
Weakly Supervised Collective
Feature Learning from Curated Media

Yusuke Mukuta,1,3 Akisato Kimura,1,2 David B. Adrian,1,4 Zoubin Ghahramani2,5
1. NTT Communication Science Laboratories, Japan.

2. Department of Engineering, University of Cambridge, United Kingdom.
3. The University of Tokyo, Japan. 4. Technical University of Munich, Germany. 5. Uber AI Labs, USA.

mukuta@mi.t.u-tokyo.ac.jp, akisato@ieee.org, david.adrian@tum.de, zoubin@eng.cam.ac.uk

Abstract

The current state-of-the-art in feature learning relies on the
supervised learning of large-scale datasets consisting of target
content items and their respective category labels. However,
constructing such large-scale fully-labeled datasets generally
requires painstaking manual effort. One possible solution to
this problem is to employ community contributed text tags as
weak labels, however, the concepts underlying a single text
tag strongly depends on the users. We instead present a new
paradigm for learning discriminative features by making full
use of the human curation process on social networking ser-
vices (SNSs). During the process of content curation, SNS
users collect content items manually from various sources
and group them by context, all for their own benefit. Due
to the nature of this process, we can assume that (1) con-
tent items in the same group share the same semantic concept
and (2) groups sharing the same images might have related
semantic concepts. Through these insights, we can define hu-
man curated groups as weak labels from which our proposed
framework can learn discriminative features as a represen-
tation in the space of semantic concepts the users intended
when creating the groups. We show that this feature learning
can be formulated as a problem of link prediction for a bi-
partite graph whose nodes corresponds to content items and
human curated groups, and propose a novel method for fea-
ture learning based on sparse coding or network fine-tuning.

Introduction
Accuracy in image recognition and other related com-
puter vision tasks strongly depends on the choice of im-
age features. Learning a discriminative feature representa-
tion is thus an essential step in handling these tasks. Before
the breakthrough brought by convolutional neural networks
(CNNs), most of the approaches were based on hand-crafted
feature representations. However in the current state-of-the-
art, this has changed to supervised feature learning from
well-organized large-scale datasets consisting of millions of
images and assigned labels fully annotated by experts (He
et al. 2015). However, constructing such large-scale datasets
generally requires a huge amount of manual effort and poses
one of the biggest challenges in feature learning. Instead,
training features in a weakly supervised or completely un-
supervised fashion allows us to utilize a very large amount
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of available data. With the steadily increasing popularity of
SNSs, large quantities of unlabeled and weakly labeled data
are created every day. Most existing research on image fea-
ture learning without relying on fully labeled image datasets
utilizes community contributed text tags that can be eas-
ily collected through image search platforms (Sukhbaatar et
al. 2015) or content sharing platforms (Joulin et al. 2016).
However, the concepts underlying a single text tag depend
strongly on the users who provide the text tag. Different
users may annotate the same text tag for different concepts,
but we cannot distinguish those different concepts solely
from the text tag, which may make it difficult to train dis-
criminative features.

Instead, we present a new paradigm for learning visual
features by making the full use of the human curation pro-
cess on SNSs. During the process of content curation, im-
ages are manually collected from many sources such as
photo sharing services and other SNSs, grouped by concept,
and provided with textual descriptions in the form of text
tags or sentences (Duh et al. 2012; Zhong, Karamshuk, and
Sastry 2015). The concept of each image group is defined by
the curating user, allowing for a wide range of very specific
semantic concepts, such as ”Green/Blue Ferrari” or ”Gad-
gets for Lazy People”, as shown in Figure 2. Previous re-
search (Zhong, Karamshuk, and Sastry 2015) focusing on
Pinterest, which is one of the most popular content curation
platform for images, has demonstrated that most of the im-
ages collected in the same curated group can be assumed to
share the same semantic concept. This readily implies that
we can treat each human-curated group as a pseudo cat-
egory that shares a consistent semantic concept compared
with noisy community-contributed text tags. However, em-
ploying curated groups as weak labels still presents several
technical problems. First, we have to handle a large number
of curated groups, as when using community-contributed
text tags. Second, the number of images in a curated group
is much smaller than what is required to fully capture the
characteristics of the curated group.

In this paper, we propose a novel framework for weakly
supervised image feature learning that fully exploits the
properties underlying human curated content. Figure 1
shows an overview of the proposed method. We introduce
another property of socially curated data that results from
the fact that curated groups sharing several images are ex-
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Figure 1: Overview of the proposed collective feature learning from curated media. Images in a curated group share the same
concept and curated groups sharing the same image have a similar concept. On the basis of these insights, we can regard
curated groups as weak labels for content, and formulate the problem of estimating weak labels as a link prediction problem
for a bipartite graph, where one node group corresponds to images and the other is for curated groups. The models for link
prediction and a new feature representation can be iteratively optimized.

pected to have similar concepts. Namely, to capture the na-
ture of a curated group we can utilize not only images in the
group but also those in neighboring curated groups. We can
see that the problem of predicting to which curated groups
a new image belongs can be regarded as multi-task learn-
ing, where each task corresponds to the classification of im-
ages into a curated group. In addition, we note that the task
of classifying images into curated groups can also be seen
as classification using only positive and unlabeled data (PU
classification) (Plessis, Niu, and Sugiyama 2015), since we
can find many curated groups with the same concept but
sharing no images with each other, due to the locality of
SNSs. Link prediction techniques have been proved to be ef-
fective for this PU classification (Chang et al. 2016) and can
be applied to large-scale graphs (Menon and Elkan 2011).
Thus, we formulate our feature learning as the problem of
predicting links on a bipartite graph, where one node group
corresponds to images and the other corresponds to curated
groups. We then propose a novel method for link predic-
tion that exploits observed features on nodes as well as link
structures. In a similar manner to learning visual attributes
(Farhadi et al. 2009), we can apply scores of linking curated
groups to a given image as a new feature of the image. How-
ever, we propose a more sophisticated method for learning
a new feature representation, which combines a model for
link prediction and convolutional neural networks for fea-
ture extraction. Although we concentrate on the use of a spe-
cific SNS platform for still images mainly for presentation
clarity, our method can be easily applied to other platforms
and modalities, as long as each user collects contents into

groups sharing the same semantic information. For example,
users in music platforms such as Spotify, Amazon Music and
iTunes can create playlists that are such curated groups. The
underlying graph can then be used, e.g., to improve existing
approaches for music feature learning with deep CNNs (see
e.g. (Lee et al. 2009)). We also note that our fine-tuning ap-
proach can be directly applied to other types of graph struc-
tures representing relationships among (pseudo) labels, such
social networks or knowledge graphs.

Related work
Feature Learning

Image feature learning is a well-studied problem in the
computer vision community. CNN architectures VGGNet
(Simonyan and Zisserman 2014) are capable of captur-
ing object-level semantics, but require very large labeled
datasets for proper training. This background encourages
computer vision researchers to develop weakly supervised
feature learning. This type of feature learning can be cate-
gorized into two approaches, namely (1) collecting or gen-
erating weakly supervised information and (2) transferring
knowledge obtained from other modalities such as natural
languages (Socher et al. 2013; Silberer and Lapata 2014;
Hoffman, Gupta, and Darrell 2016; Changpinyo et al. 2016).
The work presented in this paper focuses on the first ap-
proach, since it can work well for uni-modal situations and
can be easily integrated into the second approach. The first
approach often employs web images since a huge amount of
meta-data and side information is accessible. Image search
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engines are one of the most common and the easiest inter-
faces with regards to collecting web images with weak text
labels (Sukhbaatar et al. 2015), where words or phrases for
querying images can be used as weak labels. However in
this strategy, rich meta-data and other side information un-
derlying query texts and images are not accessible, and thus
ad-hoc and complicated data cleansing would need to be de-
veloped (Yashima et al. 2017). Meanwhile, the emergence of
SNSs has enabled us to collect rich meta data and side infor-
mation easily as well as images and associated text words,
phrases and sentences. Recent research (Joulin et al. 2016)
has demonstrated that text information associated with im-
ages is useful for training image features with deep learning.
However, the text tags or phrases provided by SNS users
are still noisy in the same way as those obtained via image
search engines, which encourages researchers to make the
full use of the meta-data and side information available on
SNSs. (Yuan et al. 2013) proposed a relational generative
deep learning model integrating multi-modal features and
their relationships. (Geng et al. 2015) tried to learn feature
representations for both users and images on SNS by trans-
forming the heterogeneous user-image networks into homo-
geneous low-dimensional representations. (Fang et al. 2015)
and (Zhang et al. 2016) employed a collaborative filtering
approach to define latent classes based on user behavior data,
and use these classes as labels to train a supervised classifier.

Our proposed framework for collective feature learning
focuses on the use of content groups curated by individ-
ual users, which are different and less noisy data resources
for weakly supervised feature learning compared with noisy
community contributed tags or user behavior. Karayev et
al.(Karayev et al. 2014) employed Flickr Groups that are
community curated collections of visual concepts to learn
and recognize the visual styles of images or paintings, such
as Baroque, Cubism and Impressionism. Such community-
curated collections are highly useful for predicting well-
known or well-defined class categories, since almost all the
curators share the same concept for each category. Instead,
we focus on the use of user-curated groups that are expected
to be more focused and consistent in terms of concepts since
this enables us to apply a broad range of tasks.

Node2vec (Grover and Leskovec 2016) is closely related
to our method since it provides a way of learning feature
representations for graph nodes. However, this only em-
ploys graph structures such as connections between nodes
and edge weights for representation learning, and the inte-
gration of observations on nodes is not straightforward. The
use of image features as observations on nodes is crucial in
terms of our problem setting for collective feature learning.

Link Prediction
The task of link prediction is to predict the presence or ab-

sence of unobserved edges between nodes in a graph from
already observed edges, and it has been used to analyze the
characteristics of social networks and to recommend new
items for customers. Meanwhile, this paper provides a novel
application of link prediction that incorporates it into the
learning of image features from social activities on SNSs.

Link prediction can be categorized into unsupervised and

supervised approaches. Unsupervised methods compute a
score of links between a node pair based on a pre-defined
score function and predict the presence of edges based on
the computed score such as common neighbors (Kossinets
2006), Katz index (Katz 1953) and SimRank (Jeh and
Widom 2002). Although unsupervised methods do not re-
quire any pre-processing or training processes, their perfor-
mance is unsatisfactory if we cannot choose an appropriate
score function that suits a given network. Supervised meth-
ods utilize already observed edges as training labels and
learn a parameterized score function so that the learned score
function predicts the observed edges well. Several types of
score functions have already been proposed. (Wang, Satu-
luri, and Parthasarathy 2007) exploited a weighted sum of
node attributes as a score function. (Kashima et al. 2009)
proposed a graph kernel between node pairs. (Scripps et al.
2008) assumed that each node has an observed feature, and
proposed a model that reflects the similarity between ob-
served features on nodes. (Menon and Elkan 2011) intro-
duced the idea of latent features on nodes, and proposed
a matrix factorization method for link prediction. Our pro-
posed method extends Menon and Elkan’s method so as to
effectively extract image features.

Content curation
In this section, we describe the process of content curation
and dataset collection obtained with a content curation plat-
form and its unique properties.

Characteristics
Many SNSs have been created to connect people and al-

low them to exchange general information and to share items
of personal interest. Content curation platforms are a special
sub-category of SNS. Content curation can be defined as a
spontaneous human process that consists of remixing social
media content for the purpose of further consumption. What
characterizes content curation is the manual efforts made by
social media users involved in organizing social media con-
tent. Users collect various types of media content items, re-
group them according to their own preferences, provide ad-
ditional text tags or descriptions, and publish them on SNSs,
all for their own benefit. A curated group of content items
is not only simply aggregated, but also extended with ad-
ditional information and placed into a new semantic con-
text, solely decided by the curating user. A published curated
group allows other users to reuse a part of the group to or-
ganize another curated group. Fig 2 shows several examples
of curated image groups.

Curated groups have several favorable properties for our
purpose in this research, namely weakly supervised feature
learning. First, the process of content curation can be re-
garded as a human computation process of content classifi-
cation, and thus the content in the same curated group shares
a similar concept or meaning (Zhong, Karamshuk, and Sas-
try 2015). This readily implies the potential of socially cu-
rated groups as weak, but promising labels. Second, con-
tent can go viral on social media as well as content curation
platforms, and as a result that content is distributed from
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Figure 2: Several examples of curated image groups, ex-
tracted from Pinterest.

group to group, which constitutes a content-centric graph
structure. The above two properties imply that two curated
groups sharing a lot of content often share a similar concept
(Kimura et al. 2013). Our proposed method makes full use
of these insights for training image features without the need
for the painful effort of building labeled image datasets.

Dataset
For learning our model, we crawled content curation data

from Pinterest, a popular content platforms specializing in
image curation 1. In Pinterest, a curated group is called a
board and each element assigned to a curated group is called
a pin. Each board has a text title, and each pin contains a
single image and a description provided by the curating user.
Without loss of generality, we consider each pin as a feature
vector x ∈ R

DI . This feature vector could be extracted from
the image itself, the textual description, or any other feature
representations thereof, but in the following x is a feature
vector extracted from an image. We also consider each board
as a feature vector y ∈ R

DC , and in the following y is a
feature vector extracted from the name of the board.

Pinterest provides 36 default categories that cover a
broad range of topics such as architecture, entertain-
ment, geek, outdoors, quotes and weddings. We started
the data collection by taking the most recent pins in
each of the 36 pre-defined categories. For example, re-
cent pins for the popular category can be found at
ttps://www.pinterest.com/categories/popular. Branching out
from the set of users who posted these recent pins, their
friends, namely followers and followees, were also collected
as new seeds, which results in a set of 6.7K users. Next, we
collected all the boards curated by each individual user. We
skiped all boards that are either under-populated, e.g., they
have fewer pins, or if they are much larger than the aver-
age, since it is questionable how representative they can be
for feature learning. Then, we collected all the pins in each
board. Finally, we omitted image nodes with degrees of less
than 2 (meaning that those images belong to only 1 curated

1We will publish the dataset at http://www.kecl.ntt.co.jp/
people/kimura.akisato/socialweb4.html.

Figure 3: (Top) Distribution of number of images in indi-
vidual boards (Bottom) Distribution of number of boards to
which individual images belong

group) and curated group nodes with degrees of less than 1
(meaning that no images belongs to those curated groups),
which are thought to be of no use for the task. This dataset
constitutes a total of 65K boards and 8.2M pins, meaning
that 1.5K pins per user on average. It seems that too many
images have been pinned, however, this is not surprising due
to the nature of this collection scheme. Namely, around 82%
of the collected pins are repins, e.g., carbon copies of other
pins, which leave around 1.5M unique pins. Consequently,
many images are assigned to two or more boards, each possi-
bly within a different semantic context and offering a unique
textual description.

Figure 3 shows a distribution of numbers of images in
individual boards and a distribution of numbers of boards to
which individual images belong. You can see that both of the
distributions obey a power law.

Proposed method
In this section, we propose a novel method that makes full
use of the potential of human curated data.

Framework
We provide an overview of our method in Figure 1. Train-
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ing data T contains NI images, NC curated groups, and a
bipartite graph representing which image belongs to which
curated groups. Thus, we can represent the training data T
as a triplet of an image feature matrix X = (xi ∈ R

DI )NI
i=1,

a curated group feature matrix Y = (yc ∈ R
DC )NC

c=1, and
an adjacency matrix A ∈ {0, 1}NC×NI . We used activa-
tions from the 7th fully-connected layers of the pre-trained
VGG16 network (Simonyan and Zisserman 2014) for image
feature extraction, and extract a distributed representation of
the names of boards and users with the Word2Vec model
(Mikolov et al. 2013) for curated group features. If we can
predict a score vector âi ∈ R

NC that represents the possi-
bility of an image i belonging to each of curated groups, we
can use this score vector as a basis for novel features of the
image that consider a broad range of concepts contained in
the curated groups.

Our proposed method formulates the problem of predict-
ing a score vector âi for an image i with the framework
of link prediction, where we train a model for link pre-
diction with a given set of training data T = (A,X,Y ).
Standard link prediction models try to estimate the presence
of links between existing nodes whose links are missing.
Meanwhile, our setting needs to estimate the presence of
links from a new node (i.e. a new image) to existing ones
(i.e. curated groups), for the sake of collective feature learn-
ing, and for this reason it requires observed features for link
prediction. We propose a new link prediction model for this
purpose that integrates the observed features of nodes as
well as the structure of existing links. Our method can it-
eratively optimize the models for link prediction and image
feature extraction, which we will discuss in the following
sections.

Model for link prediction
In this section, we describe our proposed model for link

prediction as a basis for collective feature learning.
Our model is based on a previous model proposed by

(Menon and Elkan 2011) that employs the observed and la-
tent features of nodes and scales in terms of network sizes.
More formally, a score âi,c of a link between an image node
i and a curated group node c is modeled as

âi,c = z�
IiWzCc + x�

i V yc + bIi + bCc, (1)

where zIi ∈ R
DI and zCc ∈ R

DC are latent features of
the image node i and the curated group node c, respectively,
bIi ∈ R and bCc ∈ R are bias terms of the image node i and
the curated group node c, respectively, and W ∈ R

DI×DC

and V ∈ R
DX×DY are weight parameters. This model as-

sumes that there tends to be a link between nodes with a
larger score, where the first term reveals the network struc-
ture by factorizing the ground-truth link matrix A, and the
second term reflects the feature similarity between nodes.
For a given set of training data T , all the model parameters
W , V , ZI = (zIi)

NI
i=1, ZC = (zCc)

NC
c=1, bI = (bIi)

NI
i=1 and

bC = (bCi)
NC
c=1 are optimized to minimize the following ex-

pected rank loss:∑
i

∑
(c,c′):Ai,c=1,Ai,c′=0

l(âi,c − âi,c′) + Ω(W ,V ,ZI ,ZC), (2)

where l(·) is a loss function and Ω(·) is a regularization term.
Although any types of loss functions and regularizations can
be applied, in this paper we exploit a hinge loss for the loss
function and �2-norm regularization of all the model param-
eters except the bias terms. Parameter updates can be eas-
ily derived by stochastic gradient descent. For the computa-
tional efficiency, we update parameters for randomly select
a pair (c, c′) of curated groups for each image, instead of
computing the rank loss for all the possible combinations of
curated groups. In this model, a network structure A is en-
coded into the model parameter W and the latent variables
ZI and ZC , and the contributions of the observed features
X and Y are concentrated onto another model parameter
V . Therefore, this model is unsuitable for our purpose of
collective feature learning, since the latent feature znew of
a new image is unknown, and thus the network structure in
the training data is totally ignored without the latent feature
term.

Our proposed model extends the model proposed by
Menon and Elkan to collective feature learning. More
specifically, a new score function of our proposed model is

âi,c =
(
x�
i z�

Ii

)(WX

WZ

)(
yc

zCc

)
+ bIi + bCc, (3)

where WX ∈ R
DX×(DY +DC) and WZ ∈ R

DI×(DY +DC)

are model parameters. The difference between the previous
and proposed models appears marginal, however, they are
totally different in terms of their underlying concepts. Our
proposed model enables us to incorporate the network struc-
ture into link prediction even if there is no latent feature for
the new image. Although we developed the proposed model
for collective feature learning, it improves the performance
of link prediction by considering the correlations between
observed and latent features. The experimental results for
link prediction will be presented later. Through the experi-
ments for link prediction, we found that the contribution of
image latent features ZI to the performance of link predic-
tion was minor. We also note that in our setting of collec-
tive feature learning the latent feature of a new image is un-
known, and thus it cannot be used for the test stage. There-
fore, we use the following simplified model, which omits
image latent features.

âi,c = x�
i WX

(
yc

zCc

)
+ bIi + bCc. (4)

This formulation can also be viewed as a multi-task lin-
ear classifier composed of a shared parameter WX , a class-
dependent term zCc, and a class-wise observed feature yc.

Feature learning
Once we have obtained a model for link prediction, we

are ready to train a new feature representation for images.
One possible but naive way is simply to use a score vec-
tor ânew ∈ R

NC as a new feature representation for a new
image. However, we propose two other approaches that are
more sophisticated and effective.

The first approach employs sparse coding to represent
an observed image feature x as a sparsely weighted sum

7264



of curated group features. The proposed score function Eq.
(4) for link prediction implies that an image feature WXxi

weighted by a model parameter WX should be similar to a
curated group feature (y�

c , z
�
Cc)

� if the image i belongs to
the curated group c. We also expect a single image to belong
to only a few curated groups, since the image has only a few
concepts and each curated group is expected to be focused
in terms of concepts. These two insights readily imply that a
given image feature x can be represented as a mixture of a
small number of curated group features, and we employ the
coefficient α(x) ∈ R

NC of the following sparse coding as a
new feature representation of the image x:

α(x) = arg min
α∈R

NC

{∥∥∥∥WXx−
(
Y
ZC

)
α

∥∥∥∥
2

2

+ λ‖α‖1

}
(5)

where λ is a regularization parameter. We adopt a simple
thresholding method for sparse coding, and its threshold is
determined by 10-fold cross-validation.

As described above, the first approach utilized a fixed im-
age feature extractor, and it can be regarded as a kind of
feature transformation. This means that it can remove redun-
dant aspects of raw image features but it cannot boost the in-
trinsic representation power. On the other hand, the second
approach fine-tunes the VGG16 network with the help of
link prediction, which can potentially boost the representa-
tion power in principle. With this approach, we expect a new
feature to clearly distinguish a curated group from others
with different concepts. On the basis of the above discussion,
we employ the rank loss shown in Eq. (2) as a loss function
for optimizing image features, where the network structure
remains the same as VGG16. Since the joint optimization of
the models for image feature extraction and link prediction
is not straightforward, we follow the alternative optimization
approaches that are widely used for training deep compos-
ite models. The link prediction model is first trained with
a fixed image feature model, namely a pre-trained VGG16
network. The rank loss Eq. (2) is then back-propagated to
the VGG16 model for fine-tuning of the overall VGG16 net-
work. The link prediction model can be again trained for the
fine-tuned image feature model if required. Finally, we use
the output of the activations of the 7th fully-connected layer
FC7 (4,096 dimensions) in the fine-tuned VGG16 model as
a new feature representation.

The above two approaches provide aspects of feature rep-
resentations that are different from VGG image features
trained with the object recognition task. Thus, our new fea-
ture representations are complementary with the pre-trained
VGG16 features, and combining two different feature repre-
sentations will boost the performance.

Experiments
In this section, we evaluate the effectiveness of the proposed
method through several experiments.

Link prediction performance
We first evaluate the performance of the proposed link

prediction model. We employed the dataset described in

Section and constructed a bipartite graph with 65K group
nodes and 1.5M image nodes. We also built a smaller graph
with 2.4K group nodes and 850K image nodes for evaluat-
ing the effect of network sizes. We used the output of the
FC7 layer of the VGG16 network as image features with
4, 096 dimensions. To extract features from curated groups,
we first split the user names and titles of the curated groups
into words, and then used the mean of the word vectors ex-
tracted from the Word2Vec model (Mikolov et al. 2013).
We removed out-of-vocabulary words when computing the
mean vector, and if no words existed for computing the mean
we simply remove the curated group nodes. The word vec-
tor model was trained with GoogleNews and the number of
dimensions was set to 300 (default). To separate the dataset
into training and test data, we first selected 10% (or 1 if the
node had less than 10 edges) of all the edges for each image
node as test data, and used the rest for training. The base-
line for comparison was the model proposed by (Menon and
Elkan 2011), and we have examined the performance of our
proposed method with and without using latent features. We
adopt the mean of area under the ROC curve (AUC) for each
image as a measure for evaluation.

Table 1 shows the results. The result indicates that our
proposed method outperformed the previous method and the
introduction of latent variables for curated groups provided
the greatest improvement to link prediction performance. On
the other hand, image latent variables did not produce sig-
nificant improvements in the performances. This may be be-
cause image features extracted from VGG were sufficiently
informative for predicting links, and we did not need to learn
any additional latent features. On the basis of this result, we
used our model Eq. (4) only with only the latent features of
the curated groups in the following experiments.

Though the performance gain of our proposed method on
the large network looks marginal especially for the large
graph, the test data for the large graph contains 9.75G possi-
ble links (= 65K curated groups ×1.5M images ×10% kept
for test), and thus 0.4% improvements affect approximately
39M possible links that are much larger than the number of
images. Therefore, this performance gain is significant and
has a great impact on both link prediction and feature learn-
ing. We also note that links that can be easily estimated only
with image features tend to increase as the network size in-
creases.

Experiment using learned feature
Next, we tested our proposed method on various image

classification tasks. To validate the effectiveness and gener-
alization performance of the proposed method, we used var-
ious datasets from several different domains, such as food
classification (UEC-FOOD100 (Matsuda, Hoashi, and Yanai
2012), UEC-FOOD256 (Kawano and Yanai 2014)), fash-
ion classification (Hipster Wars (Kiapour et al. 2014), Ap-
parel (Bossard et al. 2012)) and image sentiment analysis
(Instagram (Katsurai and Satoh 2016)). In addition, we col-
lected a new dataset from Pinterest for evaluation, which
was collected independently from the one used for train-
ing the whole model. Pinterest has 36 default categories that
were accessible from the top page. We excluded 4 categories
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Table 1: Performance of link prediction measured by mean AUC

Size Baseline No latent Latent image Latent group Latent both
Small (2.4K groups, 850K images) 0.895 0.898 0.896 0.928 0.929
Large (65K groups, 1.5M images) 0.8442 0.8441 0.8460 0.8482 0.8477

Table 2: Classification performances on test data

Dataset Metric VGG FT-GRP FT-WORD LINK PROP-SC PROP-FT VGG+SC VGG+FT
Pinterest MAP 0.430 0.044 0.043 0.382 0.409 0.404 0.445 0.477

UECFOOD100 ACC 0.511 0.051 0.051 0.065 0.454 0.453 0.514 0.536
UECFOOD256 ACC 0.468 0.023 0.023 0.028 0.376 0.398 0.473 0.502

Apparel ACC 0.576 0.146 0.144 0.319 0.488 0.470 0.566 0.586
Hipster ACC 0.592 0.363 0.244 0.345 0.552 0.615 0.599 0.642

Instagram MAP 0.910 0.783 0.785 0.868 0.912 0.896 0.916 0.919

that do not relate to the content, namely “Popular”, “Every-
thing”, “Videos” and “Quotes”, and used the remaining 32
categories as a class. We collected images that are pinned to
the boards that belong to those categories and constructed
a dataset with 63K images and 32 classes. We followed the
separation of the training and test data given by the dataset
distributors for almost all the datasets excluding Instagram
and Pinterest, and we randomly separated the training and
test data for the 2 remaining datasets. More specifically, we
used 20K training samples and 20K test samples for the In-
stagram dataset and 500 training samples per each class,
namely 10K images in total, for the Pinterest dataset.

We compared image features extracted from (1) VGG:
the VGG16 model as a baseline, (2) FINE-GRP: a fine-
tuned VGG16 model in which we consider curated group
assignments as class labels (for simulating the proposed
method without link prediction), (3) FINE-WORD: a fine-
tuned VGG model in which we consider words contained
in a pin description as class labels (for simulating the previ-
ous research (Joulin et al. 2016)), (4) LINK: a collection of
link prediction scores âi,c as a new image feature for image
i with NC dimensions (= the number of curated groups), (5)
PROP-SC: our proposed method with the sparse coding ap-
proach and (6) PROP-FINE: our proposed method with the
fine-tuning approach. To train the FINE-WORD model, we
excluded stop words with NLTK and selected the top 10K
words as a set of class labels. We also tried a late fusion
of our proposed feature representations and the pre-trained
VGG feature. As a metric for our evaluations, we used the
mean average precision for the Pinterest (multi-label pre-
diction) and Instagram (binary classification) datasets and
the classification accuracy for the remaining datasets (multi-
class categorization).

Table 2 summarizes the results. The results indicate that
FT-WORD features trained with words in pin descriptions
as class labels, like the previous method (Joulin et al. 2016),
did not produce meaningful features, since pin descriptions
brought by SNS users are often noisy, and feature learn-
ing based on such noisy supervised information often fails.
The experimental results also indicates that FT-GRP features

based on the proposed method without link prediction also
failed, since many curated groups contain only a small num-
ber of images, as shown in Figure 3, and thus the model
easily overfit the training data. On the other hand, the clas-
sification performance of our method using sparse coding
was comparable to that of the original VGG16, and the late
fusion with VGG16 produced better performances. This im-
plies that our proposed sparse coding feature conveys dis-
criminative information that is not contained in the original
VGG feature. We can also see from the table that our pro-
posed feature based on the fine-tuning approach performed
comparable to VGG16 even without any strong supervised
information for feature learning, and the late fusion with
VGG16 performed the best for all the datasets. This result
justifies our statement that our features were learned to rep-
resent a broad range of user interests and social trends that
might be difficult to explicitly describe by texts, and thus
our features complement the original VGG features tuned
for object recognition.

Conclusion
We have proposed a novel method for automatically learn-
ing discriminative level feature representations with the help
of a massive amount of human-curated content on SNSs. We
have also introduced a way of combining multiple modali-
ties in a weakly supervised learning setting. To exploit the
property of social curation data whereby two images in the
same group share the same semantic concept and groups
sharing the same image might have related semantic con-
cepts, we proposed a novel framework that regards the rela-
tionship between images and concepts as a graph and learns
image features via a link prediction problem. We proposed a
novel link prediction method that uses the weighted product
of observed node attributes and learned latent features. We
also proposed a method for extracting a novel image feature
from a learned network model. We crawled image datasets
from Pinterest for use as source curation data. We trained
our link prediction model from the dataset, applied learned
image features to various benchmark datasets, and showed
the effectiveness of the learned feature. These results show
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that our novel link prediction-based framework is promising.
Since our prediction method is simple, more sophisticated

methods may provide more discriminative features. Also, we
used only Pinterest as source curation data in our research,
but we think that most social curation media have similar
structures thus making our method applicable. Analyzing
the relation between the source media and the learned im-
age feature will constitute our future work.
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