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Abstract

Zero-shot learning aims to classify unseen image categories
by learning a visual-semantic embedding space. In most
cases, the traditional methods adopt a separated two-step
pipeline that extracts image features from pre-trained CNN
models. Then the fixed image features are utilized to learn
the embedding space. It leads to the lack of specific structural
semantic information of image features for zero-shot learn-
ing task. In this paper, we propose an end-to-end trainable
Deep Semantic Structural Constraints model to address this
issue. The proposed model contains the Image Feature Struc-
ture constraint and the Semantic Embedding Structure con-
straint, which aim to learn structure-preserving image fea-
tures and endue the learned embedding space with stronger
generalization ability respectively. With the assistance of se-
mantic structural information, the model gains more auxiliary
clues for zero-shot learning. The state-of-the-art performance
certifies the effectiveness of our proposed method.

Introduction

As one of the most basic problems in the computer vision
area, image classification methods gain huge progress in re-
cent years with the impressive development of deep learn-
ing. Although ResNet (He et al. 2016), an outstanding repre-
sentation of the Convolutional Neural Network (CNN) clas-
sification models, gets the top-5 error rate as low as 3.57%
on ImageNet classification task, its classification ability is
still limited to the image categories in the training dataset.
The limitation that models can only classify image cate-
gories within the training set, restricts them to become more
intelligent as human beings. For a simple example, human
beings are able to classify different kinds of animals by just
reading their descriptions rather than seeing them. More and
more researchers try to break through this limitation by in-
troduce Zero-Shot Learning (ZSL) into image classification
(Lampert, Nickisch, and Harmeling 2009; Frome et al. 2013;
Norouzi et al. 2013; Socher et al. 2013; Fu et al. 2015;
Akata et al. 2015; Romera-Paredes and Torr 2015; Bucher,
Herbin, and Jurie 2016; Akata et al. 2016; Huang, Loy,
and Tang 2016; Changpinyo et al. 2016; Xian et al. 2017;
Morgado and Vasconcelos 2017).

*The first two authors contributed equally to this work.
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Intelligence (www.aaai.org). All rights reserved.
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Zero-shot learning seeks to make image classification
models able to classify image categories which never ap-
pear in the training dataset. In the zero-shot learning task,
we refer to the image categories in the training set as seen
classes and those in the test set as unseen classes. The
category characteristic of unseen classes are learned from
the side information, i.e., the semantic features of the im-
ages. The commonly used side information could be the hu-
man annotated attribute features of images (Lampert, Nick-
isch, and Harmeling 2009; Akata et al. 2016), the text
descriptions of the image categories (Reed et al. 2016),
word vectors of the category labels (Frome et al. 2013;
Norouzi et al. 2013) and so on.

A large number of previous state-of-the-art methods focus
on building a common space where image features and se-
mantic features are embedded (Frome et al. 2013; Socher et
al. 2013; Akata et al. 2015; Romera-Paredes and Torr 2015;
Akata et al. 2016). The embedding space is built on the
correspondence between the seen images and their seman-
tic features. Then in the test stage, unseen image features
will be mapped to the embedding space where the classifi-
cation method, such as nearest neighbour (NN) search, can
be operated easily. Most of these methods adopt a separated
two-step pipeline, i.e., extracting image features from pre-
trained CNN models and using fixed image features to learn
the embedding space.

However, we argue that separating the image feature ex-
traction and the embedding space construction harms the
ZSL models severely. The separation leads to the result
that models cannot regulate the image features for the spe-
cific ZSL task during training. What’s more, the image fea-
tures extracted from a fixed pre-trained CNN model will not
capture the plentiful semantic information in the side in-
formation. The semantic information of human annotated
attributes, text descriptions or word vectors constructs the
semantic structure of a specific category. We believe that
combining the learning of image features and embedding
space in an end-to-end manner, meanwhile, incorporating
the structural information into the whole learning process
would contribute to much better zero-shot performance.

In this paper, we come up with a new Deep Semantic
Structural Constraints (DSSC) model for zero-shot learning
looking forward to training the model in an end-to-end style
and using the semantic structural information to supervise
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Figure 1: The framework of Deep Semantic Structural Constraints (DSSC) model. The Image Feature Structure constraint
(IFSc) and the Semantic Embedding Structure constraint (SESc) use the structural information of semantic space to supervise
the model’s image feature extraction and embedding space construction respectively.

the image feature extraction and embedding space construc-
tion. The contributions of this work are as follows:

e Distinguished from most of the current work, the DSSC
model is end-to-end trainable. Benefit from the end-to-
end training, the image feature extraction can be brought
into the training stage. We can add specific supervision to
train the model and make the features more suitable for
the ZSL task.

e In DSSC model, we set the Image Feature Structure con-
straint (IFSc) specially in the image feature extraction
stage. The constraint makes the model automatically learn
structure-preserving image representations. The learned
image features rather than the fixed features extracted
from pre-trained CNN models are beneficial to the con-
struction of semantic embedding space. To the best of our
knowledge, this is the first attempt to add specific image
feature extraction constraint in ZSL models.

For the construction of embedding space, the DSSC
model contains the Semantic Embedding Structure con-
straint (SESc) to learn a better embedding space for the
unseen classes by relaxing the commonly used strict soft-
max loss. The embedding space directly learned on seen
classes will not generalize the unseen classes well due to
the domain shift problem (Fu et al. 2015). The semantic
embedding structure constraint can endue the model with
much better generalization capability for the ZSL task.

e As shown by the experiments, the DSSC model gets the
state-of-the-art performance on the representative datasets
of zero-shot learning.

Related Work

Zero-shot learning aims to classify images of unseen classes
which is an impossible challenge for traditional image clas-
sification models.

In recent years, researchers try to build a common embed-
ding space for image and their semantic features by learning
a compatibility function between them. The DeViSE model
(Frome et al. 2013) and the ALE model (Akata et al. 2016)
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learn linear transformation matrices by solving a hinge rank-
ing loss function. R. Socher et al. operate a two-layer neu-
ral network to map unseen images to the semantic feature
space in (Socher et al. 2013). The ESZSL model (Romera-
Paredes and Torr 2015) adopts a principled designed Frobe-
nius norm regularizer making itself simple but efficient. The
SJE model (Akata et al. 2015) combines several compatibil-
ity function linearly to form a joint embedding which cap-
tures the non-redundant information from different aspects
of side information. Most recently, the SAE model (Kodirov,
Xiang, and Gong 2017) draws successful lessons from linear
auto-encoder. Besides the encoder mapping images to the se-
mantic space, it employs a decoder to make the model able
to reconstruct the original visual feature from the mapped
semantic feature. Similar to DeViSE and ALE, N. Karessli
et al. optimize a hinge ranking loss in (Karessli et al. 2017),
but they introduce the gaze information as side information
to the ZSL task innovatively.

In addition to learning the compatibility function directly,
hybrid models (Norouzi et al. 2013; Changpinyo et al. 2016)
bring us another way to think about zero-shot learning. The
basic idea of hybrid models is to use the composition of seen
classes to classify the unseen images. The ConSE model
(Norouzi et al. 2013) convexly combines the image classi-
fication probabilities of seen classes to determine the un-
seen classification result. The SynC model (Changpinyo et
al. 2016) synthesizes the classifiers of agent classes as the
classifier of the unseen class. Almost all these methods sep-
arate the image feature extraction and embedding space con-
struction. They use fixed image features when building the
embedding space. This trend leads to the image features’
lack of the semantic information in ZSL task.

Similar to our work, the SCoRe model (Morgado and
Vasconcelos 2017) also puts forward an end-to-end training
pipeline for ZSL. The authors add two semantic constraints
at the end of a CNN classification model to supervise the
attribute prediction and the category classification respec-
tively. Although the SCoRe model is end-to-end trainable
and deployed with specific constraints for ZSL task, it does
not consider any semantic structural constraints in the image



feature extraction stage. It remains the standard CNN image
feature extraction pipeline in the model.

To address the shortcomings of previous works, we bring
the image feature extraction into training by deploying an
end-to-end model. What’s more, we incorporate the seman-
tic structural information into the complete learning pro-
cess. Concretely, we propose a Deep Semantic Structural
Constraints (DSSC) model which contains the Image Fea-
ture Structure constraint (IFSc) and the Semantic Embed-
ding Structure constraint (SESc). The IFSc aims to preserve
semantic structural information in image feature extraction.
While the SESc supervises embedding space construction
in order to strengthen the generalization ability for unseen
classes. As shown in the experiments, the proposed two con-
straints contribute to the improvement of zero-shot classifi-
cation.

Methodology

In this section, we formalize the zero-shot learning prob-
lem at first. Then we introduce the proposed Deep Semantic
Structural Constraints model in detail.

Problem Statement

In the zero-shot learning task, we define the training set
as S = {(zs,9s,as)",n = 1,...,N}, where z; € Xs
is the image of the seen class and y, € Vs is the corre-
sponding image label. Similarly, the test set is defined as
U = {(zu,Yu,a0)” ;0" =1,...,N'}, where z, € Xy is
the unseen image and y,, € ) is the label of it. As to the
side information, as,a, € A are the semantic features of
each category or image. According to the definition of zero-
shot learning, Vs N Yy, = 0, i.e., only the seen class images
are available during the training stage. The goal of ZSL is to
learn a classifier f : Ay — ) on training set S with the
assistance of side information A.

Baseline Model

Our baseline ZSL model aims to learn compatibility func-
tion to associate visual and auxiliary semantic information.
Formally,

F(z,y; W) = ¢(x) Wi(y) (1)

where ¢(x) is the image representations typically extracted
by pre-trained CNN models and ¢ (y) is the semantic feature
of category y, i.e., ¥(y) € A.

Similar to most of previous ZSL methods, we use the se-
mantic space of 4 as the common embedding space and de-
fine the compatibility score by the inner product. Formally,

s = (W'o(2),9(y)) @)

where W is the weight to learn in a fully connected layer. It
can be viewed as a linear projection matrix that maps image
representations ¢(x) to the semantic space A.

Like the classification scores in traditional object recog-
nition task, the compatibility scores are used to measure the
matching degree between an image and the semantic repre-
sentations of classes. Similar to object recognition task, we
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use a standard softmax loss to train our ZSL model:

exp(s)

1
Emﬁmax = _N ZIOgia c€ Vs (3)

e exXp(se)

At the test stage, the classification result of an unseen
image z, can be achieved by simply selecting the most
matched category from unseen classes. Formally,

y* = argmax (s.) = argmax (WT¢(xu), V(ye))  (4)

ceVu c€Vu

It is noted that the proposed model is end-to-end train-
able and the image representations ¢(x) are also learnable
during the training process. Most of previous ZSL methods
adopt the fixed ¢(z) and only focus on learning the projec-
tion matrix W with additional regularization terms. How-
ever, we argue that it cannot regulate the image representa-
tions for specific ZSL tasks using fixed image features ¢ ().
On the contrary, making the image features compatible with
side information of ZSL task in an end-to-end framework is
necessary and will contribute to better performance. In the
experiments section, we show that, without any other regu-
larization terms, the performance of our baseline model is
comparable to previous state-of-the-art results.

Image Feature Structure Constraint (IFSc)

The baseline model utilizes softmax loss in Equation 3 to
project image instances to its corresponding semantic rep-
resentations. In most of cases, the semantic representations,
for example human-annotated attributes or text descriptions,
contain more plentiful expert knowledge than the simple vi-
sual appearances. They have sufficient capacity of discrimi-
nating different classes (i.e., the intra-class distance is small
while the inter-class distance is large in semantic space).

On the contrary, the image features only imply the vi-
sual cues, such as colors, shapes, textures and so on. When
only considering visual representations, the distribution of
different categories may be amorphous and unstructured. 1)
The inter-class distance between some categories with sim-
ilar visual appearances are very small. For example, both
conference center and court room have multiple chairs in
their images while the two categories can be distinguished
in semantic space, as the conference center may have the
attribute of conducting business which will never appear in
court room. 2) On the other hand, the intra-class distance for
some categories may be too large. For example, all images
of the assembly line share the same working and using the
tool attributes but the visual elements in assembly line im-
ages change drastically with different products and various
implements. It is difficult to directly project such unstruc-
tured visual representations to discriminative semantic space
using a projection matrix W. To address this issue, we pro-
pose the Image Feature Structure constraint (IFSc) aiming
to use a triplet loss to regulate the intra-class and inter-class
distances in the image space. Formally,

Lirse

= maX(O, mrrse + d((vb(xi)a ¢(xk)) - d((b(lz)a QS(‘E]))()S)



where x; denotes the anchor image, zy, is the image from the
same class (y; = yx). =, is from a different class (y; # y;).
d(x,y) is used to calculate the squared Euclidean distance

between x and y, Le., d(z,y) = ||z — y||§ mrrge is the
margin of the IFSc and is set to 1.0 for all experiments. Un-
der the guidance of semantic information, the IFSc aims to
learn structure-preserving image representations. It assists
the baseline model to learn the visual-semantic embedding
space more easily with such structured image features.

Semantic Embedding Structure Constraint (SESc)

In the baseline model, maximizing the compatibility score
with softmax loss is similar to minimizing the Euclidean
distance between the image and semantic representations,
considering the semantic representations ) (y) are typically
L2-normalized in ZSL tasks. In other words, the baseline
model aims to exactly project the image instances to cor-
responding semantic representations. Such strict projection
may cause domain-shift problem between seen and unseen
classes at the test stage. To address this issue, we need to re-
lax the strict softmax loss to endue the model with stronger
generalization ability. Meanwhile, even with the relaxed pro-
jection, the projected image features are still required to be
compatible with the semantic features. Based on the above
considerations, we propose a Semantic Embedding Struc-
ture constraint (SESc) as follows:

Lspse = max(0,mspse + d(W' ¢(z;), W (1))

— d(WT g(a;), W ()
(6)
Instead of exactly projecting image features to the point
of semantic representations, the SESc aims to learn a re-
laxed manifold. Meanwhile the structure of learned mani-
fold still align the semantic space properly. Using SESc as
an extra relaxation to train the baseline model, as shown in
experiments, it makes the learned model generalize better to

unseen classes.

Self-adaptive margin As the common practice in triplet
loss, the margin mjrprg. is set to 1.0 for all categories
in IFSc. However, in SESc, we adaptively set the margin
mgsgse according to the Euclidean distance between each
pair of the semantic representations, i.e., mgpsc(

v (y) — ().

It is noted that our goal is still to map the image features
¢(x;) to its corresponding semantic representations 1 (y; ).
Thus, in the triplet formulation, the intra-class and inter-
class distances of the projected image features should be
compatible with the distance between the corresponding se-
mantic representations.

Let’s consider a case with two categories ¢ and j. The
semantic distance between the two categories is 0.5, i.e.,
[l (ys) —7/1(%‘)“3 = 0.5. If we set margin in SESc to
1.0, the model has to push the projected image features
WT¢(z;) and WT¢(x;) away from their semantic repre-
sentations v (y;) and 1 (y;), which is obvious inappropri-

yixyj) =
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Table 1: Benchmarks of ZSL.

Dataset Instances SS SS-D  Classes
AwA 30,475 Attribute 85 40/10
CUB 11,788 Attribute 312 150/50
SUN 14,340 Attribute 102 645/72

‘SS’ denotes semantic type.
‘SS-D’ indicates the dimension of the semantic space.

ate. Finally, it will lead to an undesired inferior embedding
space.

Deep Semantic Structure Constraints Model

Combining the mentioned three constraints, we obtain our
deep semantic structure constraints model (DSSC), as illus-
trated in Figure 1. Formally,

Lpssc = Lsofimax + AMirse + BLsESe (7

where \ and (3 are trivially set to 1.0 for all the experiments.

Experiments
Datasets

We evaluate the DSSC model and compare with exist-
ing state-of-the-art approaches on three standard zero-shot
learning benchmark datasets. Table 1 summarizes their
statistics.

e Animals with Attributes (AwA) (Lampert, Nickisch, and
Harmeling 2014) includes 30,475 images from 50 animals
categories. We adopt the class-level continuous 85-dim at-
tributes as the semantic representations and use the stan-
dard 40/10 zero-shot split.

e Caltech-UCSD Birds 200-2011 (CUB) (Wah et al. 2011)
is a fine-grained bird dataset with 200 different species
of birds and 11,788 images. Each image is annotated
with a 312-dim binary attribute vector and the class-level
continuous attributes are also provided. We follow SynC
(Changpinyo et al. 2016) to use 150/50 zero-shot split set-
ting and utilize the class-level attributes as the semantic
representations.

e SUN-Attribute (SUN) (Patterson et al. 2014) contains
14,340 images coming from 717 fine-grained scenes.
Each category includes 20 images. In SUN, each sam-
ple is paired with a binary 102-dim attribute vector. We
compute class-level continuous attributes as our semantic
representations by averaging the image-level attributes for
each class. Following SynC, we use 645 classes of SUN
for training and 72 classes for test.

Image Representations

We use GoogLeNet (Szegedy et al. 2015) (layer pool5 with
1024 units) pre-trained on ImageNet (Russakovsky et al.
2015) to implement image representation, ¢(x), for all three
datasets. During the training stage, all images are resized to
256 %256 pixels. When dealing with CUB, the SynC model



(Changpinyo et al. 2016) crops all images with the provided
bounding boxes. However in our experiments, we do not
utilize the additional bounding box annotations and directly
process the entire image for training.

Additionally, for SUN, the CNN model pre-trained on the
MIT Places dataset (Zhou et al. 2014) is used to obtain bet-
ter performance on scene classification tasks in (Changpinyo
et al. 2016). Explored by (Xian et al. 2017), the MIT Places
dataset has intersected categories with SUN for both the seen
and unseen classes. Using the CNN model pre-trained on
MIT Places dataset will violate the setting of zero-shot learn-
ing. But for fair comparison, we also provide the experiment
result with the MIT Places pre-trained CNN model.

It should be noted that all the CNN models are not fixed
but trainable in our experiments.

Evaluation Criteria

We use the multi-way classification accuracy (MCA) for all
three datasets as the same with previous works. Compar-
ing with per-image accuracy, MCA is more suitable to mea-
sure the classification performance when the dataset is class-
imbalanced.

Experimental Results

Effectiveness of the trainable image feature extraction
and semantic structural constraints In the DSSC model,
we adopt two semantic structural constraints, IFEc and
SESc, which are respectively used to improve the image fea-
ture learning and embedding space construction. In this part,
we first compare our DSSC model to four variant ZSL mod-
els to verify the effectiveness of the trainable image feature
extraction and two semantic constraints.

1) Baseline: The baseline model sets A=0 and =0 in Equa-
tion 7.

2) Baseline-fixed: The baseline-fixed model fixes the pa-
rameters of the image feature extraction CNN model dur-
ing training.

3) Deep-IFSc: The Deep-IFSc model sets =0 in Equation
7.

4) Deep-SESc: The Deep-SSRc model sets A=0 in Equation
7.

All these four models and our DSSC model are trained end-
to-end and evaluated on all three datasets. The comparison
results are shown in the second component of Table 2.

We first notice that the baseline model has already
achieved comparable performance with previous state-of-
the-art methods without any additional regularization terms.
Different from previous ZSL methods learning compatibil-
ity function with fixed image features, our baseline model is
trained end-to-end. The image features ¢(x) are also learned
to be compatible with the semantic information for different
ZSL datasets. In order to verify the advantage of the train-
able image feature extraction and end-to-end framework, we
fix the parameters of the image feature extraction CNN dur-
ing training of the baseline model. As shown in Table 2, the
performance of the baseline model considerably surpasses
the baseline-fixed model.
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Table 2: Comparative ZSL classification accuracy (%).

Method AwA CUB SUN
DAP (2014) 60.1 - 44.5
ESZSL (2015) 753  48.7 18.7
SJE (2015) 739  50.1 56.1
SynC (2016) 729 544 592
SynC-Places (2016) - - 62.7
SAE (2017) 847 614 652
SAE* (2017) 80.7 334 424
MFMR (2017) 76.6  46.2 -
Low-Rank (2017) 76.6  56.2 -
SCoRe (2017) 78.3 58.4 -
Baseline (Ours) 75.19 58.26 58.75
Baseline-fixed (Ours) 73.70 50.31 54.63
Deep-IFSc (Ours) 77.76  58.80 60.21
Deep-SESc (Ours) 76.89 64.54 59.65
DSSC (Ours) 78.51 65.99 60.76
DSSC-Places (Ours) - - 67.22

SAE™ denotes the reproducing results with ResNet-101 Ima-
geNet features reported by (Xian et al. 2017).

For the SUN dataset, SynC-Places and DSSC-Places denote the
results using pre-trained MIT Places model.

When comparing the Deep-IFEc and Deep-SESc with
the baseline method, both the two models obtain improve-
ments on the three datasets. When combining the two con-
straints, the ZSL performance of our DSSC model can be
further improved. We also observe that, on CUB, Deep-IFSc
only obtain slight improvements compared with the base-
line (58.80% vs. 58.23%). We believe the reason is that the
attribute annotations of CUB dataset is all about visual cues,
such as colors or shapes. Thus, the image features ¢(x), to
some extent, have already captured the semantic information
contained in these attributes. In such cases, the original im-
age features ¢(x) are “structured” and we can directly learn
the embedding space without IFSc. On SUN dataset where
annotated attributes have little connection with visual ele-
ments, the improvement of Deep-IFSc is more solid.

Comparisons with state-of-the-art methods Then we
compare our method with previous ZSL approaches. Among
the comparison methods, the published results of SAE
(Kodirov, Xiang, and Gong 2017) are the best performance
on three datasets. Recently, (Xian, Schiele, and Akata 2017;
Xian et al. 2017) have reproduced SAE and other ZSL meth-
ods with ResNet-101 ImageNet features. In their reproduc-
ing results, the performance of SAE on AwA declines from
84.7% to 80.7%. The authors of (Xian et al. 2017) confirm
that SAE reports per-image accuracy instead of MCA and
improves GooglLeNet by adding Batch Normalization. How-
ever, on other two datasets, the performance of SAE declines
more severely (from 61.4% to 33.4% on CUB and from
65.2% to 42.4% on SUN). For the Low-Rank model (Ding,
Shao, and Fu 2017), MFEMR (Xu et al. 2017) and SCoRe
(Morgado and Vasconcelos 2017) that report results with
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Figure 2: Confusion matrix of the classification accuracy on
unseen categories for our method on AwA.

multiple CNN architectures, we only compare with their re-
sults using GoogLeNet. Because our DSSC model is learned
from pre-trained GoogLeNet model.

From Table 2, we can observe that the DSSC model out-
performs previous state-of-the-art methods. For AwA, our
method attains 78.51%, which is slightly higher than the
state-of-the-art result reported by SCoRe (78.3%). For CUB,
the DSSC model has achieved impressive gains over the
state-of-the-art SCoRe (from 58.4% to 65.99%). For SUN, it
is noted that SynC extracts image features from CNN model
pre-trained on MIT Places dataset and obtains the state-of-
the-art result (62.7%). As we have mentioned in the Image
Representations subsection, using MIT Places pre-trained
CNN model on SUN violates the setting of ZSL. When
SynC utilizes image features extracted from the CNN model
pre-trained on ImageNet, the performance is 59.1% (repro-
ducing result with ResNet-101 ImageNet features reported
by (Xian et al. 2017)). In Table 2, all our experiments on
SUN use ImageNet pre-trained CNN model besides DSSC-
Places for fair comparison with SynC-Places. In both set-
tings, our method clearly outperforms SynC (67.22% with
CNN model pre-trained on MIT Places and 60.76% with
CNN model pre-trained on ImageNet).

Moreover, we further visualize the zero-shot classification
results of our DSSC method in term of the confusion ma-
trix on AwA as shown in Figure 2. In the confusion matrix,
the row represents the ground truth and the column corre-
sponds to the predicted label. The diagonal position indi-
cates the classification accuracy for each category. From the
confusion matrix, we observe that our method obtains su-
perb classification accuracy on chimpanzee (98%), leopard
(97%) and whale (97%). For categories with lower accuracy,
such as pig and rat, the errors mainly come from the seman-
tically similar categories, for example pig vs. hippopotamus
and rat vs. raccon.

Ablation Study

When utilizing SESc, we adaptively set the margin in triplet
loss according to the Euclidean distance between each pair
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Table 3: Comparative results with self-adaptive margin (%).

Method AwA CUB
Baseline 75.19 58.26
Deep-SESc 76.89 64.54
Deep-SESc-fixed-margin ~ 73.64  62.29

of the categories’ semantic features. In this part, we arrange
another experiment to verify the necessity of adopting such
adaptable margin in SESc. We propose an alternative base-
line, Deep-SESc-fixed-margin, which also adds SESc to the
baseline ZSL model but the margin used in SESc is set to
fixed value, i.e., 1.0, for all categories. The comparisons
of the three models (Baseline, Deep-SESc and Deep-SESc-
fixed-margin) on AwWA and CUB are shown in Table 4.

It is shown that the performance of Deep-SESc-fixed-
margin is obvious lower than our Deep-SESc model on both
datasets. On AwA, its performance is even lower than the
baseline method. As we have mentioned before, setting a
fixed margin for all categories may cause conflicts between
the projected image feature W7 ¢(z) and the semantic rep-
resentations ¢ (y) and it will lead to a worse embedding
space and inferior performance.

Qualitative Results

In this section, we present qualitative results of the proposed
DSSC model on CUB dataset and SUN dataset in Figure 3.
We sample a subset of both datasets with 10 unseen classes
and list the top-5 images which are classified into each cate-
gory by the DSSC model. From these top retrieved images,
it can be seen that our DSSC model is capable of capturing
discriminative visual properties of each unseen class based
on the semantic structural information. For example, the pre-
dicted indigo bunting images all share blue wings and cone
bill attributes. We can also observe that the misclassified im-
ages have similar appearances to the images of predicted
class. Such as the two misclassified American crow images
(column 3 in CUB results) have the same black wings with
the predicted Groove billed Ani category, which makes it dif-
ficult to distinguish between the two bird categories even for
human beings. For SUN dataset, we observe another type of
misclassification caused by inadequate attribute annotations.
For example, in column 1 of SUN results, among the top-5
retrieved athletic field scene category, the three images actu-
ally belong to the golf course scene specific. We can easily
distinguish the two scenes as the golf course images usu-
ally contain people playing golf. However, such distinction
can not be described by designed attributes of SUN dataset.
Addressing this issue may require incorporating the learning
of undefined, latent but discriminative attributes from visual
elements into the ZSL models.

Conclusion

In this paper, we focus on dealing with the defects of the
two-step pipeline models of zero-shot learning. These mod-
els pay close attention to the formulation of the semantic
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Figure 3: Qualitative results of the DSSC model on CUB (upper panel) and SUN (down panel). A subset with 10 categories of
unseen class labels for both two datasets are listed. For each class, we visualize the top-5 images classified to it. Misclassified

images are marked with red bounding boxes.

embedding space using fixed image features. The two-step
pipeline tendency leads to the lack of semantic structural
information for specific ZSL task. To address this issue,
we propose an Image Feature Structure constraint to super-
vise image features’ learning of zero-shot semantic infor-
mation. Meanwhile, a Semantic Embedding Structure con-
straint is proposed to learn a generalized embedding space
which aligns with the semantic space properly. The two con-
straints together with a softmax classification loss build up
the Deep Semantic Structural Constraints model. The exper-
imental results show that the model achieves the state-of-
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the-art performance on zero-shot learning task.
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