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Abstract

Feature extraction is a critical step in the task of action recog-
nition. Hand-crafted features are often restricted because of
their fixed forms and deep learning features are more effec-
tive but need large-scale labeled data for training. In this
paper, we propose a new hierarchical Nonlinear Orthogo-
nal Adaptive-Subspace Self-Organizing Map (NOASSOM) to
adaptively and learn effective features from data without su-
pervision. NOASSOM is extended from Adaptive-Subspace
Self-Organizing Map (ASSOM) which only deals with lin-
ear data and is trained with supervision by the labeled data.
Firstly, by adding a nonlinear orthogonal map layer, NOAS-
SOM is able to handle the nonlinear input data and it avoids
defining the specific form of the nonlinear orthogonal map by
a kernel trick. Secondly, we modify loss function of ASSOM
such that every input sample is used to train model individ-
ually. In this way, NOASSOM effectively learns the statis-
tic patterns from data without supervision. Thirdly, we pro-
pose a hierarchical NOASSOM to extract more representative
features. Finally, we apply the proposed hierarchical NOAS-
SOM to efficiently describe the appearance and motion infor-
mation around trajectories for action recognition. Experimen-
tal results on widely used datasets show that our method has
superior performance than many state-of-the-art hand-crafted
features and deep learning features based methods.

Introduction

The effective extraction of features from large-scale is a
challenging and highly-focused problem in many data anal-
ysis areas, such as text, speech, image and video. Usually,
there exist several invariant patterns in most data, and each
invariant pattern can be represented by a feature filter. The
input data are filtered by a series of different filters to achieve
the effective feature. In videos, there are mainly two cate-
gories of features for human action recognition:

• Many hand-crafted features are proposed for images and
videos, such as SIFT (Lowe 1999), HoF (Laptev et al.
2008), HoG (Dalal and Triggs 2005) and MBH (Dalal,
Triggs, and Schmid 2006). For HoG and HoF, their fo-
cused patterns are respectively Histogram of oriented
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Gradient and Histogram of Flow. Namely, these two fea-
tures use two different histogram filters to represent pat-
terns in the data. Besides, Gabor filter is widely used for
feature extraction when the targets are moving or their
illumination is varying. These hand-crafted features are
limited in that their mathematical forms are fixed a priori.
They focus on some specific patterns and are not applica-
ble to various data.

• Deep learning features, like those extracted by convolu-
tional filters, are often learned using supervised methods
(BP Algorithm) on large-scale labeled data. For example,
the TDD (Wang, Qiao, and Tang 2015) and Two-stream
(Simonyan and Zisserman 2014) methods use the labeled
frames to train their deep models, and obtain the effective
CNN features by convolutional filters. If only unlabeled
data are available or there is not enough training data, it is
not possible to learn accurate filters.

To overcome the limitations of the above features, we pro-
pose a hierarchal Nonlinear Orthogonal Adaptive-Subspace
Self-Organizing Map (NOASSOM) to learn an effective and
adaptive feature from data without supervision. Adaptive-
Subspace Self-Organizing Map (ASSOM) (Kohonen, Kaski,
and Lappalainen 1997) is a neural network that learns fea-
ture filters from the labeled data. The data are classified us-
ing subspaces. Each subspace corresponds to a pattern found
by ASSOM. The NOASSOM is extended from the ASSOM.
Compared with ASSOM, the proposed NOASSOM makes
changes on mainly three aspects. Firstly, we use the modi-
fied polynomial kernel to enhance the representative ability
of the ASSOM from linear subspace to nonlinear orthogo-
nal subspace. Secondly, we propose a new loss function and
learning method to learn the filters from the unlabeled data.
Thirdly, we extend the NOASSOM to a hierarchical archi-
tecture to extract the high-level features.

We apply the proposed hierarchical NOASSOM to extract
local features of both motion and appearance information
for action recognition in videos. Specifically, we use the im-
proved dense trajectories (Wang and Schmid 2013) to ex-
tract key regions in videos. Based on the hierarchical NOAS-
SOM, we design a spatial channel to extract the appearance
information along these trajectories, and meanwhile a tem-
poral channel to extract the motion information. Then, we
use the last layer of the hierarchal NOASSOM to fuse and
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describe the spatio-temporal information of two channels.
Finally, Fisher Vector (Wang and Schmid 2013) is used to
encode local features described by the hierarchal NOAS-
SOM in a video, and is classified by SVM. Experiments
demonstrate that our method obtains the-state-of-the-art per-
formance on both large-scale and small-scale datasets.

Related Works
Action recognition occupies an important position in com-
puter vision and feature extraction is a critical step for action
recognition. We review the following three kinds of features
and their frameworks for action recognition in brief.

STIP/Dense volume/Trajectories+local descriptors: In
the early stages, the actions are relatively simple and reg-
ular in datasets, such as KTH (Schuldt, Laptev, and Ca-
puto 2004), Weizmann (Blank et al. 2005) and UCF Sports
(Rodriguez, Ahmed, and Shah 2008). Relatively less in-
formation needs to be extracted. Hand-crafted feature can
handle these situations. Space-Time Interest Points (STIP)
(Laptev 2005), dense volumes (Le et al. 2011b) and Tra-
jectories (Matikaninen, Hebert, and Sukthankar 2009)(Wang
et al. 2013)(Wang and Schmid 2013) are often used to
extract key regions in videos. Some popular local fea-
tures are proposed to represent the 3D volumes extracted
around these key regions, such as HOF, HOG, 3D His-
togram of Gradient (HOG3D) (Klaser, Marszalek, and
Schmid 2008), ISA (Le et al. 2011b), Motion Boundary
Histograms (MBH) (Dalal, Triggs, and Schmid 2006) and
Extended SURF (ESURF) (Willems, Tuytelaars, and Gool
2008). When larger and challenging datasets emerge, the
hand-crafted features are too weak to produce good perfor-
mance. The trajectory-Pooled Deep-Convolutional Descrip-
tors (TDD) method (Matikaninen, Hebert, and Sukthankar
2009) uses the pre-trained Two-Stream ConvNets to extract
the deep learning features along the trajectories in videos
and achieves good results on datasets.

End-to-end network: In this framework, the video is di-
rectly used or is decomposed into frames and optical flows as
input to the end-to-end networks. Deep learning features are
implicitly extracted in networks. The 3D ConvNet (Ji et al.
2013) extends the 2D ConvNet to directly train using videos,
but it needs abundant computations and has not achieved
outstanding performance. Deep ConvNets (Karpathy et al.
2014) use the fusion of different layers and are trained on
large scale dataset such as Sports1-M. Two-Stream Con-
vNet (Simonyan and Zisserman 2014) using two channels
of RGB frames and optical flow is successfully applied to
action recognition. Temporal Segment Network (Wang et al.
2016) divides the video into multiple parts, on which Two-
Stream ConvNets are used separately. It achieves the bet-
ter performance than Two-Stream. Another end-to-end net-
work, ST-ResNet (Feichtenhofer, Pinz, and Zisserman 2016)
obtains the higher performance than previous methods.

Temporal modeling framework: Many methods model
temporal structure (Zhu et al. 2016)(Song et al. 2017) of the
low-level visual features which are obtained by deep learn-
ing or hand-craft. The temporal modeling methods include
recurrent neural network (RNN) (Elman 1990), or its vari-
ants such as long short-term memory (LSTM) (Hochreiter

and Schmidhuber 1997). For example, a stack of LSTMs
upon CNN features is used to learn the high-level temporal
structure (Donahue et al. 2015) or to model the dynamics
of CNN features (Ng et al. 2015). There are also methods
based on hidden Markov model (HMM) (Sun and Nevatia
2013) and linear dynamic systems (LDS) (Bhattacharya et
al. 2014). These methods decompose actions into multiple
states corresponding to shots of sub-actions. VLAD3 (Li, Li,
and Vasconcelos 2016) represents a video by encompassing
long-range level of the hierarchy in videos.

Hand-crafted features are often more effective in small-
scale datasets than deep learning features, but they are re-
stricted in more complicated applications because of their
fixed forms. Deep learning features are more effective for the
large-scale datasets but they need a large amount of data for
training. In our paper, the proposed hierarchical NOASSOM
can adaptively learn feature filters from unlabeled videos.
Subsequently, we use the hierarchical NOASSOM to suffi-
ciently extract the local features in videos.

Nonlinear Orthogonal Adaptive-Subspace

Self-Organizing Map

In this section, we briefly introduce the general ASSOM,
and then propose our NOASSOM. Next, we present the un-
supervised training method of NOASSOM.

The general ASSOM

Adaptive-Subspace Self-Organizing Map (ASSOM) is a
modular neural network, the modules of which adaptively
learn to identify input patterns subject to different trans-
formations. Specifically, ASSOM includes three layers as
shown in Figure 1(a). The subspace layer has many sub-
spaces Lq , which learn the different patterns from the input
layer X(i). The output layer ||X̂q(i)||2 is composed of the
linear orthogonal projections of the input layer on all sub-
spaces of the subspace layer, and it can be used as the fea-
ture representation of the input.

On one hand, the input data are linearly projected to the
subspaces of ASSOM. However, the data are often nonlin-
ear in reality. If the input data are highly nonlinear, the sub-
spaces of ASSOM cannot effectively learn the patterns from
data. It is theoretically demonstrated that nonlinear data can
be linearly separable if the data are mapped to a space with a
high enough dimension. An effective method is to first map
the original data to a high dimension to make data linear, and
then the data after mapped can be linearly projected to the
subspaces in the high dimensional space.

On the other hand, ASSOM needs the labeled data for
supervised learning and cannot work on unsupervised situ-
ations. It is usually used for the classification of the super-
vised data. For example, (Peng et al. 1999) uses 10 different
classes of digits 0 ∼ 9 to train 10 different ASSOMs with
supervision for handwritten digit recognition. In addition,
(Liu 2002) uses the features of the same person to train the
corresponding ASSOM for face recognition.
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(a) The architecture of ASSOM (b) The architecture of the proposed NOAS-
SOM.

Figure 1: The illustrations of ASSOM and NOASSOM. ASSOM consists of three layers, which are input, subspace and
output layer. NOASSOM consists of four layers, which are input, φ-input, subspace and output layer.

The model of NOASSOM

We propose a NOASSOM to effectively learn the patterns
from the nonlinear data by adding a nonlinear orthogonal
map layer. Simultaneously, we modify the loss function of
ASSOM to learn patterns without supervision.

The architecture of NOASSOM is illustrated in Figure
1(b). It consists of four layers, input, φ-input, subspace
and output layer. Compared with ASSOM, NOASSOM
adds a nonlinear orthogonal map layer, denoted as φ-input,
which is mapped from the input layer by φ. Assume that
the input stimulus is denoted as {X(i)}Ni=1, where the P -
dimensional vector X(i) is the i-th input sample and N
is the number of the samples. There are Q nodes which
are denoted as {nodeq}Qq=1 in the output layer. Each out-
put nodeq in the output layer corresponds to a mapped sub-
space Φq in the subspace layer. Φq consists of H basis vec-
tors {φ(bqh)}Hh=1 , which are mapped from {bqh}Hh=1 by φ.
Specifically, {bqh}Hh=1 are the orthonormal basis vectors in
the original subspace Lq , and have the same dimension with
X(i) satisfying that,

< bqh1
, bqh2

>=

{
0, h1 �= h2,

1, otherwise.
(1)

{φ(bqh)}Hh=1 respectively correspond to the subspace nodes
{Sq

h}Hh=1 in the mapped subspace Φq and are represented as
the connections between the φ-input layer and the subspace
nodes {Sq

h}Hh=1 in the subspace layer.
In order to preserve the orthogonality after the basis vec-

tors {bqh}Hh=1 are mapped, we set φ(bqh) to satisfy that,

< φ(bqh1
), φ(bqh2

) >= 0, h1 �= h2. (2)

In this way, we achieve the nonlinear orthogonal map of
X(i) and bqh by φ. Then, we call the mapped subspace Φq =
{φ(bqh)}Hh=1 the nonlinear orthogonal subspace.

Subsequently, we derive the loss function Eφ of NOAS-
SOM by computing the nonlinear orthogonal projection in
the output layer for each input sample based on the assump-
tion in Equation 2. The specific implement of φ is detailed in
the next section. Let Oi(S

q
h) denote the nonlinear orthogonal

projection of the input X(i) on the basis vector bqh, and it is
achieved by the orthogonal projection of φ(X(i)) on φ(bqh),

Oi(S
q
h) =

φT (bqh)

||φT (bqh)||
φ(X(i))

φ(bqh)

||φ(bqh)||
. (3)

Let φ̂q(X(i)) denote the nonlinear orthogonal projection of
X(i) on the mapped subspace Φq . Due to the orthogonality
of {φ(bqh)}Hh=1 by Equation 2, φ̂q(X(i)) can be calculated
by the easy sum of Oi(S

q
h) with respect to all the mapped

basis vectors {φ(bqh)}Hh=1 of the subspace Φq , as follows,

φ̂q(X(i)) =
H∑

h=1

Oi(S
q
h). (4)

||φ̂q(X(i))||2 is used as the output of X(i) on nodeq and it
represents the response value of X(i) on the mapped sub-
space Φq . Simultaneously, the orthogonal projection error
vector of φ(X(i)) on subspace Φq is denoted as follows,

φ̃q(X(i)) = φ(X(i))− φ̂q(X(i)). (5)

Among all the nodes in the output layer, we define a
winner node as the one with the minimal projection error
||φ̃q(X(i))||2. Mathematically, for each input X(i), the in-
dex c(i) of its winner node nodec(i) is formulated as,

c(i) = argmin
q

{||φ̃q(X(i))||2}. (6)

After obtained the projection errors of all samples on all
output nodes, the loss function is defined as minimizing the
weighted sum of these projection errors, as follows,

Eφ =

N∑
i=1

Q∑
q=1

hq
c(i)||φ̃q(X(i))||2, (7)

where hq
c(i) is the weight and it is a decreasing function of

the distance between the winner nodec(i) and nodeq in the
NOASSOM array. We often choose

hq
c(i) = exp(−||c(i)− q||2

2σ2
). (8)

Discussion: The loss function of ASSOM has the follow-
ing form (Kohonen, Kaski, and Lappalainen 1997),

E =

Q∑
q=1

hq
c

N∑
i=1

||X̃(i)||2, (9)

where ||X̃(i)||2 is the orthogonal projection error of X(i) on
the subspace Lq in ASSOM. Each output nodeq corresponds
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to a pattern, and each input X(i) is assigned to a winner
nodec. The nodec acts as a label for a pattern class. In Equa-
tion 9, the loss of ASSOM is calculated by

∑N
i=1 ||X̃(i)||2.

The samples {X(i)}Ni=1 must be of the same label to train
the class-specific ASSOM with supervision, because they
share one winner nodec and hq

c in Equation 9. If {X(i)}Ni=1
are with different labels, they lie in different patterns and
have different winner nodec. So we must use clusters of
samples with the same label nodec for supervised training
of ASSOM. By experiments, a group of the unlabeled data
can not converge this ASSOM.

For NOASSOM, {X(i)}Ni=1 individually contributes to
loss in Equation 7. We don’t need to know each pattern of
X(i), which has its own winner nodec(i) and weight hq

c(i).
Then hq

c(i) is used to obtain the weighted sum of these errors.

The unsupervised training of NOASSOM

The parameters needed to learn in NOASSOM include the
orthonormal basis vectors bqh and the nonlinear orthogonal
map φ. In order to avoid directly computing φ, we employ
a nonlinear kernel κ(u, v) =< φ(u), φ(v) > to replace φ in
the final loss function Eφ in Equation 7.

Specifically, φ̂q(X(i)) in Equation 4 is reformulated in
the term of κ, as follows,

φ̂q(X(i)) =

H∑
h=1

κ(bqh, X(i))

κ(bqh, b
q
h)

φ(bqh). (10)

Then, the output ||φ̂q(X(i))||2 and the projection error
||φ̃q(X(i))||2 are reformulated in the term of κ, as follows,

||φ̂q(X(i))||2 =< φ̂q(X(i)), φ̂q(X(i)) >

=

H∑
h=1

κ2(bqh, X(i))

κ(bqh, b
q
h)

||φ̃q(X(i))||2 =< φ̃q(X(i)), φ̃q(X(i)) >

= κ(X(i), X(i))−
H∑

h=1

κ2(bqh, X(i))

κ(bqh, b
q
h)

. (11)

The normalization can be then incorporated into the loss
function Equation 7 by using relative projection errors
||φ̃q(X(i))||2/||φ(X(i))||2. By Equation 11, the final loss
function Eφ is recalculated as follows,

Eφ =
N∑
i=1

Q∑
q=1

hq
c(i)

||φ̃q(X(i))||2
||φ(X(i))||2

=

N∑
i=1

Q∑
q=1

hq
c(i)[1−

H∑
h=1

κ2(bqh, X(i))

κ(X(i), X(i))κ(bqh, b
q
h)

]

(12)

The kernel needs to be artificially selected and the modified
polynomial kernel is the most effective kernel to satisfy the

orthogonality assumption in Equation 2, we adopt a modi-
fied polynomial kernel function,

κ(u, v) =< φ(u), φ(v) >=

L∑
j=1

wj(u
T v)j (13)

L is the highest order of the polynomial, and wj is the weight
of the product term in kernel. We use the gradient descent
method to automatically learn the wj and bqh, as follows,

bqh(t+ 1) = bqh(t)− 0.5λ(t)
∂Eφ

∂bqh

wj(t+ 1) = wj(t)− 0.5λ(t)
∂Eφ

∂wj
(14)

where λ(t) is the learning rate, which is a decreasing func-
tion over the time. The specific form will be detailed in
the experiment section. To accelerate the convergency, the
learning rate is set a monotonically increasing function of
||φ̃q(X(i))||2 or decreasing function of ||φ̂q(X(i))||2. So we
divide λ(t) by ||φ̂q(X(i))||/||φ(X(i))||. The final learning
rules of Eφ with respect to the basis vector bqh and wj are
calculated as follows,

bqh(t+ 1) = bqh(t)+

N∑
i=1

L∑
j=1

λ(t)hq
c(i)jwj [b

q
h
T
X(i)]

j−1
κ(bqh, X(i))X(i)

||φ̂q(X(i))||||φ(X(i))||κ(bqh, bqh)
,

wj(t+ 1) = wj(t)+

N∑
i=1

Q∑
q=1

H∑
h=1

λ(t)hq
c(i)||φ(X(i))||

2[κ(X(i), X(i))κ(bqh, b
q
h)]

2||φ̂q(X(i))||
[2κ(bqh, X(i))[bqh

T
X(i)]jκ(X(i), X(i))κ(bqh, b

q
h)−

κ2(bqh, X(i))[[X(i)TX(i)]jκ(bqh, b
q
h) + κ(X(i), X(i))]

(15)

After bqh(t+1) is updated in each iteration t, we orthogonal-
ize the basis vectors {bqh}Hh=1 again by Gram-Schmidt Or-
thogonalization as in ASSOM. This can make {Φ(bqh)}Hh=1
orthogonal because of our kernel in Equation 13.

Activation function for feature extraction: when the
learning process of NOASSOM is finished, it can be used
for feature extraction. We use the activation of the output
layer of NOASSOM as the final feature of the input layer.
Given any input X , its activated output with respect to the
output nodeq is defined as follows,

Oq = F(||φ̂q(X)||2) (16)
where we employ the bipolar sigmoid function as the acti-
vation function, F = 1−e−αx

1+e−αx . Finally, [O1,O2, ...,OQ] is
used as the feature of the input X by our NOASSOM.

Hierarchical NOASSOM Descriptor for

Action Recognition
Inspired by the fact that the proposed NOASSOM can be
used to adaptively extract feature from data without super-
vision, we use it to construct a hierarchical NOASSOM to
describe the local regions for action recognition.
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Figure 2: The hierarchical NOASSOM descriptor for the 3D volume around the improved dense trajectoy. The size of the 3D
Volume is 20×20(spatial)×14(temporal). The size of the sub-block is 16×16 (spatial)×10 (temporal)×3 (RGB). The size of
the frame patch is 20×20 (spatial)×3 (RGB). The dimensions of the output of each NOASSOM in the first layer on the spatial
and temporal channels are respectively 100 and 300. The numbers of NOASSOMs in the first layer on the spatial and temporal
channels are respectively 14 and 8. The dimensions of the output of the NOASSOM in the second layer on two channels are
both 200. The dimension of the output of the NOASSOM in the third layer is 400.

At first, we extract improved dense trajectories from all
videos by using the method (Wang and Schmid 2013) on
its original spatial scale, as done in (Wang, Qiao, and Tang
2015). Improved dense trajectories are widely used to ex-
tract key regions in the video and boost the recognition per-
formance of dense trajectories (Wang et al. 2013) by taking
camera motion into account. Around each trajectory, a 3D
volume is extracted. Subsequently, we present a hierarchi-
cal NOASSOM model to produce a 400-dim local feature
for the 3D volume by the fusion of the spatial and tempo-
ral channels. The proposed hierarchical NOASSOM model
is composed of three layers. The former two layers include
PCA, NOASSOM and activation operation and the last layer
replaces the PCA with ZCA, as shown in Figure 2. We use
PCA to halve the input dimension and use ZCA to whiten
the input data for better learning NOASSOM.

Specifically, in the first layer, we respectively extract the
low-level features from the spatial and temporal channels.
In the temporal channel, we divide the 3D volume into sub-
blocks as input of the NOASSOM. In the spatial channel,
we use the continuous frame patches along the trajectory as
input of the NOASSOM. In the second layer, for each of the
two channels we use a NOASSOM to fuse the extracted low-
level features from all NOASSOMs of this channel in the
first layer. In each channel, the concatenation of all NOAS-
SOM outputs in the first layer is used as input of NOAS-
SOM in the second layer. In the last layer, we use a NOAS-
SOM in the fusion channel to fuse two channels. Namely,
the concatenation of the activated outputs of two channels
in the second layer is used as input of NOASSOM in the
third layer. The input is whitened by ZCA at first. The acti-
vated output of the NOASSOM is a 400-dim vector used to
describe the 3D volumes around these trajectories.

The training process of the proposed hierarchical NOAS-
SOM is executed layer by layer. Firstly, we randomly sample
the 3D volumes around the improved trajectories from the
train datasets. Then, we randomly sample sub-blocks and
frame patches from the 3D volumes to respectively train the

NOASSOM of the temporal and spatial channels in the first
layer. Subsequently, we use the activated outputs of the 3D
volumes on the two channels in the first layer to respectively
train the NOASSOM of two channels in the second layer. Fi-
nally, we use the activated output of the 3D volumes through
the spatial and temporal channels to train NOASSOM of the
third layer on the fusion channel.

Finally, several 400-dim local features, extracted by the
hierarchical NOASSOM from videos, are used to train
GMMs. Based on GMMs, local features in a video are en-
coded as a Fisher Vector which has been verified very ef-
fective for action recognition in previous works (Wang and
Schmid 2013)(Wang, Qiao, and Tang 2015). We use the lin-
ear SVM as the classifier to classify the videos for action
recognition.

Experiments

We evaluated our method on the KTH (Schuldt, Laptev,
and Caputo 2004), UCF-101 (Soomro, Zamir, and Shah
2012) and HMDB-51 (Kuehne et al. 2011) action recogni-
tion benchmarks. The first one is a public traditional dataset
and the other two are public large and challenging datasets.
We followed the original evaluation scheme by using three
different training and testing splits on UCF-101 and HMDB-
51. The mean classification accuracy over these three splits
is reported for our method. When tested on HMDB-51, hi-
erarchal NOASSOM is pre-trained without supervision on
UCF-101 to better initialize the network parameters and then
fine-tuned on HMDB-51 train splits. Without pre-training
on UCF-101, the result is less accurate, and a higher perfor-
mance is obtained if the model is trained on large datasets
without supervision. When evaluated on UCF-101, hierar-
chal NOASSOM is pre-trained without supervision on train
splits of UCF-101 and HMDB-51.

For each NOASSOM, we set the basis vector number
H of each subspace to 2 considering the training time and
performance. We set the learning rate λ(t) = 0.1T

T+99t with
N = 200 , T = 10000 (T is the max iteration) and L = 5.
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Table 1: Evaluations of hierarchal NOASSOM on the
HMDB51 dataset and UCF-101 dataset.

Training setting HMDB-51 UCF-101
Spatio-temporal & ASSOM 62.9% 87.4%

Spatial channel & NOASSOM 58.5% 83.6%
Temporal channel & NOASSOM 63.4% 88.2%
Spatio-temporal & NOASSOM 66.4% 92.1%

NOASSOM+iDT 69.3% 93.8%

We set the activation function as F = 1−e−0.3x

1+e−0.3x . For the
Fisher vector, we reduced the dimension of local features by
half, namely D = 200. Next, GMM with K(K = 256)
was trained. Then, each video was denoted as a 2KD-
dimensional vector. Finally, we used a linear SVM to clas-
sify these actions with C = 100.

Evaluation of NOASSOM

We evaluated our method with different pipelines as shown
in Table 1. Specifically, we evaluated the performance be-
tween ASSOM and NOASSOM, the effectiveness of spatial
channel, temporal channel and fusion channel.

We compared the performance between ASSOM and
NOASSOM on UCF-101 and HMDB-51 datasets. Since
randomly sampled 3D volumes around the trajectories have
no labels, the original supervised training method of AS-
SOM cannot work. So we removed the nonlinear orthog-
onal map φ from our NOASSOM to construct a new AS-
SOM method, the loss function of which turns to E =∑Q

q=1

∑N
i=1 h

q
c(i)

||X̃(i)||2
||X(i)||2 . We used gradient decent to min-

imize this loss function to learn bqh for training ASSOM
without supervision. In this experiment the activated out-
put of the fusion channel was used as the local feature. This
method is denoted as “Spatio-temporal & ASSOM” in Ta-
ble 1, and it achieves a relative good performance (UCF-101
87.4%, HMDB-51 62.9%) by our modified loss function and
training method. Moreover, there are improvements by 3.5%
and 4.7% on HMDB-51 and UCF-101 datasets respectively
when we use NOASSOM, denoted as ”Spatio-temporal &
NOASSOM” in Table 1. Results demonstrate the effective-
ness of our training method and nonlinear orthogonal map.

We evaluated the performance of spatial channel and tem-
poral channel by respectively using the activated output of
spatial channel and temporal channel in the second layer.
The temporal channel outperforms the spatial channel by
4.9% and 4.6% on HMDB-51 and UCF-101 respectively.
Results indicate that motion information has a higher dis-
crimination than appearance information for action recogni-
tion. A similar result is obtained in Two-stream method (Si-
monyan and Zisserman 2014). In spatial and temporal chan-
nels, we respectively use NOASSOM to learn the patterns of
two different types of data, images and video blocks. The re-
sults prove the generality and effectiveness of NOASSOM.

We used a three-layer NOASSOM to naturedly fuse these
two channels of features by concatenating the activated out-
put of spatial and temporal channels in the second layer as
the input of the third layer. We obtained a high improve-

Figure 3: Learned appearance filters of NOASSOM on UCF-
101. Each filter is the same as the size of the frame patch
along the trajectory. The filters are represented by RGB val-
ues. The size of each filter is 20x20.

Figure 4: Learned motion filters of NOASSOM at time t = 1
in the 3D filters on UCF-101. Each 3D filter is the same
as the size of the sub-block in the 3D volume around the
trajectory. The size of the 3D filter is 16x16x10.

ment compared with using the spatial and temporal channels
separately. This demonstrates that our hierarchical NOAS-
SOM effectively captures the motion and appearance infor-
mation. Finally, we further fused the iDT features (Wang
and Schmid 2013) by the fusion channel, namely addition-
ally concatenating the iDT features as the input of the third
layer. By the concatenated input, NOASSOM of the third
layer was trained and it improved 2.9% and 1.7% perfor-
mance on HMDB-51 and UCF-101 respectively. It can be
seen that our hierarchical NOASSOM is able to extract and
fuse multiple kinds of information for obtaining better rep-
resentative features.

Visualization of NOASSOM

We visualized the learned basis vectors {bqh}2h=1 of the sub-
spaces in the first layer on the spatial channel in Figure 3.
In each row, two filters are grouped as the basis vectors of
a subspace because we set H = 2. It can be seen that some
filters are similar with the vertical or horizontal edge filters,
which mainly extract the contour information. Another fil-
ters are more sensitive to the color and texture information.
By these filters, appearance information along the trajecto-
ries are effectively extracted.

Similarly, we also visualized the learned basis vectors
{bqh}2h=1 in the first layer on the temporal channel in Figure
4. Some of these filters vary in frequency and orientation,
which are similar to Gabor filters. They are more sensitive
to movement information. By these filters, motion informa-
tion along the trajectories can be effectively extracted. Com-
pared with the learnt filters on the spatial channel, the filters
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Table 2: Mean accuracy of the state-of-the-art methods and our results on HMDB-51 and UCF-101. We respectively show the
results of the hierarchal NOASSOM and our best results combing the NOASSOM features with iDT features.

HMDB-51 UCF-101
STIP+BoVW (Soomro, Zamir, and Shah 2011) 23.0% STIP+BoVW (Soomro, Zamir, and Shah 2011) 43.9%

Motionlets (Wang, Qiao, and Tang 2013) 42.1% Deep Net(Karpathy et al. 2014) 63.3%
DT+BoVW (Wang et al. 2013) 46.6% DT+VLAD (Cai et al. 2014) 79.9%

iDT+FV (Wang and Schmid 2013) 57.2% iDT+FV (Wang and Schmid 2013) 85.9%
FstCN (Sun et al. 2015) 59.1% iDT+HSV (Peng et al. 2014) 87.9%

Two Stream (Simonyan and Zisserman 2014) 59.4% FstCN (Sun et al. 2015) 87.9%
iDT+HSV (Peng et al. 2014) 61.1% Two Stream (Simonyan and Zisserman 2014) 88.0%

TDD+iDT (Wang, Qiao, and Tang 2015) 65.9% TDD+iDT (Wang, Qiao, and Tang 2015) 91.5%
RNN+FV (Lev et al. 2016) 54.3% RNN+FV (Lev et al. 2016) 88.0%

LTC (Varol, Laptev, and Schmid 2016) 64.8% VLAD3+iDT(FV) (Li, Li, and Vasconcelos 2016) 92.2%
Adascan+iDT (Kar et al. 2017) 61.0% Adascan+iDT (Kar et al. 2017) 91.3%

TSN (Wang et al. 2016) 69.4% TSN (Wang et al. 2016) 94.2%
ActionVLAD+iDT (Girdhar et al. 2017) 69.8% ActionVLAD+iDT (Girdhar et al. 2017) 93.6%

DT+Hybrid architectures (de Souza et al. 2016) 70.4% DT+Hybrid architectures (de Souza et al. 2016) 92.5%
ST-ResNet+iDT (Feichtenhofer, Pinz, and Zisserman 2016) 70.3% ST-ResNet+iDT 94.6%

NOASSOM 66.4% NOASSOM 92.1%
NOASSOM+iDT 69.3% NOASSOM+iDT 93.8%

Table 3: Evaluation of hierarchal NOASSOM on KTH.
Algorithm Accuracy

3D CNN(Ji et al. 2010) 90.2%
ISA(Le. et al. 2011a) 93.9%

DT+HOG/HOF/MBH(Wang et al. 2013) 94.2%
DT+MBH(Wang et al. 2013) 95.0%

DT+NOASSOM+BoVW 97.9%

NOASSOM+FV 98.2%

of temporal channel are more complex and irregular, which
indicates that motion patterns are more complicated.

Visualizations of two channels prove that NOASSOM
adaptively and effectively learn different filters to extract
complementary patterns from the visual data. So the combi-
nation of spatial channel and temporal channel can be more
effective, which are also proven in Table 1.

Comparison to the state of the art

In Table 2, we compared our methods with recent state-
of-the-art methods on UCF-101 and HMDB-51. From the
comparison results, we observe the following points. I) Our
method outperforms all hand-crafted features based meth-
ods, such as (HoG, HoF, MBH, HSV) + iDT. The iDT+HSV
method (Peng et al. 2014) uses different fusions of hand-
crafted features to obtain the best performance among the
hand-crafted features based methods, and we respectively
outperforms the iDT+HSV method by 8.2% and 5.9% on
HMDB-51 and UCF-101. II) ST-Resnet based on the Resnet
and TSN based on multiple Two-Stream ConvNets using
the end-to-end networks achieve higher performance than
other methods. However, it is noted that our method also
outperforms some end-to-end network based methods such
as FstCN, Adascan+iDT, Two-stream. III) Our methods out-
perform the methods which use deep learning features as lo-
cal features. Specifically, our method outperforms the TDD

method which uses CNN local feature+iDT by 3.4% on
HMDB-51, and outperforms it by 2.3% on UCF-101. An-
other deep learning local feature based method RNN+FV
also has lower performance than our method.

We also tested our method on the small-scale dataset KTH
in Table 3 by using the same pipeline (dense trajectory +
BovW) and the pipeline in this paper. The results show that
our method also has a superior performance on the small-
scale dataset compared with the hand-crafted feature based
methods and 3D CNN based method. In speed, we use fewer
layers (3 layers) of NOASSOM compared with CNNs to ex-
tract local features and it has fewer parameters to learn. So
the training time is faster than other deep CNNs based state-
of-the-art methods.

Conclusions

We have proposed a new feature extraction method based
on hierarchical NOASSOM for action recognition. The hi-
erarchical NOASSOM has adaptively learnt effective feature
filters of different hierarchies without supervision from im-
ages and video blocks. We combined the iDT features with
our hierarchical NOASSOM and achieved the state-of-the-
art results on the UCF-101 , HMDB-51 and KTH datasets.
Since the proposed NOASSOM can be used as a general-
ized feature descriptor, we expect to apply it in more areas
and investigate NOASSOM more deeply in the future work.
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