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Abstract

The performance of deep learning based semantic segmenta-
tion models heavily depends on sufficient data with careful
annotations. However, even the largest public datasets only
provide samples with pixel-level annotations for rather lim-
ited semantic categories. Such data scarcity critically limits
scalability and applicability of semantic segmentation mod-
els in real applications. In this paper, we propose a novel
transferable semi-supervised semantic segmentation model
that can transfer the learned segmentation knowledge from a
few strong categories with pixel-level annotations to unseen
weak categories with only image-level annotations, signifi-
cantly broadening the applicable territory of deep segmen-
tation models. In particular, the proposed model consists of
two complementary and learnable components: a Label trans-
fer Network (L-Net) and a Prediction transfer Network (P-
Net). The L-Net learns to transfer the segmentation knowl-
edge from strong categories to the images in the weak cate-
gories and produces coarse pixel-level semantic maps, by ef-
fectively exploiting the similar appearance shared across cat-
egories. Meanwhile, the P-Net tailors the transferred knowl-
edge through a carefully designed adversarial learning strat-
egy and produces refined segmentation results with better de-
tails. Integrating the L-Net and P-Net achieves 96.5% and
89.4% performance of the fully-supervised baseline using
50% and 0% categories with pixel-level annotations respec-
tively on PASCAL VOC 2012. With such a novel transfer
mechanism, our proposed model is easily generalizable to a
variety of new categories, only requiring image-level annota-
tions, and offers appealing scalability in real applications.

Introduction

Fully-supervised deep learning algorithms for semantic seg-
mentation (Long, Shelhamer, and Darrell 2015; Chen et al.
2015; Pan et al. 2017) generally demand a large amount of
high-quality pixel-level annotation. However, such annota-
tion is only available for a small number of categories to
date, e.g., 20 categories in PASCAL VOC 2012 (Evering-
ham et al. 2014) and 80 categories in MS-COCO (Lin et al.
2014). Scarcity of annotated data severely limits the deploy-
ment of advanced segmentation models in real applications.
The semi-supervised learning based semantic segmentation
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Figure 1: Illustration on two different settings for semi-
supervised image semantic segmentation: conventional In-
category Semi-supervised Semantic Segmentation (I3S) and
the novel Cross-category Semi-supervised Semantic Seg-
mentation (C3S) (which we consider in this work). Different
from the I3S problem where each category (e.g., dog) has
a few in-category pixel-level annotations as well as consid-
erable image-level labels, we introduce a more general and
realistic C3S problem where some categories (e.g., horse
and aeroplane) have pixel-level annotations and some
other categories to segment (e.g., dog and cat) only have
image-level labels. The C3S problem is more challenging
and requires the segmentation model to have a strong trans-
ferable learning ability. Best viewed in color.

models are developed to provide an alternative for compara-
ble segmentation quality with less annotation cost.

In the setting of conventional semi-supervised semantic
segmentation (Papandreou et al. 2015; Hong, Noh, and Han
2015), namely the In-category Semi-supervised Semantic
Segmentation (I3S) as illustrated in the top panel of Fig-
ure 1, each category in the training set must be provided
with a few pixel-level annotations as well as considerable
image-level annotations. This setting however deviates from
real applications because a new introduced category still re-
quires extra efforts on re-labeling the category samples. This
scheme thus becomes impractical for dealing with hundreds
of thousands of categories. For instance, over 20,000 cate-
gories are included in ImageNet (Russakovsky et al. 2015)
and people can recognize much more categories.
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To mitigate such a gap and essentially enhance scalabil-
ity and applicability of segmentation models, in this work
we introduce a more general learning scheme of semi-
supervised semantic segmentation, i.e., the Cross-category
Semi-supervised Semantic Segmentation (C3S), as illus-
trated in the left panel of Figure 1. Within C3S scheme,
different categories have supervision at different levels, or
more concretely some categories have pixel-level annota-
tions (called “strong” categories) and some only have class
labels (called “weak” categories). More importantly, there is
no overlap between the strong and weak categories.

To solve C3S induced problems, the key point lies in how
to effectively learn and transfer re-usable knowledge from
strong categories to the segmentation of weak categories. To
this end, we develop a novel transferable semi-supervised
semantic segmentation model. It contains two complemen-
tary components, i.e., a Label transfer Network (L-Net) and
a Prediction transfer Network (P-Net), to transfer and adapt
the learned segmentation knowledge from strong categories
to the weak ones. More concretely, the L-Net learns the
segmentation knowledge from strong categories explicitly
at first and then transfers the knowledge to produce pixel-
level but coarse annotations for the images from weak cate-
gories. Upon the coarse annotations, the P-Net conducts an-
other knowledge transfer by learning implicit structural fit-
ting patterns between the predicted and manually annotated
segmentations in the strong categories to refine the predic-
tion of the weak categories.

In practice, we notice that segmentation knowledge can be
transferred more easily among the categories sharing similar
appearances, e.g., from bicycle to motorcycle. Based
on this intuitive yet important observation, we devise fol-
lowing learning scheme for the L-Net: we first familiarize
the L-Net with the segmentation knowledge learned from
strong categories and utilize the knowledge to predict class-
agnostic segmentation maps of weak categories with simi-
lar appearance but only image-level labels. Conditioned on
the segmentation maps by L-Net, a self-diffusion algorithm
on the localized semantic seeds is employed to produce the
pixel-level annotations of images from weak categories.

The P-Net learns to transfer the verifiable segmenta-
tion structural patterns from strong categories and refine
segmentations via adversarial training (Goodfellow et al.
2014). Concretely, the P-Net is trained on the strong cate-
gories to implicitly learn the fitting patterns between the pre-
dicted segmentation map and the raw images, taking ground
truth as the adversarial reference. Such knowledge is class-
agnostic and well transferable from strong to weak cate-
gories. P-Net cannot only tune the prediction to approach
the ground truth but also refine details to reduce discrepan-
cies introduced by the inaccurate annotations from L-Net.

We conduct experiments on the PASCAL VOC 2012
dataset, and in case of only 50% (30%) categories with
pixel-level annotations, our proposed model achieves 96.5%
(91.4%) performance of the fully-supervised baseline.
Moreover, we conduct a cross-dataset C3S experiment on
transferring the knowledge from completely new categories
in MS-COCO to PASCAL VOC 2012 where only image-
level labels are available. The proposed model can still retain

89.4% performance of the fully-supervised baseline. Bene-
fiting from the transferable segmentation knowledge from L-
Net and the tailored prediction by P-Net, the proposed model
can easily produce high-quality pixel-wise masks for a large
number of categories, which undoubtedly broadens image
semantic segmentation applications in practice.

Related Work

To relieve the high demand of pixel-level annotation in se-
mantic segmentation, weakly- and semi-supervised learn-
ing approaches have attracted much attention. For weakly-
supervised approaches, the image-level label is the sim-
plest way to collect and label. To learn a promising model
only with image-level annotations, Kolesnikov and Lam-
pert (2016) defined three loss functions to constrain the
model from coarse seeds to fine boundary. Saleh et al. (2016)
extracted the activations from higher-level layers as initial
segmentation masks. Kwak, Hong, and Han (2017) utilized
superpixels of the input image as a pooling layout to learn
and infer semantic segmentation. Wei et al. (2017) progres-
sively mined semantic regions from classification activations
to prevent the network from focusing on a small part of an
object. Due to the limited information provided by image-
level labels, Wei et al. (2016) employed saliency maps from
extra simple images to provide annotations for learning the
semantic segmentation model. Similar to the setting of C3S
problem, Hong et al. (2016) pre-trained an attention model
with irrelevant pixel-level annotations for transferring the
segmentation knowledge to the weakly labeled targets. Re-
cently, Hong et al. (2017) generated segmentation labels au-
tomatically from the web-crawled videos as strong supervi-
sion for weakly-supervised semantic segmentation.

Semi-supervised semantic segmentation gives a trade-off
between decent performance and labeling efficiency. Pa-
pandreou et al. (2015) inferred the segmentation model by
bundling a fixed proportion of strongly/weakly annotated
images in one mini-batch with the expectation maximiza-
tion methods. Hong, Noh, and Han (2015) separately learned
classification and segmentation networks which correspond
to different annotations, and transferred the class-specific
activations from classification network to segmentation net-
work. Souly, Spampinato, and Shah (2017) adopted Gener-
ative Adversarial Networks (GANs) to provide extra train-
ing samples as a fake class, and the segmentation model
acted as a discriminator to classify each pixel to a semantic
label or fake label. The above-mentioned semi-supervised
approaches are I3S-centric models, meaning they focuses
on learning category-specific segmentation knowledge and
would fail in case of a new added category. In this work, we
attempt to solve the more general and practical C3S problem
where annotations at different supervision levels are avail-
able across different categories.

Proposed Model

The proposed model includes two novel components, i.e.,
the L-Net for learning to produce label maps for weak cat-
egories from strong categories and the P-Net for predict-
ing sharp and detailed semantic segmentation. Suppose the
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Figure 2: The flowchart of L-Net to produce the pixel-level annotations Lw for an image from weak categories Cw. L-Net is
trained on the images from strong categories with pixel-level annotations (with semantic information removed). Such more
transferable knowledge enables L-Net to produce a class-agnostic segmentation map M for the image from Cw. Based on the
coarse segmentation M, we propagate the class-wise activation maps Abird and Adog to generate the final annotations Lw by
a self-diffusion algorithm. Best viewed in color.

weak categories and strong categories are denoted as Cw and
Cs respectively. The pixel-level annotations for Cs are de-
noted as Ls. For the weak categories Cw provided with only
the image-level annotations, the pixel-level annotations Lw

are generated by the L-Net.

L-Net: Generating Label Maps for Weak
Categories

To learn the semantic segmentation model, the first step is
to produce pixel-level annotations Lw for the images from
weak categories Cw. In order to provide relatively com-
plete Lw, we introduce the L-Net to learn to perform class-
agnostic segmentation as category-agnostic knowledge is
easier to learn and transfer among different categories. The
learning process of L-Net is illustrated in Figure 2. Formally,
given training images from the categories Cs that have pixel-
level annotations, the objective for training L-Net (parame-
terized by θL) is defined as follows:

min
θL

∑

Cs

Jb

(L′
s,OL(Cs; θL)

)
, (1)

where OL(Cs; θL) denotes the output of L-Net, L′
s is the

non-semantic ground truth derived by binarizing Ls and Jb

denotes the standard element-wise binary cross-entropy loss.
The semantic information of Ls is removed in obtaining

L′
s in order to learn more transferable knowledge across

categories. Such a strategy can fully exploit the object-
level information shared among strong categories and bene-
fit segmentation over objects from the weak categories. After
training, L-Net is applied to the images of Cw to produce the
class-agnostic segmentation map M = OL(Cw; θL).

To recover the class-agnostic segmentation map M to
Lw with rich semantic information, we employ an approach
to predict class-discriminative activation by utilizing the
image-level annotations available for weak categories. In
particular, we employ a pre-trained image classification net-
work to localize class-specific activations over the image
plane. The bottom panel of Figure 2 visualizes the activa-
tion maps Abird and Adog produced by a classification net-
work (Zhou et al. 2016) for two weak categories, bird and

Figure 3: Comparison of generated label maps. M denotes
the class-agnostic segmentation maps while Lw means the
pixel-level annotations generated by the proposed L-Net. AE
denotes the Adversarial Erasing approach (Wei et al. 2017)
to generate the pixel-level annotations for weak categories.
One can find that Lw provides sharp and complete semantic
context, even if the M is noisy. Best viewed in color.

dog respectively. We take such localization results as re-
liable seeds for semantic segmentation and diffuse the se-
mantic information originating from these seeds by a Ran-
dom Walk (RW) based self-diffusion algorithm (Kong et al.
2016). Given an image from Cw, we oversegment it into su-
perpixels p = {p1, p2, · · · , pN} which are collectively de-
scribed by a graph model G where each node corresponds to
a particular superpixel. Then, the self-diffusion algorithm is
performed on this undirected graph model G. Conditioned
on M, the objective function of the self-diffusion process
for a specific category Ac is defined as

min
q

1

2

∑

i,j

zij(qi − qj)
2, (2)

where q = [q1, q2, · · · , qN ] denotes the label vector of all
superpixels p. If pi ∈ Ac, qi is fixed to 1, and other-
wise it takes an initial value of 0. zij = exp(−‖F(pi) −
F(pj)‖/2σ2) denotes the Gaussian distance between two
adjacent superpixels. F(pi) ∈ R

4 denotes the mean feature
of superpixel pi in the normalized CIELAB color space and
the segmentation map M.

Eqn. (2) formulates the conventional RW algorithm that
strengthens label consistency of nodes with large affinity.
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Figure 4: The framework of semantic segmentation with the P-Net. We propose to learn the semantic segmentation model
through adversarial training. The input of the P-Net comes from the prediction of the semantic segmentation model and the
ground truth, which is encoded by multiplying the training image with the mask of each category.

Considering there are some examples hard to be transferred
within the L-Net, e.g., the plant in the second example of
Figure 3, we impose no extra constraint on the segmenta-
tion map M in Eqn. (2). When the L-Net cannot segment all
objects out, the high confidence class activation maps can
still reveal and propagate segmentation information well. If
there are more than two weak categories in the image to
segment, we assign the category label c to the superpixel
pi with a larger qi. As shown in Figure 3, we compare the
generated label map by self-diffusion with the State-Of-The-
Art (SOTA) Adversarial Erasing (AE) approach (Wei et al.
2017). Observing the generated pixel-level annotations, one
can find that Lw provides semantic context at a satisfactory
level, even if the segmentation map M is noisy.

P-Net: Semantic Segmentation with Adversarial
Learning

Once L-Net generates the coarse pixel-annotations of weak
categories, the semantic segmentation model can be trained
upon such annotations. However, to get sharper and more ac-
curate segmentation results, we introduce the P-Net compo-
nent that learns to refine the semantic segmentation with ad-
versarial training (Goodfellow et al. 2014), as shown in Fig-
ure 4. The generator within the adversarial learning frame-
work is the semantic segmentation model in the left of Fig-
ure 4 which tries to predict label maps to match the joint data
distribution of the ground truth and input images. The dis-
criminator called P-Net acts to distinguish the input drawn
from the generator or from the ground truth. On the one
hand, the adversarial training forces the prediction of the
semantic segmentation model to be as close as possible to
the ground truth. On the other hand, the adversarial train-
ing learns to capture and utilize the implicit fitting patterns
between the prediction and the ground truth which can be
transferred to the weak categories.

Formally, for a given training sample I and its corre-
sponding label map LI , we define the objective of adver-
sarial training as follows:

min
θS

max
θP

∑
I

Jm

(LI ,OS(I; θS)
)−

λ
[
Jb

(
1,OP (LI ; θP )

)
+ Jb

(
0,OP (OS(I; θS); θP )

)]
,

(3)

where θS and θP denote the parameters of the semantic seg-
mentation model and the P-Net respectively. Jm and Jb de-
note the multi-class and binary cross-entropy loss respec-

tively. OS and OP denote the output of the semantic seg-
mentation model and the P-Net respectively. We use 1 and 0
to denote the label of P-Net when its input comes from the
ground truth LI and the prediction OS(I; θS) respectively.

For training the semantic segmentation model, we mini-
mize the loss in Eqn. (3) w.r.t. θS :

min
θS

∑
I

Jm

(LI ,OS(I; θS)
)
+ λJb

(
1,OP (OS(I; θS); θP )

)
,

(4)
where the term λJb

(
1,OP (OS(I; θS); θP )

)
replaces the

term −λJb

(
0,OP (OS(I; θS); θP )

)
in Eqn. (3). The first

term in Eqn. (4) encourages the prediction of semantic seg-
mentation to be consistent with the ground truth at each po-
sition while the second term penalizes the unfitting structure
between the prediction and the ground truth.

For training the P-Net, we minimize the loss in Eqn. (3)
w.r.t. θP :

min
θP

∑
I

[
Jb

(
1,OP (LI ; θP )

)
+ Jb

(
0,OP (OS(I; θS); θP )

)]
.

(5)
Inspired by Luc et al. (2016), we do not directly input

the probability maps predicted by the semantic segmenta-
tion network to P-Net. Instead, as shown in Figure 4, we
encode the input of P-Net by multiplying the training im-
age I with the predicted segmentation mask OS(I; θS) or
the ground truth mask LI . This encoding makes the P-Net
observe different objects and does not emphasize too much
on the semantic label, which facilitates knowledge trans-
fer across categories. Considering the unreliable label maps
generated by the L-Net, directly training the whole network
in Figure 4 could lead to poor performance of the P-Net, be-
cause the generated label maps may fall in conflict with the
ground truth from strong categories. Therefore, we first pre-
train the P-Net with the strong categories to encourage the
P-Net to learn the real high-order fitting patterns and then
fine-tune the whole training set. Experiments in the follow-
ing section prove that it is indeed helpful to improve perfor-
mance on weak categories.

Experiments

Implementation Details

Datasets We evaluate the performance of the proposed
model on the PASCAL VOC 2012 benchmark (Everingham
et al. 2014) which contains one background category and 20
object categories. The training set contains 10,582 images
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Table 1: Layer configuration of P-Net
Layer Channels Kernel Activation

conv1 16
32

3×3
3×3 ReLU

pool1 - 2× 2, stride 2 -

conv2 64
64

3×3
3×3 ReLU

pool2 - 2× 2, stride 2 -

conv3 128
128

3×3
3×3 ReLU

pool3 2× 2, stride 2 -

fc4 256-d - tanh
fc5 512-d - tanh
fc6 1-d - sigmoid

with pixel-level annotations, which is extended by Hariha-
ran et al. (2011). We evaluate the performance in terms of
mean Intersection over Union (mIoU) on other two subsets,
i.e., validation and test, including 1,449 and 1,456 images
respectively. According to the appearance similarity, we di-
vide the 20 object categories into two super-categories, i.e.,
strong categories and weak categories, to guarantee each
super-category contains similar categories. We provide four
split-sets of the training images. Split-set 1 consists of 10
strong categories and 10 weak categories while split-set 2
is reversed based on split-set 1. Split-set 3 is a harder case
which contains 6 strong categories and 14 weak categories.
Similar to the setting in Hong et al. (2016), split-set 4 only
provides image-level annotations for all 20 categories in
PASCAL VOC 2012 while the strong categories are derived
from MS-COCO (Lin et al. 2014). The training images con-
taining PASCAL VOC 2012 categories are removed from
MS-COCO and the remaining 16,241 images from 60 ex-
clusive categories are employed as strong categories.

Network Architecture In this paper, we focus on trans-
fer learning across various categories with different types
of annotations. Therefore, extensive engineering on the
segmentation network architecture is out of the scope of
this work. We adopt the popular architecture of DeepLab-
LargeFOV (Chen et al. 2015) as the backbone network for
the L-Net in Figure 2 and the semantic segmentation net-
work in Figure 4. DeepLab-LargeFOV is initialized by the
weights of VGG-16 model (Simonyan and Zisserman 2014)
which is pre-trained on the ImageNet. The L-Net differs
from the semantic segmentation network in the loss function
as shown in Eqn. (1) and Eqn. (5). The classification model
in Figure 2 that provides category-specific activation maps
is identical with the VGG-16 based CAM model (Zhou et
al. 2016) and is fine-tuned on PASCAL VOC 2012 dataset
with image-level labels. The P-Net in Figure 4 consists of six
3× 3 convolutional layers and three fully connected layers.
Details on layer configuration are provided in Tabel 1.

Training For the training of L-Net, we convert the seman-
tic label maps from strong categories to a binary mask. We

take a mini-batch size of 30, in which patches of 321×321
pixels are randomly cropped from images. We totally per-
form 30 epochs for training the L-Net with an initial learn-
ing rate of 5e-8. Momentum and weight decay are set to 0.9
and 0.0005 respectively. We train the semantic segmenta-
tion model in the same setting as DeepLab-LargeFOV. When
the semantic segmentation model is trained, we fine-tune it
with scratched P-Net and set the learning rate of the seman-
tic segmentation model and the P-Net to 1e-5 and 1e-3 re-
spectively. All the experiments are performed on NVIDIA
TITAN X PASCAL GPU with 12G memory.

Comparison with Baselines

We evaluate various models on the PASCAL VOC 2012 val-
idation set with four different strong/weak category splits.
The results are summarized in Table 2. In particular, we
compare the proposed model with following four baselines.

1. We use the fully-supervised DeepLab-LargeFOV (Chen et
al. 2015) to gain performance upper bound for the com-
pared weakly-/semi-supervised segmentation methods.

2. We also compare with an I3S-centric model, WSSL (Pa-
pandreou et al. 2015). It has the same segmentation net-
work, i.e., DeepLab-LargeFOV, as our proposed model
and is directly applied for the C3S problem introduced
in this work. Following the practice in Papandreou et
al. (2015), the semantic segmentation for weak categories
is inferred via the adaptive EM algorithm.

3. We adopt a SOTA weakly-supervised approach, i.e.,
AE (Wei et al. 2017), as the third baseline, aiming to thor-
oughly compare model’s capability of predicting pixel-
level annotations for weak categories. During evaluation
of AE, we apply AE to generate semantic label maps of
the weak categories at first. Then we train and evaluate
the DeepLab-LargeFOV model using the AE generated
label maps (for weak categories) and the provided ground
truths (for strong categories).

4. For the fourth split-set, we also compare with the Trans-
ferNet (Hong et al. 2016). We evaluate its performance
using a stronger segmentation model DeconvNet (Noh,
Hong, and Han 2015), under the same setting as our pro-
posed model.

In Table 2, the numbers in gray block represent the seg-
mentation performance of strong categories. The “L-Net”
denotes the results obtained by the semantic segmentation
model trained on both the strong categories and the label
maps generated by L-Net. The “P-Net” denotes the final re-
sults by applying the P-Net to refine the semantic segmenta-
tion results. From the results, one can make following ob-
servations. The results of WSSL† in Table 2 demonstrate
that the I3S-centric WSSL (Papandreou et al. 2015) per-
forms poorly for the weak categories because it is incapable
of transferring knowledge across categories. For the newly
introduced category, WSSL performs not so well without
additional pixel-level annotations. The proposed L-Net out-
performs SOTA AE (Wei et al. 2017) by 13.1%, 10.6%
and 16.3% on the first three split-sets respectively, confirm-
ing effectiveness of the L-Net on predicting high-quality
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Table 2: Performance on PASCAL VOC 2012 validation set. The number in gray block represents the performance of cate-
gories with pixel-level annotations.

bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk prsn plnt sheep sofa train tv mIoU

(a) Fully supervised baseline
DeepLab 90.2 73.2 31.0 73.7 58.6 63.5 81.4 74.5 76.9 28.4 62.7 49.9 69.4 61.5 67.1 76.1 46.2 67.8 42.0 74.1 52.6 62.9

(b) Split-set 1
WSSL† 83.3 31.1 31.2 29.1 59.9 31.9 80.6 74.3 78.2 29.7 61.6 43.7 39.6 38.6 29.5 74.8 21.5 33.4 19.1 45.5 48.4 46.9
AE 85.8 50.5 31.0 44.6 56.8 40.7 78.7 74.1 75.1 27.6 61.2 50.0 54.1 42.8 51.1 75.8 28.2 53.3 26.9 46.2 53.1 52.7
L-Net 89.6 74.0 30.8 66.8 58.7 43.1 80.8 75.6 76.3 28.3 61.7 48.8 66.5 60.7 68.2 76.0 30.4 68.8 27.4 65.8 53.1 59.6
P-Net 90.0 74.0 30.9 64.3 59.6 43.4 82.8 76.7 77.7 27.8 66.0 51.2 68.4 63.7 68.5 76.7 33.4 71.6 28.4 64.3 55.0 60.7

(c) Split-set 2
WSSL† 82.1 77.3 17.4 73.5 29.1 63.1 45.3 40.2 43.2 16.5 35.4 27.3 69.0 56.3 61.2 27.4 45.1 69.4 28.9 73.9 33.1 48.3
AE 84.2 72.1 22.9 71.8 32.6 61.0 63.6 30.0 59.5 16.0 43.2 22.7 67.5 58.7 65.4 53.0 45.4 66.9 37.7 70.9 39.9 51.7
L-Net 87.1 72.8 30.7 71.7 50.6 62.4 76.3 71.3 73.2 17.5 59.1 15.4 68.3 60.9 65.5 50.6 43.5 67.9 39.5 71.4 45.7 57.2
P-Net 87.7 74.4 31.1 72.6 53.9 62.7 77.1 73.0 73.9 17.5 61.8 16.6 70.3 62.2 66.8 51.5 45.0 69.3 40.0 72.8 49.0 58.5

(d) Split-set 3
WSSL† 82.4 31.0 15.2 30.1 26.2 33.2 44.7 42.2 45.1 23.6 64.4 25.6 70.3 38.4 54.4 76.5 25.1 33.6 20.6 75.9 33.8 42.5
AE 85.1 50.0 23.4 46.6 31.8 39.7 62.8 30.7 59.4 28.8 61.7 25.7 67.6 42.6 65.0 76.6 28.8 52.6 28.2 72.3 39.0 48.5
L-Net 89.1 58.3 33.5 71.1 34.8 42.0 75.4 67.7 74.9 27.1 62.2 24.5 70.5 61.1 67.5 76.4 31.2 68.4 25.5 74.2 47.5 56.4
P-Net 89.3 57.2 34.5 71.2 38.6 44.5 77.7 67.5 76.2 24.3 64.5 25.8 72.9 63.8 69.5 77.3 32.1 71.8 27.4 77.9 44.1 57.5

(e) Split-set 4
TransferNet 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1
L-Net 86.5 70.9 26.3 70.1 46.3 55.3 73.9 67.6 72.9 20.6 61.4 21.2 66.1 60.5 63.2 55.2 32.7 66.3 34.2 64.4 44.9 55.3
P-Net 87.1 71.2 25.1 69.9 48.5 56.2 75.7 67.1 75.0 19.2 63.8 22.3 67.0 64.2 62.9 55.1 35.2 69.6 34.4 67.2 43.1 56.2

label maps. For some weak categories (e.g., the category
motorbike in split-set 1 and the category horse in split-
set 3), L-Net even performs slightly better than the fully-
supervised model. We attribute this surprising superiority to
the useful knowledge transferred across categories with sim-
ilar appearance. For split-set 4, L-Net improves over Trans-
ferNet (Hong et al. 2016) by 6.1% under the same setting,
proving the transferable segmentation knowledge in L-Net
is more appropriate than the attention-based mechanism in
TransferNet (Hong et al. 2016).

As shown in Table 2, employing adversarial training over
a semantic segmentation model further improves the results
by 1.9%. The P-Net pre-trained by the strong categories
can learn the implicit fitting patterns between the prediction
and the “real” pixel-level annotations. The learned suitable
knowledge can be transferred to the weak categories and
alleviate high-level disparities in the prediction of images
from weak categories. We observe that pre-training on the
strong categories is useful for stabilizing training process of
P-Net. This is because some pixel-level annotations in weak
categories are not reliable and may contaminate P-Net. If
we directly train P-Net with the whole training set (consist-
ing of provided pixel-level annotations and predicted ones
from L-Net), we find the improvement brought by P-Net on
split-set 1 is only 0.5%—on the other three split-sets the
performance may even drop. Overall, the proposed model
provides a very promising solution for segmenting the cat-
egories without pixel-level annotations and approaches the
performance of the fully-supervised baseline.

Table 3: Comparison with weakly- and semi-supervised se-
mantic segmentation models on PASCAL VOC 2012 test
set.

Methods #Training Set mIoU

(a) Weakly-supervised methods
DCSM (2016) 10k 45.1
BFBP (2016) 10k 48.0
STC (2016) 50k 51.2
SEC (2016) 10k 51.7
FCL (2017) 10k 53.7
AE (2017) 10k 55.7
Hong et al. (2017) 970k 58.7

(b) In-category semi-supervised methods
WSSL (2015) 10k 66.2
DecoupledNet (2015) 10k 62.5

(c) Cross-category semi-supervised methods
Ours (Split-set 1) 10k 64.6
Ours (Split-set 2) 10k 61.9
Ours (Split-set 3) 10k 59.5
Ours (Split-set 4) 27k 58.0
TransferNet (Split-set 4) 27k 51.2

Comparison with State-of-the-arts

We further compare our proposed model with several SOTA
weakly- and semi-supervised semantic segmentation mod-
els, provided with different levels of annotations. Table 3
presents relevant results on PASCAL VOC 2012 test set.
Among the compared models, Ours (Split-set 4), Transfer-
Net (Hong et al. 2016), STC (Wei et al. 2016) and Hong et
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Figure 5: Segmentation results on unseen categories from ImageNet (Russakovsky et al. 2015). All the results are produced by
the L-Net which is trained on the split-set 1. Best viewed in color.

al. (2017) employ extra data (16k, 16k, 40k and 960k) for
segmentation while the other methods are based on the 10k
training samples of PASCAL VOC 2012. The pixel-level
annotations in DecoupledNet (Hong, Noh, and Han 2015)
are provided for 500 images while the number in WSSL
is 1,464. For fair comparison, we apply post-processing
over the results from P-Net with CRF (Krähenbühl and
Koltun 2011). Compared with the latest weakly-supervised
method (Hong et al. 2017), Ours (Split-set 4) performs com-
petitively well as the model trained using 960k extra images
in Hong et al. (2017). However, the proposed model only
uses the image-level annotations of PASCAL VOC 2012 and
16k irrelevant pixel-level annotations.

For the semi-supervised semantic segmentation, even
though as few as 1/2 categories have pixel-level annotations
in Ours (Split-set 1), the performance of proposed model
only degrades by 2.5% compared with I3S-centric WSSL.
Actually, based on the results in Table 2, the I3S-centric
approaches (Papandreou et al. 2015; Hong, Noh, and Han
2015) cannot handle the C3S problem well and fail to gener-
alize the weak categories. Such deficiency will restrain their
application to the newly introduced categories. Compared
with the attention-based TransferNet (Hong et al. 2016), the
proposed model (Split-set 4) is advantageous. It introduces
two complementary transferable components on segmenta-
tion knowledge and can provide superior semantic segmen-
tation results as shown in Table 3.

Running Time

In this paper, training the L-Net with 3,000 images for 30
epochs takes about 3 hours while the inference of self-
diffusion algorithm takes only 1 second for an input im-
age. Training the P-Net with 10,000 images for 30 epochs
takes about 12 hours. The total training time of the proposed
method is about 17 hours (the training time of L-Net and
P-Net plus self-diffusion inference on 7,000 weakly labeled
images). The time cost is comparable with WSSL (Papan-
dreou et al. 2015) which takes about 10 hours with the same
setting. For testing, the proposed model has the same com-
putational complexity as WSSL and it takes about 0.2 sec-
ond to process a 300×400 image.

Figure 6: Visual comparison of semantic segmentation re-
sults. AE denotes the segmentation results by the weakly-
supervised baseline (Wei et al. 2017) while LargeFov de-
notes the results by the DeepLab-LargeFov. P-Net denotes
the refined results of L-Net by adversarial training. The first
two examples come from the weak categories of split-set
1 while the last two examples come from the weak cate-
gories of split-set 2 and split-set 3 respectively. Best viewed
in color.

Qualitative Results

To verify the effectiveness of the learned L-Net, we apply
L-Net on the unseen categories from ImageNet as shown in
Figure 5. All the results in Figure 5 are produced by the L-
Net trained on the split-set 1 of PASCAL VOC 2012. One
can find that the L-Net generalizes well on those unseen
categories and provides sharp and complete segmentation
masks. The L-Net generalizes well and provides practical
solution for transferring a segmentation model from familiar
objects to unseen ones. In Figure 6, we provide visual com-
parisons of the semantic segmentation results by AE (Wei
et al. 2017), L-Net, P-Net and DeepLab-LargeFov (Chen et
al. 2015). The first two examples come from the weak cat-
egories of split-set 1 and the last two examples come from
the weak categories of split-set 2 and split-set 3 respectively.
From the results of P-Net, one can observe that the adversar-
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ial training can clean the noisy regions of L-Net and main-
tain consistency with the ground truth.

Conclusion

In this paper we tackle a more general problem in semi-
supervised semantic segmentation where the strong cate-
gories and weak categories do not have overlap. We pro-
pose a novel transferable semi-supervised semantic segmen-
tation model which contains two networks capable of learn-
ing and transferring segmentation knowledge, i.e., L-Net
and P-Net. The L-Net generates the label maps of weak cate-
gories while the P-Net further refines the transferred knowl-
edge by correcting high-level discrepancies between the pre-
diction and ground truth. Benefited from the cross-category
transferring, the proposed model provides superior perfor-
mance over SOTA weakly-supervised approaches on the
newly added category. Though only a small fraction of cate-
gories are with pixel-level annotations, the proposed model
can still achieve 90% performance of the fully-supervised
baseline. It enhances the applicability and scalability of se-
mantic segmentation models in real applications.
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