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Abstract

Cascaded regression is prevailing in face alignment thanks to
its accuracy and robustness, but typically demands manually
annotated examples having low discrepancy between shape-
indexed features and shape updates. In this paper, we propose
a self-reinforced strategy that iteratively expands the quantity
and improves the quality of training examples, thus upgrading
the performance of cascaded regression itself. The reinforced
term evaluates the example quality upon the consistence on
both local appearance and global geometry of human faces,
and constitutes the example evolution by the philosophy of
“survival of the fittest”. We train a set of discriminative classi-
fiers, each associated with one landmark label, to prune those
examples with inconsistent local appearance, and further vali-
date the geometric relationship among groups of labeled land-
marks against the common global geometry derived from a
projective invariant. We embed this generic strategy into typi-
cal cascaded regressions, and the alignment results on several
benchmark data sets demonstrate its effectiveness to predict
good examples starting from a small subset.

Introduction
Face alignment, aiming at accurately and robustly localiz-
ing facial landmarks, plays a key role to many automatic
facial analysis tasks including face recognition, expression
recognition, attribute analysis, and animation. Recently, cas-
caded regression has become one of the most popular ap-
proaches to face alignment due to its accuracy and ro-
bustness (Ren et al. 2014; Xiong and De la Torre 2013;
Kowalski, Naruniec, and Trzcinski 2017). This approach
learns a series of regressors between shape-indexed features
and shape updates or gradients from a set of manually la-
beled face images. Inevitably, the performance of cascaded
regression highly depends on the quantity and quantity of
training examples. The quantity of unlabeled facial images
is not a problem in this ’big-data’ era, but example labeling
and the quality of labels are still critical. In this study, we
focus on these critical issues for cascaded regression.

Despite of its great success, the discrepancy or mismatch
between limited training examples and the huge solution
space typically downgrades the stability and accuracy of
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cascaded regression. One typical treatment is to divide the
original shape space into smaller sub-spaces (Zhu et al.
2016; Tuzel, Marks, and Tambe 2016). Researchers also at-
tempt to group relevant input features for mitigating mis-
matches (Cao et al. 2014; Ren et al. 2014). The cascade
Gaussian process (GP) regression trees find input features
showing consistent appearance through GP kernel func-
tions (Lee, Park, and Yoo 2015). The common strategy of
these methods lies in that they ‘tighten’ the correlation be-
tween input feature and target shape from the perspective of
local appearance.

Alternatively, researchers resort to the global geometry
(shape) among facial landmarks in order to address the
discrepancy issue. Martinez et al. embed nonparametric
Markov networks (Martinez et al. 2013), while Liu et al.
incorporate sparse shape constraints into regression (Liu,
Deng, and Tao 2016). In addition to these explicit shape
models, Li et al. discover the common geometry shared by
human faces using a projective invariant, called character-
istic number (CN), and append this geometric regression to
appearance (Li et al. 2015). These various forms of facial ge-
ometric representation are able to regularize the regression,
and thus improve the robustness of alignment.

It is commonly accepted in the machine learning (ML)
community that training examples are central to any ML al-
gorithms including regression. Unfortunately, the aforemen-
tioned alignment algorithms pay more attention to the re-
gression mechanism, instead of data itself, to tackle the issue
arisen from data discrepancy. Targeting at data preparation
for training and validating regressors, Sagonas et al. develop
a semi-automatic tool to annotate facial landmarks (Sagonas
et al. 2013), but how these annotations may affect regression
is untouched in their study. Antonakos et al. generate bound-
ing boxes as face labels and validate these labels in the con-
text of linear parametric models but not more complex cas-
cade regression (Antonakos and Zafeiriou 2014). Recently,
Zhang et al. develop a complicated deep network to leverage
face annotations across data sets (Zhang et al. 2015). Never-
theless, a general framework is still highly demanded to fuse
the discovering and upgrading training examples of low dis-
crepancy into cascaded regression for face alignment.

Self-reinforcement refers to “a process whereby individ-
uals control their own behavior by rewarding themselves
when a certain standard of performance has been attained
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or surpassed” (Artino 2011). In this paper, we propose self-
reinforced cascaded regression that upgrades itself through
minimizing an objective function analogous to meeting the
performance standard. The optimization process iteratively
updates example labeling, sample survival, and regression in
one framework as shown in Fig. 1. The process starts from
predicting unlabeled faces by the regression trained from a
small number of labeled examples, and then evaluates the
consistence of predicted labels on both local appearance
and global geometry of human faces. Those survived exam-
ples are fed to train an upgraded regression. This process
iteratively runs until convergence, yielding the cascaded re-
gression for accurate and robust alignment.

The objective in our framework is not directly defined
on the consistence between predicted labels and the ground
truth as typical semi-supervised learning (Zhu and Goldberg
2009) that has the risk of overfitting, but is derived from in-
direct consistency with local appearance and global geome-
try. This independence on regressors is so general to gener-
ate the self-reinforced versions of various cascaded regres-
sion algorithms. We demonstrate that our strategy is able
to automatically predict and find good examples starting
from a subset as small as one hundred for typical regres-
sors (Ren et al. 2014) and (Zhu et al. 2015), and even deep
networks (Kowalski, Naruniec, and Trzcinski 2017). These
self-reinforced regressions output comparable accuracy with
the state-of-the-art on the 300W set consisting of the test sets
of LFPW and Helen (Le et al. 2012) when only a small frac-
tion of labeled examples are available, validating its effec-
tiveness.

Related Work
In this section, we review recent advances on labeling or
generate examples in the machine learning community.

Semi-supervised learning attempts to use unlabeled data
for performance improvements of classifiers trained by
a small number of labeled examples (Zhu and Goldberg
2009). It has made great progress on solving the discrete
classification problems in this decade (Li and Fu 2013;
Li and Zhou 2015). However, it is nontrivial to directly bring
the semi-supervised algorithms for discrete problems to cas-
caded regression where target shape updates are continu-
ous and the solution space is quite huge. Self-paced learn-
ing (SPL), falling in the category of semi-supervised learn-
ing, include training samples in an easy-to-complex fash-
ion (Jiang et al. 2014; Singh et al. 2015). Our approach
shares commons with SPL on example selection embedded
in the training process, differing in that our objective is gen-
eral and decoupled from the training objective.

Generative adversarial network (GAN) (Goodfellow et al.
2014) is able to generate visually realistic images by com-
peting two deep networks, a generator and a discriminator.
Recently, GAN finds wide applications in many low level
image processing tasks such as super-resolution (Ledig et
al. 2016) and image attribute transfer (Huang et al. 2017).
Semi-supervised learning can also be combined with GAN
in order to improve the realism of a simulator’s output while
preserving the annotation information (Shrivastava et al.

2016) . Our example prediction and survival share the simi-
lar spirit with the generative and discriminative processes in
GAN, respectively. But GAN has to initialize from a rela-
tively larger number of examples to train two deep networks
as the generator and discriminator, and provides no explicit
regressor as self-reinforced regression does.

Self-Reinforced Cascaded Regression
We describe our self-reinforced cascaded regression that de-
fines an objective function with a local appearance and a
global geometry discrepancy to iteratively expand the train-
ing set and simultaneously upgrade the regressor as shown
in Fig. 1

Update

Local appearance discrepancy Global geometry discrepancy

... ...

Update Update

Initialize

Figure 1: Overview of our self-reinforced cascaded regres-
sion, forming a closed loop with label prediction S and sur-
vival v as well as regression upgrading W.

General formulation
We attempt to devise a general formulation where the
self-reinforcement is embedded with cascaded regression.
Typical cascaded regression minimizes a loss function
R(si, fi,w), where si is the annotated shape of the ith sam-
ple in the training set S. The symbol fi indicates the shape-
indexed feature of the ith sample image, and w denotes the
parameters of the learnt regressor. We denote Ω(·) as the reg-
ularization term and μ as a hyper parameter, and thus have a
general representation for cascaded regression as follow:

min(
∑
si∈S

R(si, fi,w)) + μΩ(w). (1)

Given the cascaded regression representation (1), we im-
pose a regularize term to formulate the iterative reinforce-
ment of predicted examples as:

(wt+1,vt+1,St+1) =

argmin
vi∈{0,1}n

(
∑
si∈St

viR(si, fi,wt) + μΩ(wt)− 1

α

n∑
i=1

vi),

(2)
where the subscript t indicates the tth iteration. The training
set St for the regression R includes either manually labeled
or originally unlabeled examples with predicted annotations.
The vector v consists of the binary vi that indicates whether
the ith sample is accurately labeled or not, and the parameter
α is a weight that determines the number of survived sam-
ples. The increase of α during the iteration leads to including
more samples for regression.
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The objective function (2) embraces the regression w,
shape labels s and example selection v into one general
framework whose optimization brings the joint upgrading
of all these factors. Consequently, the optimization of this
objective forms a complicated problem with the mixture
of continuous and discrete variables. We resort to an iter-
ative approximation to find the solution of (2). First, we fix
vt and St to find the optimal regression parameters wt+1.
The problem (2) degrades to conventional cascaded regres-
sion (1), e.g., (Ren et al. 2014) and (Zhu et al. 2015) as de-
tailed in the next section. For initialization, vt is set to 1 if
the sample is manually labeled otherwise 0.

Once the trained regression wt+1 is available, we are
able to predict the unlabeled or to update the labeled sub-
set. Given fixed vt and wt+1 in (2), the updating of example
labels St becomes:

min(
∑
si∈S

R(si, fi,w)). (3)

This minimization is equivalent to perform a prediction by
applying the learned cascaded regression. This updating is
so important in our self-reinforced regression that the pro-
cess does not only expand the example quantity but also im-
proves the labeling accuracy by the regression trained from
the survived examples in the previous iteration.

Finally, we update vt with St+1 and wt+1 fixed by de-
generating (2) to:

min(
1

α

n∑
i=1

vi). (4)

We compute the indicator vt+1 upon local appearance and
global geometry of human faces:

vi =

{
1 −(log ai + λ log gi) < α

0 otherwise
, (5)

where the parameter λ weighs appearance and geometry.
The value ai is derived from local appearance indicating
how accurately an individual landmark labels, and gi indi-
cates how a group of predicted labels satisfies the common
geometry of human faces. The calculation of this new regu-
larization term is independent to the regression R, providing
the generalization for various regression algorithms.

Remark: The calculation of ai and gi acts as the good-
ness evaluation of individuals (examples), and hence initi-
ates adjusting the behavior (accuracy) of individuals and that
of cascaded regression for the next iteration, constructing the
self-reinforcement process. The binary indicator vi specifies
whether one label survives or not, implying the well-known
law of nature “survivor of the fittest”. As nature evolves re-
peatedly, our self-reinforced cascaded regression iteratively
upgrades from a small subset of labels until ai and gi are
stable as shown in Fig. 1.

Local appearance discrepancy
We define ai as the discrepancy (similarity) among the
shape-indexed features (concatenating HOG (Dalal and
Triggs 2005) and FREAK (Alahi, Ortiz, and Vandergheynst

2012)) associated with an individual landmark. Figure 2
demonstrates the patches around three landmarks, i.e., the
right corner, the upper boundary of the right eye, and the
nose tip, from manually labeled images. The patches around
the same landmark exhibit similar appearance, while greatly
different from the other landmarks. Hence, the consistency
of local patches around a landmark is able to indicate the
accuracy of the labeled position.

(a) (b) (c)

Figure 2: Local patches around (a) right corner the right eye,
(b) upper boundary of the right eye, and (c) nose tip.

We take a straightforward technique to train an offline
naive Bayes classifier that discriminates those labels with
inconsistent neighboring appearance. We generate the posi-
tive and negative samples for training the classifier from the
originally labeled subset by assuming that labeled and pre-
dicted landmarks are normally distributed. Hence, we ran-
domly perturb the ground truth labels with a normal dis-
tribution, and compute the distance di between the ground
truth l̂ and the perturbed landmark li. The feature around
the landmark whose di is less than a threshold dt (related to
the standard deviation of the Gaussian distribution) is taken
as one positive sample for the classifier, others as the neg-
ative. This generation scheme is illustrated in Fig. 3, where
the white dot denotes the ground truth, the red ones stand for
positive samples and the blue for negative ones.

l̂

dt

di

li

Figure 3: Generate training samples for the local appearance
classifier.

Given a predicted landmark, we apply the trained classi-
fier to determine whether the landmark is a valid prediction,
and evaluate the local appearance discrepancy ai for a pre-
dicted (or labeled) example as the portion of valid landmarks
in the example:

ai =

∑
p∈Li

argmaxc∈Y P (c)
∏m

k=1 P (pk|c)
|Li| (6)
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The symbol Li denotes the set of local features for all land-
marks in the ith sample, |Li| is the number of landmarks,and
the local feature vector p has m components. The classifier
output Y is binary, where c = 1 indicates a valid landmark
and zero stands for an invalid one.

Global geometry discrepancy

The above discrepancy can only reflect the local feature con-
sistency around a landmark. We use the intrinsic facial ge-
ometry given by a projective invariant, named the character-
istic number (CN) (Fan et al. 2015), to evaluate the discrep-
ancy of predicted or labeled examples.

(a) (b) (c)

Figure 4: CN values reflect landmark geometry: (a) all cho-
sen landmarks to generate point combinations for CN cal-
culation, (b) one combination with the groundtruth, CN =
0.0204, and (c) one combination with an inaccurately la-
beled landmark, CN = 0.0479.

Fan et al. discover the common geometry on 8 land-
marks (Li et al. 2015). Herein, we are considering to la-
bel and select examples with 68 landmarks. Unfortunately,
it is prohibited for us to investigate all combinations of these
68 landmarks. We pick 14 landmarks that are all stably
presented in all face examples, shown as the blue points
in Fig. 4(a). We enumerate all possible three-point, five-
point and six-point1 combinations of these 14 landmarks,
and then calculate the CN values of these combinations on
all available samples. If a combination presents one com-
mon CN value with low standard deviation for all sample
images, we set the value as the intrinsic value reflecting the
common geometry underlying this landmark combination.
Figure 4(b) and (c) show one sample with correctly labeled
landmarks and another with an inaccurately labeled land-
mark, respectively. Their CN values are quite different. We
have to emphasize that this process seeking combinations
with stable intrinsic values only runs once for a large face
data set. We verify the CN values of predicted landmark an-
notations on these fixed combinations in the iterative select-
ing process.

It is reasonable to regard a set of landmark annota-
tions (labels) as valid when its CN value falls within a
range around its corresponding intrinsic value, recorded as
[c(min)

k c
(max)
k ]. Accordingly, the discrepancy gi for the

global geometry is given below:

1Four points cannot construct a projective invariant.

gi =

∑
ck∈C pck
|C|

where pck =

{
1 c

(min)
k <= ck <= c

(max)
k

0 otherwise
,

(7)

ck is the kth combination of CN values in the ith sample,
and |C| is the total number of combinations, each of which
can give one intrinsic value.

Alignment Algorithms
The last regular term in (2) is independent on the choice
of regression, and thus it is ready to embed the proposed
algorithm into any cascaded regression algorithms. In this
section, we exemplify the embedding to two algorithms
LBF (Ren et al. 2014) and CFSS (Zhu et al. 2015) that bal-
ance accuracy and efficiency.

In every iteration, LBF have two updating stages: one for
learning local binary features Φ = [φ1, φ2, . . . , φn], and the
other for global linear regression Wt. We pose the learning
for the first stage as the minimization of the objective func-
tion (8), where πl ◦ Δzi is the ground truth 2-dimensional
offset of the lth landmark in the ith training sample. Ii is the
facial image corresponding to i sample:

min
wl,φl

∑
si,Δsi

||πl ◦Δsi − wlφl(si, Ii)||22,

where si ∈ St−1,Δsi ∈ St.

(8)

Subsequently, we transform (2) into (9) in order to obtain
the linear regression Wt in LBF and combine it into our
formulation.

(wt+1,vt+1,St+1) =

argmin
vi∈{0,1}n

(
∑

si,Δzi

vi||Δsi −wtΦ(si, Ii)||22

+ μ||wt||22,−
1

α

n∑
i=1

vi),

where si ∈ St−1,Δsi ∈ St

(9)

Comparing (2) with (9), we have R(·) = ||Δzi −
wtΦ(zi, Ii)||22 and Ω(·) = ||wt||22. Consequently, we have
the LBF algorithm embedded with our self-reinforcement.

The training of CFSS is to iteratively estimate a finer
shape sub-region, (x̄(l), P

R
(l)), where x̄(l) is the center of the

estimated sub-region and PR
(l) is the probability distribution

depicting the sub-region around the center. We simply re-
place the regression stage in (2) with the iterative training
of CFSS. At this moment, the regression parameter wt indi-
cates (x̄(l), P

R
(l)), and then we can apply the self-reinforced

process for CFSS.

Experimental Results and Analysis
The experiments were performed on six widely used
datasets include FRGC v2.0, LFPW, HELEN, AFW, iBUG
and 300W. All faces are labeled 68 landmarks. We compute
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the alignment error for testing images using the standard
mean error normalized by the inter-pupil distance (NME).
The value of error indicates the percentage of the inter-pupil
distance, and we simply ignore the symbol ‘%’.

Firstly, we verify the correlation between our discrepancy
(no groundtruth label is available for its computation) and
labeling error against the groundtruth. Then, we perform our
self-reinforcement on two typical regressors and one recent
deep model, resulting in examples of high quality at seven
to twenty times, and finally compare our regression, whose
training starts from a small number of labeled faces, with
recent alignment algorithms.

Correlation between discrepancy and error

We analyze the effectiveness of discrepancy that evaluates
the example goodness in our self-reinforcement. The dis-
crepancy attemps to reflect the labeling error, i.e., how in-
accurate a sample is labeled. Generally, samples exhibiting
larger discrepancy have higher labeling error.

To verify the correlation between the discrepancy and la-
beling error, we randomly chose 100 samples in LFPW, and
trained an alignment regressor with these samples. Other
711 samples in LFPW were then labeled with the trained
regressor. The labeling error and discrepancy of these pre-
dicted samples are plotted in Fig. 5. The x axis is sample
IDs sorted by labeling error in an ascending order. The red
line indicates the labeling error and one blue circle denotes
the value of discrepancy for each sample. Figure 5 demon-
strates that there is a strong correlation between the discrep-
ancy and labeling error. The values of the discrepancy for
corresponding samples climb up with the increase of label-
ing error. The red line fits the changes of the discrepancy
very well. This fittingness verifies that the defined discrep-
ancy reflects how accurate a label is. Therefore, every time
we keep the samples having lower discrepancies, we have
the most accurately labeled sample survived. These labels
of low discrepancy introduce minimal error into training.
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Figure 5: The values of discrepancy and labeling error (the
red line). One blue circle indicates the discrepancy value of
one sample.

Unlabeled example predicting and survival
We firstly validate the self-reinforcement for typical regres-
sion, e.g., LBF and CFSS, on LFPW, and then our strategy
for deep models highly data demanding on a larger mixed
data set.
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Figure 6: The test error of every iteration where the y axis
indicates the error, and x denotes iteration steps. The blue
dash dots are the errors of training without any extra un-
labeled examples. The red solid and orange dots are those
from ours and training with manually chosen examples.

Self-reinforcement on conventional regression LFPW
contains more than one thousand images showing great vari-
ations especially on pose changes. Previous studies show
that LBF and CFSS perform well on this set as long as
hundreds of accurately labeled faces are available. We val-
idate how close the self-reinforced versions of LBF and/or
CFSS with unlabeled examples work to the original algo-
rithms with labeled ones.

Firstly, we validate how the minimization of our objec-
tive (2) continuously predicts and preserves those exam-
ples of low discrepancy. Manually including examples of
the lowest prediction error against the groundtruth (available
in LFPW) gives the upper bound of the example survival.
We started from 100 labeled examples, and implemented
the self-reinforced version of LBF (SR-LBF) to automati-
cally include 711 extra samples (regarded as unlabeled). The
comparisons between manual inclusion of the lowest labeled
error (LE) and our SR-LBF are plotted in Fig. 6 showing
the mean alignment error in every iteration. The testing er-
ror of SR-LBF on 224 images, shown as the red solid line,
decreases from 10.5 to 8.98, 14% lower than training with-
out any extra unlabeled data (WED). The orange dots in-
dicate the alignment errors of the regression with manually
chosen samples having the lowest labeling error against the
groundtruth. There is almost no difference between ours and
LE in the beginning of the iteration process. The gap in-
creases as more self-reinforced samples, automatically la-
beld and survived, are included, but reaches as low as 0.5
when the process converges. Our self-reinforcement is not
necessarily able to generate and include the ‘groundtruth’
labels (not exist in practice), but definitely to improve the
behavior of the regression toward the optimal.
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Figure 7: The mean alignment error under different ratios
of manually groundtruth labels. The orange circles give the
errors of SR-LBF with the mixture of groundtruth and auto-
matically labeled examples by self-reinforcement. The blue
triangles are those from LBF trained by various portions of
groundtruth labels indicated by the x axis.

Secondly, we demonstrate the effectiveness of self-
reinforcement by comparing SR-LBF with LBF when in-
cluding different ratios of groundtruth labels for training.
Besides those groundtruth labels, SR-LBF can include the
rest of LFPW training images without their labels. Figure 7
illustrates the mean errors for SR-LBF and LBF on 224
testing LFPW images. As the increase of the percentage of
groundtruth labels, both LBF and SR-LBF give lower errors
because the quantity of training examples with high qual-
ity labels is expanding. The errors of SR-LBF are always
lower than LBF, and the gaps are evident especially when
only small fractions (less than 50%) of groundtruth labels
are available. When all groundtruth labels are given, our re-
gression degrades to LBF. This plot validates that the self-
reinforcement is able to expand the quantity of training ex-
amples while maintaining the quality.
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Figure 8: Cumulative errors distributions on testing images
of LFPW. The x-axis is the normalized mean error (NME),
and the y-axis indicates the percentage of images on which
NMEs are lower than the x value.

Figure 9: Cumulative errors distributions on Large dataset.
The x-axis is the normalized mean error (NME), and the y-
axis indicates the percentage of images on which NMEs are
lower than the x value.

Thirdly, we compare the self-reinforced versions of
CFSS (Zhu et al. 2015) and LBF (Ren et al. 2014) with
the original algorithms as well as GPRT (Lee, Park, and
Yoo 2015). Figure 8 illustrates the cumulative error distri-
bution plots on 224 testing images of LFPW. All methods
were trained with only 100 annotated images, but our self-
reinforcement included 711 extra unlabeled samples. SR-
CFSS has better performance than CFSS, and SR-LBF bet-
ter than LBF. Both perform superior than GPRT, and SR-
CFSS is the best of these five algorithms. The proposed self-
reinforcement is capable of automatically labeling examples
and preserving good ones. Faces annotated with alignment
results are shown in Fig. 112. The SR versions performs
much better on noses and mouthes presenting large varia-
tions that cannot be covered by a small number of training
examples in the original regression algorithms.
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Figure 10: Cumulative errors distributions tested on LFPW
and Helen.

Self-reinforcement on deep networks To test the capa-
bility of our self-reinforced strategy on a large amount of
unlabeled facial images, we construct a large dataset which
contains 8,151 images and is made up of 6 facial datasets in-
clude FRGC v2.0, LFPW, HELEN, AFW, IBUG and 300W.
We compare the performance between the DAN(Kowalski,

2More images are available in the supplementary materials
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Naruniec, and Trzcinski 2017) trained only by labeled ex-
amples, labeled examples with extra examples obtained by
our self-reinforced strategy and labeled examples with ex-
tra examples obtained by LBF. The number of labeled ex-
amples is 100. Our self-reinforced framework use LBF as
alignment algorithm and obtains over 3,000 labeled facial
images (some bad samples are not chosen), then we choose
400 and 900 of them as extra examples for DAN. We also
directly run LBF (Ren et al. 2014) which is trained by 100
samples on the large dataset, then perform randomly selec-
tion on the result of LBF to obtain 900 extra examples for
DAN. 1,000 images from the large dataset are used for test-
ing. Figure 9 illustrates the cumulative error distribution of
these methods. As a deep learning method, DAN needs large
amount of training data. The result shows that, when there
are only 100 labeled training data provided, our method can
enhance the performance of DBN by provide them another
400 training data. The performance can be improved when
the number of extra data is added from 400 to 900. The com-
parisons between the regressor trained by labeled examples
with extra examples obtained by our self-reinforced strategy
and labeled examples with extra examples obtained by LBF
prove that: selecting extra samples indiscriminately cannot
only improve the performance but also result in poor accu-
racy.

Quantitative comparisons with the state-of-the-art
We conducted comparisons with six face alignment algo-
rithms on 300-W. These six face alignment regressors are
pre-trained by a huge number of labeled images. CFAN
and CFSS were trained on a combination of Helen (2000),
LFPW (811) and AFW (337). The total number of these
training samples is 3148. PO-CR and GN-DBM (Tz-
imiropoulos and Pantic 2014) were trained on the training
set consisting of LFPW and Helen. ESR (Cao et al. 2014)
were trained on Helen. The total number of training sam-
ples is 2811. GPRT and LBF were trained on the training set
of LFPW having 811 labeled images. In contrast, our self-
reinforced LBF (SR-LBF) starts from only a half of LFPW,
i.e. 400 training labels, and the other half are included by our
self-reinforced strategy. The cumulative error distributions
of the compared methods and ours are shown in Figure 10.

The comparisons show that our regression does not nec-
essarily give a better performance than the others. Instead,
we are able to achieve comparable performance on com-
mon subsets of 300-W with an extremely small training set
of labels. The number of our training labels is one half of
GPRT, 25% of ESR, 14% of PO-CR and GN-DBM, and
only 12% of CFAN and CFSS. Especially, our regression
performs close to LBF with half of labels. Again, our self-
reinforcement is open to any cascaded regression, and has
the potential to improve the respective ability by automati-
cally predicting and preserving high quality labels.

Conclusion
We propose a self-reinforced cascaded regression that fuses
the discovering and upgrading training examples of low dis-
crepancy into cascaded regression for face alignment. The

Figure 11: Example images from LBF, SR-LBF, CFSS, LR-
CFSS on LFPW; Example images from DAN and LR-DAN
on large dataset

framework is derived from indirect consistency with local
appearance and global geometry. Finally, we validate the ef-
fectiveness of our regression. We are not intending to de-
vise a competitive alignment algorithm trained with huge
collected labels, but instead a self-reinforced strategy that
automatically expands good training examples from a small
subset, thus being complementary and more general to ex-
isting cascaded regression.
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