∑

(i,k)∈Nm

[D(i, j)−D(i, k) +Mc]+,

(3)
where Zc is the normalization factor and [z]+ is the hinge
loss max{z, 0}. This loss tries to enforce a distance margin
Mc between the image pair from the same vehicle model,
i.e. (xi, xj), and the one from different vehicle models, i.e.
(xi, xk). To pull vehicles from different models apart as
far as possible, for each image xi, we adaptively select the
marginal samples xk, which are the nearest images from
the different vehicle model within the mini-batch. We set
K1 > 1 to alleviate the difficulty of CNN convergence.

Fine-grained ranking loss term To further achieve dis-
crimination between images from different vehicles within
the same vehicle model, we construct a fine-grained ranking
loss term:

Rf =
1

Zf

N∑

i=1

∑

(i,l)∈P

∑

(i,j)∈Nv

[D(i, l)−D(i, j) +Mf ]+,

(4)
where Zf is the normalization factor and Mf is the distance
margin used to separate the image pair of the same vehicle,
i.e. (xi, xl), from the one of different vehicles, i.e. (xi, xj).
Similarly, we select K2 marginal samples xj , which are the
nearest images from different vehicle in the mini-batch.

Pairwise loss term To pull images of the same vehicle as
close as possible, we add a pairwise loss term to enhance the

intra-class compactness. The pair loss is formulated as:

P =
1

Zp

N∑

i=1

∑

(i,l)∈P
D(i, l), (5)

where Zp is the normalization factor. This loss can map im-
ages of the same vehicle to near points in the feature space,
even the same point ideally. Combining the four loss terms,
coarse-to-fine ranking loss can achieve high intra-class com-
pactness and discrimination between images from different
vehicles as well as vehicles from different vehicle models.

Optimization
We employ the mini-batch based stochastic gradient descent
algorithm to optimize the parameter W of CNN. The out-
put loss L for each mini-batch is averaged over Li for each
image xi. And Li is formulated as:

Li =Ci + α
∑

(i,j)∈Nv

∑

(i,k)∈Nm

[D(i, j)−D(i, k) +Mc]+

+ β
∑

(i,l)∈P

∑

(i,j)∈Nv

[D(i, l)−D(i, j) +Mf ]+

+ γ
∑

(i,l)∈P
D(i, l),

(6)

where Ci denotes the classification loss for image xi and all
the normalization factors are ignored for simplicity. During
back-propagation phase, the partial derivative of loss Li with
respect to the deep feature f(x) for each image is given as:

∂Li

∂f(xi)
=

∂Ci

∂f(xi)
+ 2α

∑

(i,j)∈Nv

∑

(i,k)∈Nm

(f(xk)− f(xj))

μ(Jijk) + 2β
∑

(i,l)∈P

∑

(i,j)∈Nv

(f(xj)− f(xl))

μ(Jijl) + 2γ
∑

(i,l)∈P
f(xi).

(7)

∂Li

∂f(xj)
=− 2α

∑

(i,j)∈Nv

∑

(i,k)∈Nm

f(xj)μ(Jijk)

+ 2β
∑

(i,l)∈P

∑

(i,j)∈Nv

f(xj)μ(Jijl).
(8)

∂Li

∂f(xk)
= 2α

∑

(i,j)∈Nv

∑

(i,k)∈Nm

f(xk)μ(Jijk). (9)

∂Li

∂f(xl)
=− 2β

∑

(i,l)∈P

∑

(i,j)∈Nv

f(xl)μ(Jijl)

− 2γ
∑

(i,l)∈P
f(xl).

(10)

where μ(z) is the indicator function which outputs 1 if z > 0
and outputs 0 otherwise. Jijk = D(i, j)−D(i, k)+Mc and
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Jijl = D(i, l)−D(i, j)+Mf . Then the gradient of loss Li

with respect to the weight parameter W is:

∂Li

∂W
=

∑

q∈{i,j,k,l}

∂Li

∂f(xq)

∂f(xq)

∂W
, (11)

Vehicle-1M Dataset
Since only a few vehicle re-ID datasets have been proposed
by now and the existing ones either cover limited surveil-
lance scenarios or are not large enough for training deep neu-
ral network, we carefully build so far the largest vehicle re-
ID dataset “Vehicle-1M”. Table 1 compares “Vehicle-1M”
with other vehicle re-ID datasets in the number of image,
vehicle and vehicle model. We collect surveillance video
captured during the day and night by multiple real-world
surveillance cameras installed in several cities. Then we ob-
tain the compact vehicle images utilizing the vehicle detec-
tion algorithm in (Zhu et al. 2016). There are totally 936,051
images of 55,527 vehicles captured from head or rear, across
day and night, in multiple surveillance scenes. Apart from
vehicle ID label, each image is also annotated with one of
400 refined vehicle models, describing the make, model and
year of the vehicle, such as “Benz-S-2011”. The difference
between vehicle models can be quite small, just like the real-
world vehicle re-ID situation, thus this dataset is very suit-
able for vehicle model categorization, vehicle model verifi-
cation and vehicle re-ID.

Following the practice in (Liu et al. 2016a), we divide
“Vehicle-1M” into the train set, including 844,571 images
from 50,000 vehicles, and the test set, which contains the re-
maining 91,480 images from 5,527 vehicles. Furthermore,
inspired by (Liu et al. 2016a), which evaluated methods
on small (800 vehicles), medium (1600 vehicles) and large
(2400 vehicles) test set separately to test the scalability, we
also extract a small, medium and large test set from the orig-
inal test set, denoted as “Small”, “Medium” and “Large” re-
spectively. Specifically, the small test set contains 1,000 ve-
hicles of 16,123 images, the medium covers 2,000 vehicles
of 32,539 images and the large one includes 3,000 vehicles
of 49,259 images.

Dataset Image Vehicle Model
VeRi 40,000 619 10
VeRi-776 49,360 776 10
VehicleID 221,763 26,267 250
Vehicle-1M 936,051 55,527 400

Table 1: Comparison of different vehicle re-ID datasets.

Experiments
Here we first describe our experiment setup briefly.

Datasets We evaluate our approach on “Vehicle-1M” and
“VehicleID”, the top two largest vehicle re-ID datasets by
now. Each of them has at least two images captured from
different cameras for a vehicle.

Evaluation Protocol To conduct vehicle re-ID experi-
ment, we split the test set into probe set and gallery set.

The results both on “Vehicle-1M” and “VehicleID” are mea-
sured by Cumulative Matching Characteristic (CMC) curve
and Mean Average Precision (MAP). CMC is an estimation
of finding the correct match in the top K returned results.
To calculate this criteria on “Vehicle-1M”, we randomly se-
lect one image of each vehicle and put it into the gallery set.
Other images are all probe queries. MAP is a comprehensive
index which considers both the precision and recall of the re-
sults. To compute MAP on “Vehicle-1M”, we adopt an op-
posite way. We randomly select one image for each vehicle
and put it into the probe set. The remaining forms the gallery
set. Final CMC and MAP is averaged over ten repeats of the
random splitting process. As for CMC and MAP calculation
on “VehicleID”, we refer to (Liu et al. 2016a).

Parameter Setting The proposed deep feature embed-
ding learning framework is compatible with any CNN archi-
tecture, such as inception-like model (Szegedy et al. 2016)
and ResNet (He et al. 2016). But for fair comparison, here
we adopt GoogleNet and initialize it with the model pre-
trained on CompCars for vehicle model classification. In test
phase, all the deep features are extracted from the “pool5”
layer of GoogLeNet. For all the experiments, we fix Mc =
Mf = 0.2 following the practice of (Guo et al. 2016) and
set K1 = 10,K2 = 3 when the mini-batch size is 150. As
for α, β and γ, they are firstly used to balance the scale of the
four loss terms. From the output loss value on the validation
set we found the classification loss value was about 1000
times larger than the fine-grained ranking loss, 100 times
larger than the coarse-grained ranking loss and 10 times
larger than the pair loss at the beginning of training. The
reason are two folds. On the one hand, the feature is firstly
normalized before calculating the latter three loss terms for
training stability. On the other hand, for the initial feature
embedding, the intra-class difference is relatively large and
the discrimination between vehicle models is greater than
that between vehicles. Thus, to balance the loss value scale,
we set α to 100, β to 1000 and γ to 10. Since the fine-grained
ranking loss directly pulls images of the same vehicle closer
and pushes images from different vehicles far away, which
is quite compatible with vehicle re-ID task, we deduce it
plays a dominant role for vehicle re-ID. Then we fix β and
vary the value of α and γ to adjust the importance of corre-
sponding loss. However, variation from 50 to 500 for α and
from 5 to 50 for γ only brings slight performance change
on both datasets. And when we set α to 100 and γ to 10, we
achieved the best re-ID performance. So we adopt this group
of parameter value for the following experiments.

Comparison Methods Considering deep features
demonstrate to be more discriminative than traditional
hand-crafted features for vehicle re-ID (Liu et al. 2016b),
we mainly compare our approach to the deep learning based
methods. One is the method proposed in (Liu et al. 2016b),
which directly extracted deep features from the GoogleNet
pre-trained on CompCars. We denote it as “GoogleNet”
and adopt it as our baseline method. The other is “DRDL”
(Liu et al. 2016a) which utilized a two-branch CNN and
a coupled clusters loss to learn deep features for vehicle
re-ID and achieved the best performance on “VehicleID”.
Furthermore, we design a series of methods to verify the
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effectiveness of each loss term in the coarse-to-fine ranking
loss. Since the fine-grained ranking loss plays a dominant
role for vehicle re-ID, we use it as the base loss term,
denoted as “FGR”, and add other loss terms gradually.
“C+FGR” represents jointly adopting the coarse-grained
and fine-grained ranking loss to train the CNN. Then we
add the pair loss term to “C+FGR” and obtain “C+FGR+P”.
“C2F-Rank” is the final coarse-to-fine ranking loss we
proposed.

Experimental Results on VehicleID
Table 2 illustrates the top 1 and top 5 match rate of our
proposed and other comparison methods for vehicle re-ID
on “VehicleID”. “GoogLeNet” achieved relatively low per-
formance, showing that deep features extracted from CNN
model trained for vehicle model classification are unfit for
vehicle re-ID task. Because the distinction between dif-
ferent vehicles within the same vehicle model is reduced
greatly. “DRDL” jointly used coupled clusters loss and ve-
hicle model classification loss for CNN training. Since only
half of the images in “VehicleID” have vehicle model label,
our methods, including “FGR”, “C+FGR”, “C+FGR+P” and
“C2F-Rank”, just used the training images that have both
the vehicle ID and vehicle model label for CNN train-
ing. While “DRDL” utilized all the training images. Nev-
ertheless, our method, just with the base loss “FGR”, can
outperform “DRDL” on nearly all the evaluation indexes.
In addition, “FGR” is more compatible with the vehicle
re-ID task than vehicle model classification loss thus sig-
nificantly improves the re-ID performance compared with
“GoogLeNet”. “C+FGR” improves the performance by a
large margin, namely, 7.6% on average. The great perfor-
mance increase demonstrates that the discrimination be-
tween vehicles from different vehicle models indeed plays
an important role for vehicle re-ID. With the join of the
pairwise loss term, “C+FGR+P” further promotes the per-
formance by around 1%, verifying the effectiveness of en-
hancement on intra-class compactness for vehicle re-ID.
With the vehicle model classification loss further enlarg-
ing the variation between different vehicle models, “C2F-
Rank” makes further improvements on vehicle re-ID perfor-
mance and outperforms the state-of-the-art method “DRDL”
by 12.7%. What’s more, experiments show that the conver-
gence speed using the pairwise or ranking based constraints
is relatively slow and the join of classification loss can ef-
fectively alleviate this situation.

Figure 3 shows the detailed match rate results from top 1
to top 50 on the small test set of “VehicleID”. We can see
that our methods consistently beat “GoogLeNet” by a large
margin. Additionally, the join of each loss term also shows
a consistent performance improvement, verifying the effec-
tiveness of each loss term again. Table 3 demonstrates the
MAP results of all the methods on “VehicleID”. The infe-
rior performance of “FGR” compared with “DRDL” is be-
cause that the former uses fewer training images. “C+FGR”
outperforms “FGR” by about 8%, proving again that the
coarse-grained ranking loss plays an important role for ve-
hicle re-ID.“C+FGR+P” further increases the performance
with 1% around, verifying the effectiveness of the pairwise

Match Rate Small Medium Large
GoogLeNet

top 1

0.464 0.425 0.381
DRDL 0.49 0.428 0.382
FGR 0.502 0.454 0.408

C+FGR 0.589 0.536 0.489
C+FGR+P 0.598 0.540 0.499
C2F-Rank 0.611 0.562 0.514

GoogLeNet

top 5

0.622 0.589 0.554
DRDL 0.735 0.668 0.616
FGR 0.724 0.676 0.630

C+FGR 0.793 0.748 0.699
C+FGR+P 0.811 0.748 0.709
C2F-Rank 0.817 0.762 0.722

Table 2: Match rate of vehicle re-ID task on “VehicleID”.

Approach Small Medium Large
GoogLeNet 0.462 0.440 0.381
DRDL 0.546 0.481 0.455
FGR 0.531 0.486 0.424
C+FGR 0.609 0.570 0.502
C+FGR+P 0.625 0.577 0.512
C2F-Rank 0.635 0.600 0.530

Table 3: MAP of vehicle re-ID task on “VehicleID”.

loss. “C2F-Rank” promotes the performance by 3%, demon-
strating the effectiveness of the vehicle model classifica-
tion loss for vehicle re-ID. At last, “C2F-Rank” outperforms
“DRDL” by 9.3%, showing the advantage of our proposed
method for vehicle re-ID task again.

Experimental Results on Vehicle-1M
Table 4 and 5 shows the match rate and MAP results on
“Vehicle-1M” respectively. Similar to the results on “Vehi-
cleID”, “GoogLeNet” used by (Liu et al. 2016b) performs
relatively low and our methods beat this baseline method
by a large margin. Specifically, the fine-grained ranking loss
term “FGR” alone outperforms “GoogLeNet” by about 8%
and 5%, on match rate and MAP respectively, and the join
of each loss term promotes this performance gain consis-
tently. “C+FGR” increases the performance of “FGR” by
1.9% and 2.7%, which is bigger than the promotion brought
by the join of other loss terms. Additionally, the pairwise
loss makes a further performance improvement of around
0.5% and 1.4%, showing its effectiveness. Finally, the join of
vehicle model classification loss brings a performance gain
of 0.4% and 0.8% or so, verifying again that separating dif-
ferent vehicle models benefits the vehicle re-ID task. The
detailed match rate results from top 1 to top 50 on the small
test set of “Vehicle-1M” is illustrated in Figure 3. It can be
seen that our methods demonstrate a great advantage over
“GoogLeNet” consistently.

In summary, the join of each loss consistently improves
the re-ID performance, verifying the effectiveness of them.
“C2F-Rank” outperforms the state-of-the-art methods by
a large margin, showing the superiority of our coarse-to-
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Figure 3: CMC on the “Small” test set of “VehicleID”

Match Rate Small Medium Large
GoogLeNet

top 1

0.545 0.508 0.409
FGR 0.634 0.593 0.500

C+FGR 0.659 0.613 0.519
C+FGR+P 0.667 0.616 0.525
C2F-Rank 0.671 0.620 0.528

GoogLeNet

top 5

0.609 0.586 0.505
FGR 0.683 0.649 0.574

C+FGR 0.691 0.665 0.591
C+FGR+P 0.701 0.667 0.596
C2F-Rank 0.703 0.671 0.601

Table 4: Match rate of vehicle re-ID task on “Vehicle-1M”.

Approach Small Medium Large
GoogLeNet 0.682 0.600 0.547
FGR 0.825 0.752 0.692
C+FGR 0.852 0.776 0.724
C+FGR+P 0.866 0.790 0.737
C2F-Rank 0.871 0.798 0.747

Table 5: MAP of vehicle re-ID task on “Vehicle-1M”.

fine ranking loss. Furthermore, we can find that the coarse-
grained ranking loss makes the most significant performance
gain, demonstrating the discrimination between different ve-
hicle models indeed plays a critical role for vehicle re-ID.

Conclusion
In this paper, we propose a novel coarse-to-fine ranking loss
to learn a structured deep feature embedding for vehicle re-
ID task. The coarse-to-fine ranking loss consists of a vehi-
cle model classification loss term, a coarse-grained ranking
loss term, a fine-grained ranking loss term and a pairwise
loss term. It aims to pull images of the identical vehicle as
close as possible and gain discrimination between images
from different vehicles as well as vehicles from different
vehicle models in a coarse-to-fine manner. With the super-
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Figure 4: CMC on the “Small” test set of “Vehicle-1M”

vision of it, CNN can learn a deep feature embedding space
where the Euclidean distance between feature points directly
reflects the semantic similarity of vehicle images. Besides,
we present so far the largest vehicle re-ID dataset “Vehicle-
1M”, which contains nearly 1 million images from 55,527
vehicles and 400 vehicle models. Our approach achieves the
state-of-the-art performance both on “Vehicle-1M” and “Ve-
hicleID”, showing its advantage for vehicle re-ID task.
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