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Abstract

Lateral inhibition in top-down feedback is widely existing in
visual neurobiology, but such an important mechanism has
not be well explored yet in computer vision. In our recent
research, we find that modeling lateral inhibition in convo-
lutional neural network (LICNN) is very useful for visual
attention and saliency detection. In this paper, we propose
to formulate lateral inhibition inspired by the related stud-
ies from neurobiology, and embed it into the top-down gra-
dient computation of a general CNN for classification, i.e.
only category-level information is used. After this operation
(only conducted once), the network has the ability to generate
accurate category-specific attention maps. Further, we apply
LICNN for weakly-supervised salient object detection. Ex-
tensive experimental studies on a set of databases, e.g., EC-
SSD, HKU-IS, PASCAL-S and DUT-OMRON, demonstrate
the great advantage of LICNN which achieves the state-of-
the-art performance. It is especially impressive that LICNN
with only category-level supervised information even outper-
forms some recent methods with segmentation-level super-
vised learning.

Introduction

Visual attention is an important mechanism of visual in-
formation processing in human brain. It has been exten-
sively studied in neurobiology and preliminarily borrowed
in computer vision, including the top-down models for gen-
erating category-specific attention maps (Zhang et al. 2016;
Cao et al. 2015; Zhou et al. 2015; Simonyan, Vedaldi, and
Zisserman 2013) and bottom-up models for salient object
detection (Li and Yu 2016; Zhao et al. 2015; Wang et al.
2015b). In most of existing methods, however, the attention
maps usually suffer from heavy noise or fail to well preserve
a whole object. More importantly, the state-of-the-art mod-
els usually require strong supervision information for train-
ing, e.g., manually labeled segmentation masks of salient
objects, which is pretty time- and labor-consuming. How-
ever, human performance of visual attention is robust. In
neurobiology, classic theories like object binding (Wyatte,
Herd, and Mingus 2012) and selective attention (Desimone
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Figure 1: LICNN for visual attention. (a) Input images.
Here, three very challenging “dalmatian-on-snow” images
are particularly shown. (b) Modeling lateral inhibition in
each hidden layer of CNN. (c) Category-specific maps gen-
erated by LICNN. Best viewed in color.

and Duncan 1995), show that top-down feedback conveys
attentional signals to the sensory area of visual cortex and
supplies the criteria to select neurons that most relevant to a
specific task (Desimone and Duncan 1995), and lateral inhi-
bition (Nielsen 2001) can further modulate the feedback sig-
nals by creating competition among neurons, which leads to
enhanced visual contrast and better perception of interested
objects (Wyatte, Herd, and Mingus 2012). This attention
mechanism is inspiring to model both stimulus-driven and
goal-oriented visual attention, and it is noted that no strong
supervised information, e.g., object segmentation mask, is
needed.

Motivated by the aforementioned findings, we propose a
method to formulate lateral inhibition in convolutional neu-
ral network (LICNN). As we all know that, various pat-
terns can be expressed in a CNN classifier. Given an in-
put, they compete with each other during the feed-forward
phase and eventually contribute to one or more classes, lead-
ing to the distinct scores over different categories. And the
category-specific gradients can roughly estimate the impor-
tance of each pattern (Simonyan, Vedaldi, and Zisserman
2013). Thus, we employ the category-specific gradients as
the feedback signals for attention in LICNN. And to bind
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Figure 2: Category-specific attention (top row) and salient object detection (bottom row) based on LICNN.

target-relevant patterns together and capture interested ob-
jets, a new lateral inhibition model is developed and em-
bedded into the top-down gradient feedback process. The
main principal is illustrated in Fig. 1. A pre-trained CNN
is employed to process the input image with normal feed-
forward. Then the lateral inhibition is introduced among the
hidden neurons in the same layer during category-specific
feedback (back-propagation for the class of dalmatian). As
shown in Fig. 1(b), the status of a neuron is determined by
the top-down signals of its own and neighbors via a new lat-
eral inhibition model. Afterwards, we can obtain a gradient-
based map for each input image, as depicted in Fig. 1(c). We
show more selective attention results in Fig. 2 (upper part),
in which different kinds of objects are highlighted in color.
As can be seen, the energy of attention is mainly around
interesting objects and the shapes of objects are well pre-
served. With LICNN, discriminative category-specific atten-
tion maps can be derived with much less noise.

Moreover, LICNN can also detect salient objects from
complicated images with only weak supervision cues. Since
semantic patterns from the salient objects in a given image
contribute to the decision making of classification, a saliency
map can be produced with LICNN by choosing categories
with the highest scores in the top level as the category-
specific feedback signals. As shown in Fig. 2 (lower part),
the five class nodes with the five highest outputs of a CNN
classifier are regarded as a bottom-up salient pattern de-
tector. The lateral inhibition is applied over hidden neu-
rons in category-specific feedback for these five class re-
spectively. As a result, we can obtain five attention maps,
as demonstrated in Fig. 2(c). We produce the saliency map
for each input image by integrating these five attention maps
together, as depicted in Fig. 2(d). More results of challeng-
ing images are shown in Fig. 2(e).

It is interesting that LICNN can effectively locate salient
objects even when the input image does not contain prede-
fined objects in the CNN classifier. This is because a power-
ful CNN for classification has learned many visual local pat-
terns shared by different objects, and lateral inhibition would
make interesting objects more obvious. Although these ob-
jects do not belong to any training category, their parts are
shared by other categories of objects.

We conduct extensive experiments on the PASCAL VOC
dataset (Everingham et al. 2010) to evaluate category-
specific attention. The results demonstrate that LICNN
achieves much better results than the state-of-the-art ap-
proaches. We further apply LICNN for salient object de-
tection on several benchmark datasets, including ECSSD,
HKU-IS, PASCAL-S, and DUT-OMRON. It is noteworthy
that LICNN with only category-level labeling can achieve
comparable results to recent strongly supervised approaches
with segmentation labeling.

In summary, the main contributions of this paper are two-
fold: 1) To the best of our knowledge, this work for the first
time implements lateral inhibition with an effective compu-
tational model to produce accurate attention maps, which is
pretty useful for visual attention. 2) Based on LICNN, we
develop an effective weakly supervised approach for salient
object detection, largely enhancing the state-of-the-art and
even achieving comparable performance to strongly super-
vised methods.

Related Work

Lateral Inhibition

The concept of lateral inhibition means a type of process
in which active neurons suppress the activity of neighbor-
ing neurons through inhibitory connections. It has already
been applied in several neural models. The analysis of the re-
current neural network with lateral inhibition was presented
by Mao and Massaquoi (Mao and Massaquoi 2007). They
showed that lateral suppression by neighboring neurons in
the same layer makes the network more stable and efficient.
Fernandes et al. (Fernandes, Cavalcanti, and Ren 2013) pro-
posed a pyramidal neural network with lateral inhibition
for image classification. Lateral inhibition has also been in-
corporated into some other vision tasks, such as structured
sparse coding (Szlam, Gregor, and Cun 2011), color video
segmentation (Fernández-Caballero et al. 2014), and im-
age contour enhancement (Chen and Fu 2010). These ap-
proaches mainly adopt lateral inhibition mechanism during
the bottom-up procedure. Different from these works, we
incorporate the lateral inhibition mechanism into an algo-
rithmic model with the top-down feedback signals of a deep
CNN to combine both bottom-up and top-down information,
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and achieve powerful category-specific attention capability.

Top-down Attention

Top-down attention plays an important role in human vi-
sual system, and various top-down attention models have
been proposed. Since deep CNNs greatly improve the
performance of object recognition (Simonyan and Zis-
serman 2014; Szegedy et al. 2015), a number of CNN
based category-specific attention models have been pro-
posed (Zhang et al. 2016; Cao et al. 2015; Simonyan,
Vedaldi, and Zisserman 2013; Zhou et al. 2015). In the
work by Simonyan et al. (Simonyan, Vedaldi, and Zisser-
man 2013), target-relevant regions for a predicted category
are visualized by error back-propagation. The work by Zhou
et al. (Zhou et al. 2015) replaces the fully-connected layer
with the average pooling layer to generate coarse class-
activation maps that highlight target-relevant regions. The
work in (Cao et al. 2015) embeds a top-down feedback
model which introduces latent gate variables into CNN clas-
sifiers to capture task related regions in input images. Re-
cently, an attention model based on the winner-take-all prin-
ciple is proposed in (Zhang et al. 2016) to generate highly
discriminative attention maps for object localization. Unlike
these previous methods, our proposed LICNN is based on
the lateral inhibition mechanism. Compared with the models
in (Cao et al. 2015; Zhang et al. 2016), our model produces
shape-preserved category-specific maps with less noise and
exhibits more discriminative capability.

Salient Object Detection

CNN based approaches for salient object detection have
been developed rapidly in recent years. The work by Wang
et al. (Wang et al. 2015b) integrates both local estimation
and global search using deep CNNs to detect salient objects.
In (Zhao et al. 2015), both global and local contexts are
adopted and integrated into a unified deep learning frame-
work. The approach proposed in (Li and Yu 2016) derives
a saliency map by integrating multi-scale features extracted
from trained deep CNNs. Most of these CNN based meth-
ods work very well. However, these methods regard salient
object detection as a problem independent from other vision
tasks, which is thus different from the human visual percep-
tion. Meanwhile, these methods require strong supervised
annotations to train models. In contrast, the approach pro-
posed in this paper only requires weak supervision cues for
training a CNN classifier. Despite of the use of weak super-
vision cues, our approach outperforms traditional methods
and achieves competitive performance on popular bench-
marks compared with the strongly supervised approaches.

Our Method

Top-down Feedback Signals

Recently, the evidence from (Zeiler and Fergus 2014; Cheng
et al. 2017) indicates that various semantic patterns can be
learned by convolutional neurons of CNN classifiers. That
is, specific neurons will be activated if there are positively
correlated patterns lying in their receptive field. These acti-
vated patterns give rise to distinct scores of different classes.

Therefore, it is of great significance for selective attention
to quantitatively estimate how much a pattern contributes
to a category. Top-down feedback is a brain-inspired way
to achieve this. It provides an extra criteria to judge which
patterns are relevant to a given category, and supplies an im-
portant foundation for modeling lateral inhibition. We im-
plement this by utilizing category-specific gradients, which
serve as the top-down feedback signals in LICNN. Given a
CNN classifier, the output of a neuron is denoted as x. And
S represents the output of a class node. A mapping function
between x and S can be abstracted from the network, de-
noted as f(x). Given an input image, x will take a certain
value x0. For this situation, S can be approximated by the
first order Taylor expansion of f(x) at x0, i.e.,

S = f(x)

= f(x0) + f ′(x0)(x− x0) + o(x− x0)

≈ f ′(x0)x+ f(x0)− x0f
′(x0)

(1)

It linearly approximates the relationship between S and x.
Hence, after a CNN completes feed-forward, it is intuitive
to quantitatively estimate the contribution of a neuron to a
specific category by f ′(x0), named as contribution weight
(CW). Note that f ′(x0) = ∂S

∂x0
can be acquired by a sim-

ple back-propagation in CNNs. Since the activated patterns
can be derived from the target objects, background or dis-
turbed objects, it is rather rough to directly adopt the above
approximation as ideal attention maps. Fortunately, when
this estimation is applied on all hidden neurons, a distri-
bution of neurons’ contributions emerges for all layers. And
the mechanism of lateral inhibition paves an effective way to
refine and enhance the contrast of the estimated distribution.

Lateral Inhibition Model

In neurobiology, lateral inhibition in vision was inferred by
Ernst Mach in 1865 as depicted in his Mach Band (Nielsen
2001), which reveals that lateral inhibition disables the
spreading of action potentials from excited neurons to neigh-
boring neurons in the lateral direction. This creates a con-
trast in stimulation that allows increased sensory percep-
tion. We mimic this mechanism with a new computational
model and incorporate it into the top-down procedure of a
CNN classifier. An interesting finding is that lateral inhibi-
tion combined with feedback signals(CWs) can ensure that
only the most relevant neurons are grouped together.

Generally, the outputs of the convolutional layer are mod-
ulated by the subsequent ReLU layer to decide whether a
pattern is activated. Thus, we introduce lateral inhibition to
activated neurons in the ReLU layers. Note that the CWs of
all ReLU neurons can be calculated via back-propagation.
Assume that the layer l produces a cub of CWs with the di-
mension of (W,H,C), where W , H , C denote width, height
and channels, respectively. Normally the C neurons at the
same location represent different patterns though they share
information in the same receptive field.

Firstly, a simple inhibition along the channel axis is per-
formed by selecting the maximum CW at each location,
thus we can obtain a CW map normalized by L2 norm with
the dimension of (W,H), named as Max-C Map. Next, we
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construct lateral connections between different points in the
Max-C Map to compute inhibition strength for each loca-
tion. Formally, the lateral inhibition value is computed as

xLI
ij = a ∗ e−xij︸ ︷︷ ︸

average

+b ∗
∑
uv

(duve
−duvδ(xuv − xij))

︸ ︷︷ ︸
differential

(2)

yij =

{
yij if xij − xLI

ij > 0

0 if xij − xLI
ij ≤ 0

(3)

where xij denotes a point in the Max-C Map at the location
(i, j) and xLI

ij is its inhibition value. We calculate xLI
ij within

a square zone, named as lateral inhibition zone (LIZ), which
LIZ is formed by the k neighboring points of xij , xij is the
mean value of xij within the LIZ. The xuv is a neighbor of
xij in its LIZ. The Euclidean distance between xij and xuv

is denoted by duv , which is normalized by the length of the
LIZ. And δ is a function defined as

δ(x) =

{
x if x > 0

0 if x ≤ 0
(4)

In Equation (2), xLI
ij consists of two parts, namely aver-

age term and differential term. The average term protects
the neurons within a high response zone. And the differen-
tial term sharpens the objects’ boundaries and increases the
contrast between objects and background in the protected
zone created by the average term. The differential term in-
cludes two components, duve−duv and δ(xuv − xij). Note
that duve−duv , which has a function surface of an inverted
“Mexican hat”, is a computational model of lateral inhibi-
tion in neurobiology (Müller et al. 2005; Casanova, Buxho-
eveden, and Gomez 2003; Ringach 1998). It denotes that the
nearest and farthest neighbors have lowest inhibit effects on
the central neuron. δ(xuv −xij) indicates that the inhibition
is caused by the difference between the central neuron and
neighboring neurons. And the central neuron would not re-
ceive inhibition from the neighboring neurons with values
lower than itself. a and b are the balance coefficients. In this
paper, a is set to 0.1, b is set to 0.9, and the length of LIZ
is set to 7. Both Edge-enhancement and Mach band effects
can be derived from Equation (2). Finally, the new output
yij is determined by gating operation described in Equa-
tion (3). Note that all the hyper-parameters mentioned above
are selected intuitively. It is possible that better performance
can be produced by carefully selecting these parameters with
more experiments empirically.

An example is illustrated in Fig. 4. A VggNet
(VGG16) (Simonyan and Zisserman 2014) pre-trained on
ImageNet2012 is adopted from Caffe (Jia et al. 2014) Model
Zoo. Our lateral inhibition model is applied to each ReLU
layer in this VggNet. Without loss of generality, we present
the inhibition procedure of a middle layer called “relu4 3”.
The input image and the final attention map are shown in
Fig. 4(a). To visualize the original gradients, we calculate
the summation of the gradient cub along the channel axis, as
shown in Fig. 4(b). The resulting map is very noisy. Fig. 4(c)
illustrates the Max-C Map generated by inhibition along
channels. It reveals a trace to infer about the related object.

But it also contains lots of noise, and these noise will spread
rapidly during the hierarchical top-down back-propagation.
Fig. 4(d) and (e) demonstrate the inhibition effects produced
by the average term and differential term. The average term
creates a protected zone for the target objects and suppresses
small noise or irrelevant values. The differential term im-
poses a heavy penalty on the background around the bound-
aries of target objects. Consequently, the edges of the objects
are enhanced. Fig. 4(f) shows the final result of “relu4 3”
layer by combining both the average term and differential
term. The example provides the intuitive evidence that, the
proposed lateral inhibition model can effectively sharpen the
object edges, suppress noise and increase the contrasts be-
tween target objects and background.

Category-specific Attention Maps

Actually, CW is a kind of weak and vague top-down signal
for measuring how much the neurons in hidden layers con-
tribute to a class node. It will suffer from interference and
noise, and decay layer by layer. However, benefiting from
the hierarchical lateral inhibition mechanism, LICNN elim-
inates interference and noise layer by layer and acquires
the precise location information of expected objects. That
is, it can be used to produce the accurate category-specific
attention maps. For clarity, we summarize the involved op-
erations in Algorithm 1.

Specifically, after the first time of applying lateral inhibi-
tion, we block the suppressed neurons and perform another
feed-foward and category-specific back-propagation to gen-
erate attention maps. For comparative analysis, Fig. 3 shows
the responses and gradients in high, medium and low level
layers of the original VggNet and LICNN, respectively. To
visualize a multi-channel layer, we generate a map by sum-
ming the outputs along channels (SUM-C map). From the
visual results, it can be seen that, owing to the lateral inhi-
bition, different objects are highlighted in each hidden layer
with less noise and better contrast, even though the “dog” is
very close to the “person” in the image. Specially, Fig. 3(e)
and Fig. 3(i) are obtained by setting the positive values in the
gradient cub of the input image as one, others as zero. The
results indicate that objects can be precisely located, while
irrelevant information and noise in each hidden layer can be
effectively suppressed.

We resize the response and gradient SUM-C maps to the
same size as the input image and then combine all the re-
sized SUM-C maps together simply by adding operation.
The category-specific response-based or gradient-based at-
tention maps can be finally derived by normalizing the com-
bined SUM-C maps with L2 norm. Note that, the gradient-
based attention maps are essentially generated by measur-
ing the contribution of activated patterns, which account for
selective attention, while the response-based attention maps
depend on the strength of input patterns, which are more re-
lated to saliency. Although, they both capture the location
information, the distribution of intensity is slightly differ-
ent. We utilize the gradient-based attention maps for the top-
down attention task, and the response-based attention maps
for salient object detection.
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Figure 3: Comparison of responses and gradients. The first two rows are response and gradient SUM-C maps of the origi-
nal VggNet. The third and forth rows are the results of LICNN. (a) Input image. (b)(c)(d) Response and gradient SUM-C
maps of layer “relu5 2”,“relu4 1”and“relu1 1” for the dog category. (f)(g)(h) Response and gradient SUM-C maps of layer
“relu5 2”,“relu4 1”and“relu1 1” for the person category. (e)(i) Non-zero gradients of the input image for dog and person,
respectively.

Figure 4: Visualization of the lateral inhibition model.
(a) The original input image with the corresponding final
category-specific attention map below it. (b) Original gradi-
ent sum of the layer “relu4 3”. (c) Max-C Map obtained by
the first step of our approach. (d) Inhibition from the average
term. (e) Inhibition from the differential term. (f) Result of
“relu4 3” layer after lateral inhibition.

Algorithm 1 Implementation details of LICNN
1: Given an image and a pre-trained CNN classifier;
2: Perform feed-forward and obtain a predicted category, then

carry out gradient back-propagation of the predicted category
to produce CWs for all neurons;

3: In each ReLU layer, compute the Max-C Map and apply the
lateral inhibition model on the obtained Max-C Map;

4: Block the neurons across all channels on the inhibited loca-
tions by fixing them to zeros, then perform feed-forward and
category-specific gradient back-propagation again;

5: Calculate and normalize the SUM-C maps of both response
and gradients of each layer;

6: Resize all the gradient (or response) SUM-C maps to the same
size of the input image and combine them together by adding
operation;

7: Obtain gradient-based (or response-based) attention maps by
normalizing the combined gradient (or response) SUM-C maps
with L2 norm;

Experiments

The Pointing Game

In this section, we evaluate the discriminative power of
the top-down attention maps generated by LICNN. Here
Pointing Game (Zhang et al. 2016) is adopted, and the test
set of PASCAL VOC 07 is used with 4952 images. We
follow the protocol of Excitation Backprop (Zhang et al.
2016) for fair comparison. The same VGG16 (Simonyan
and Zisserman 2014) model as mentioned above is em-
ployed. The model is fine-tuned on PASCAL VOC07 train-
ing set with the multi-label cross-entropy loss. We compare
LICNN with the following methods: Excitation Backprop
(c-MWP) (Zhang et al. 2016) which is the recent best-
performing approach for category-specific attention, error
back-propagation (Grad) (Simonyan, Vedaldi, and Zisser-
man 2013), and deconvolutional neural network for neuron
visualization (Deconv) (Zeiler and Fergus 2014). The top-
down attention maps are produced according to the ground
truth object labels. Bounding boxes of the PASCAL VOC07
test set are only utilized to calculate the accuracy. We extract
the maximum point on a category-specific attention map as
the final prediction. A hit is counted if the maximum point
falls into one of the annotated instances of the correspond-
ing object category, and otherwise a miss is counted. The
localization accuracy is measured by Acc = Hits

Hits+Misses
for each category. The mean accuracy across all categories
is reported. To obtain more rigorous results, we imitate the
test protocol in Excitation Backprop (Zhang et al. 2016) to
select a difficult subset from the whole test set. The images
in the difficult subset meet two criteria: 1) The total area of
bounding boxes of the testing category is smaller than 1/4
area of the image; and 2) there is at least one other distracter
category in the image. The experimental results are reported
in Table 1.

To be more convincing, we further embed our LI model
into the Googlenet (Szegedy et al. 2015) to conduct the
pointing game experiment. The results are reported in Ta-
ble 2. Note that we also compare LICNN with the method
CAM proposed in (Zhou et al. 2015). As suggested by all
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Center Grad Deconv c-MWP LICNN
ALL 69.5 76.0 75.5 80.0 85.3

Difficult 42.6 56.8 52.8 66.8 70.0

Table 1: Mean accuracy (%) of the Pointing Game on the
test set of VOC07 by using VggNet. We report the results
for the whole test set and a difficult subset respectively. The
Center method is the baseline in which the central points of
images are directly used.

Center Grad CAM c-MWP LICNN
ALL 69.5 79.3 80.8 85.0 87.9

Difficult 42.6 61.4 61.9 72.3 75.7

Table 2: Mean accuracy (%) of the Pointing Game on the
test set of VOC07 by using GoogleNet.

Figure 5: Visual comparison between LICNN and Excitation
Backprop (c-MWP). Note that the attention maps of c-MWP
and LICNN of different objects are shown on the left and
right sides of input images, respectively.

the above results, LICNN significantly outperforms the com-
pared methods with a large performance gap.

A visual comparison between LICNN and c-MWP is
shown in Fig. 5. All the input images in Fig. 5 contain ob-
jects from two categories of PASCAL VOC. And the atten-
tion maps of c-MWP are produced by using the same Vgg
model and the code provided by the authors. From the re-
sults, our method generates more accurate attention maps
with less noise in various challenging cases. Both the quali-
tative and quantitative experiments support that LICNN per-
forms very well for the category-specific attention.

Salient Object Detection

In this section, we explore the capacity of LICNN to capture
salient objects from natural images. As mentioned before, a
CNN classifier can be regarded as a salient pattern detector,
where many patterns will be activated when given an input.
They compete with each other during the feed-forward phase

and eventually contribute to one or more classes, leading to
the distinct scores over different categories. Salient objects
can be acquired by assembling different salient patterns ac-
cording to the top-k categories via LICNN. In this paper, k
is set to 5. Moreover, due to the generalization ability of
learned patterns, LICNN can be applied to any natural im-
age, no matter it contains the predefined objects, i.e., the
class labels in training the CNN, or not.

Datasets and evaluation criteria. We evaluate our
method on four popular datasets which are widely used
to evaluate salient object detection methods based on deep
learning, including HKU-IS (Li and Yu 2016), PASCAL-
S (Li et al. 2014), ECSSD (Yan et al. 2013), and DUTOM-
RON (Yang et al. 2013). HKU-IS is a large dataset con-
taining 4447 challenging images, most of which have either
low contrast or multiple salient objects. PASCAL-S contains
850 images and is built using the validation set of the PAS-
CAL VOC 2010 segmentation challenge. ECSSD contains
1,000 structurally complex images collected from the Inter-
net. And Dut-OMRON is composed of 5,168 challenging
images, each of which has one or more salient objects with
complex background. We evaluate all methods using maxi-
mum F-measure(maxF) and mean absolute error (MAE) as
in (Li and Yu 2016).

Implementation. We also obtain the VGG16 (Simonyan
and Zisserman 2014) model (pre-trained on Imagenet 2012)
from the Caffe Model Zoo website as the classification
model of LICNN. By LICNN, we produce 5 category-
specific response-based attention maps according to the pre-
dicted top-5 categories. As a result, the generated maps high-
light the different components of the objects. By combining
the 5 maps, we obtain a rough saliency map. Fig. 2 illustrates
several examples. Furthermore, to get better results, a sim-
ple optimization technique in (Zhu et al. 2014) is adopted.
Specifically, we simply set the obtained saliency map SM
as the foreground weight matrix, and acquire the background
weight matrix by the pixels in 1− SM with the value lower
than 50th percentile. The refined saliency maps are used as
the final output.

Comparison with the state-of-the-art. We compare our
method against several recent state-of-the-art methods, in-
cluding the traditional methods DRFI (Jiang et al. 2013),
wCtr* (Zhu et al. 2014), RC (Cheng et al. 2015), BSCA (Qin
et al. 2015), PISA (Wang et al. 2015a), and the strongly su-
pervised CNN based approaches LEGS (Wang et al. 2015b),
MC (Zhao et al. 2015) and MDF (Li and Yu 2016). To an-
alyze the importance of LI, we also report three baseline re-
sults: In Baseline 1 (B1), LI is turned off (only using CNN
with gradients information); In Baseline 2 (B2), we apply
average denoising algorithm on the Max-C map and then
handle the denoised Max-C map by a thresholding with its
mean value; And in Baseline 3 (B3), we turn off the opti-
mization technique (Zhu et al. 2014). We report the quanti-
tative comparison w.r.t. maximum F-measure and MAE in
Table 3.

From the results, our method significantly outperforms
the traditional approaches. Compared with supervised meth-
ods, LICNN achieves much better performance than LEGS
and is comparable with MC and MDF. Note that our method
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Data Set Metric B1 B2 B3 DRFI wCtr* RC BSCA PISA LEGS MC MDF Ours

HKU-IS maxF 0.510 0.759 0.798 0.776 0.726 0.726 0.723 0.753 0.770 0.798 0.861 0.841
MAE 0.377 0.289 0.161 0.167 0.140 0.165 0.174 0.127 0.118 0.102 0.076 0.101

PASCAL-S maxF 0.46 0.681 0.710 0.690 0.655 0.644 0.666 0.660 0.752 0.740 0.764 0.755
MAE 0.395 0.322 0.212 0.210 0.201 0.227 0.224 0.196 0.170 0.145 0.146 0.162

ECSSD maxF 0.477 0.748 0.805 0.782 0.716 0.738 0.758 0.764 0.827 0.837 0.847 0.831
MAE 0.396 0.302 0.180 0.170 0.171 0.186 0.183 0.150 0.137 0.100 0.106 0.129

DUT-OMRON maxF 0.360 0.534 0.613 0.664 0.630 0.599 0.617 0.630 0.669 0.703 0.694 0.677
MAE 0.347 0.378 0.154 0.150 0.144 0.189 0.191 0.141 0.133 0.088 0.092 0.138

Table 3: Comparison of quantitative results including maximum F-measure (the larger is the better) and MAE (the smaller is
the better). The best three results are shown in red, blue, and green color, respectively. Note that LEGS, MC, and MDF are
strongly supervised CNN based approaches, and our method is based on weak supervision cues.

Figure 6: Visual comparison of saliency maps produced by the state-of-the-art CNN based methods, including LEGS, MC,
MDF and our LICNN model. The ground truth (GT) is shown in the last column.

is merely based on a pre-trained VGG classifier which only
requires the image-level class labels. In contrast, LEGS, MC
and MDF strongly rely on the manually labeled segmenta-
tion masks of salient objects for model learning. And the
three baseline experiments demonstrate the effectiveness of
the proposed LI model. Moreover, a visual comparison be-
tween LEGS, MC, MDF and LICNN is presented in Fig. 6.
LICNN performs much better in difficult cases, e.g., low
contrast between objects and background.

ALL these results indicate that the bottom-up salient ob-
ject detection can be carried out by grouping salient pat-
terns via lateral inhibition. With the help of feedback signals,
LICNN can organize different activated patterns effectively
and merge them to form different objects. Thus, salient ob-
jects can be well perceived by a CNN for classification with
only category-level labels.

Conclusion
In this paper, we have proposed a lateral inhibition based
attention model, namely LICNN. In contrast to other meth-
ods, the LICNN can simultaneously perform object recog-
nition, top-down selective attention, and salient object de-
tection. We reveal that combining lateral inhibition and top-
down feedback can construct a competitive environment to
ensure that only the most discriminative and salient features
are selected. With LICNN, highly discriminative category-
specific attention maps are produced, and salient objects are
effectively obtained without learning an independent model
based on strong segmentation supervision. Both qualitative
and quantitative experimental results strongly support the ef-
fectiveness of LICNN.

LICNN is an important attempt of modeling visual atten-
tion with feedback and lateral inhibition. It provides a new
insight to implement brain-inspired concepts, which we be-
lieve represents a more promising route in future studies on
designing vision algorithms.

Acknowledgments

This work is jointly supported by National Key Research
and Development Program of China (2016YFB1001000),
National Natural Science Foundation of China (61525306,
61633021, 61572504, 61420106015, 61673362),Youth In-
novation Promotion Association CAS (2006121), Beijing
Nova Program and Beijing Natural Science Foundation
(4162058). This work is also supported by grants from
NVIDIA and the NVIDIA DGX-1 AI Supercomputer.

References

Cao, C.; Liu, X.; Yang, Y.; Yu, Y.; Wang, J.; Wang, Z.;
Huang, Y.; Wang, L.; Huang, C.; Xu, W.; et al. 2015. Look
and think twice: Capturing top-down visual attention with
feedback convolutional neural networks. In Proceedings
of the IEEE International Conference on Computer Vision,
2956–2964.
Casanova, M. F.; Buxhoeveden, D.; and Gomez, J. 2003.
Disruption in the inhibitory architecture of the cell minicol-
umn: implications for autisim. The Neuroscientist 9(6):496–
507.
Chen, Y., and Fu, H. 2010. Study and application of lateral
inhibition models in image’s contour enhancement. In 2010

6696



International Conference on Computer Application and Sys-
tem Modeling (ICCASM 2010), volume 13, V13–23. IEEE.
Cheng, M.-M.; Mitra, N. J.; Huang, X.; Torr, P. H.; and Hu,
S.-M. 2015. Global contrast based salient region detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 37(3):569–582.
Cheng, Y.; Cai, R.; Li, Z.; Zhao, X.; and Huang, K. 2017.
Locality-sensitive deconvolution networks with gated fusion
for rgb-d indoor semantic segmentation. In The IEEE Con-
ference on Computer Vision and Pattern Recognition.
Desimone, R., and Duncan, J. 1995. Neural mechanisms of
selective visual attention. Annual Review of Neuroscience
18(1):193–222.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.;
and Zisserman, A. 2010. The pascal visual object classes
(voc) challenge. International Journal of Computer Vision
88(2):303–338.
Fernandes, B. J. T.; Cavalcanti, G. D.; and Ren, T. I. 2013.
Lateral inhibition pyramidal neural network for image clas-
sification. IEEE transactions on cybernetics 43(6):2082–
2092.
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