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Abstract

Learning to reconstruct depths from a single image by watch-
ing unlabeled videos via deep convolutional network (DCN)
is attracting significant attention in recent years, e.g.(Zhou
et al. 2017). In this paper, we propose to use surface nor-
mal representation for unsupervised depth estimation frame-
work. Our estimated depths are constrained to be compatible
with predicted normals, yielding more robust geometry results.
Specifically, we formulate an edge-aware depth-normal con-
sistency term, and solve it by constructing a depth-to-normal
layer and a normal-to-depth layer inside of the DCN. The
depth-to-normal layer takes estimated depths as input, and
computes normal directions using cross production based on
neighboring pixels. Then given the estimated normals, the
normal-to-depth layer outputs a regularized depth map through
local planar smoothness. Both layers are computed with aware-
ness of edges inside the image to help address the issue of
depth/normal discontinuity and preserve sharp edges. Finally,
to train the network, we apply the photometric error and gradi-
ent smoothness to supervise both depth and normal predictions.
We conducted experiments on both outdoor (KITTI) and in-
door (NYUv2) datasets, and showed that our algorithm vastly
outperforms state-of-the-art, which demonstrates the benefits
of our approach.

1 Introduction
1 Human beings are highly competent in recovering the 3D
geometry of observed natural scenes at a very detailed level
in real-time, even from a single image. Being able to do
reconstruction for monocular images can be widely applied
to large amount of real applications such as augmented reality
and robotics.

One group of approaches solve this problem by fea-
ture matching and estimating camera and scene geometries,
e.g.structure from motion (SFM) (Wu 2011) etc., or color
matching, e.g.DTAM (Newcombe, Lovegrove, and Davison
2011). But these techniques are sensitive to correct matching
and are ineffective in homogeneous areas. Another way to
do 3D reconstruction is a learning based method, where the
reconstruction cues can be incrementally discovered by learn-
ing from videos. Currently, with the development of pixel-
wise prediction such as fully convolutional network (FCN)
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Figure 1: Comparison between (Zhou et al. 2017) and our
results with depth-normal consistency. Top to bottom: (b)
Ground truth depths (left) and normals (right). (c) Results
from (Zhou et al. 2017). (d) Our results. In the circled region,
(Zhou et al. 2017) fails to predict scene structure as shown by
estimated normals, while ours correctly predict both depths
and normals with such consistency.

(Long, Shelhamer, and Darrell 2015), supervised learning
of depth, e.g.(Eigen, Puhrsch, and Fergus 2014), achieved
impressive results over public datasets like KITTI (Geiger,
Lenz, and Urtasun 2012), NYUv2 (Silberman et al. 2012)
and SUN3D (Xiao, Owens, and Torralba 2013). Neverthe-
less, collecting ground truth depth is almost impossible for
random videos. It is hard for the supervisedly learned models
to generalize on videos of different scenes.

We can, instead, try to solve this problem in an unsu-
pervised way by imposing 3D scene geometric consistency
between video frames. There have been some works in this
line, (Zhou et al. 2017) propose a single image depth FCN
learning from videos. In their training, rather than using
ground truth depth, they warp the target image to other con-
secutive video frames based on the predicted depths and
relative motions, and match the photometry between the
warped frames and observed frames (detailed in Sec. 3).
Then, the matching errors are used as the supervision of
the depth prediction. Similar idea is applied in depth predic-
tion when stereo pairs are available (Garg, G, and Reid 2016;
Godard, Mac Aodha, and Brostow 2017).

Altough those methods are able to do single image depth
estimation, the results do not well represent the scene struc-
ture, especially when visulized with computed normals, as
shown in Fig. 1(c). This is mostly due to that photomet-
ric matching is ambiguous, i.e.a pixel in source frames can
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be matched to multiple similar pixels in target frames. Re-
searchers usually apply smoothness of depths (Zhou et al.
2017) to reduce the ambiguity, it is often a weak constraint
over neighboring pixels, which potentially have similar col-
ors, yielding inconsistent normal results.

Our work falls in the scope of learning based 3D recon-
struction of a single image trained on monocular videos,
following the work of (Zhou et al. 2017). But we have a step
further towards learning a regularized 3D geometry with ex-
plicit awareness of normal representation. We are motivated
by the fact that human beings are more sensitive in normal
directions compared to depth estimation. For instance, one
could precisely point out the normal direction of surface at
each pixel of a single image while could only roughly know
the absolute depth.

Thus, we incorporate an edge-aware depth-normal consis-
tency constraint inside the network which better regularizes
the learning of depths (Sec. 4). There are several advantages
of having normal estimated. For instance, it gives explicit
understanding of normal for learned models. In addition, it
provides higher order interaction between estimated depths,
which is beyond local neighbor relationships. Lastly, addi-
tional operations, e.g.Manhattan assumption, over normals
could be further integrated. As depth/normal discontinuity
often appear at object edges in the image, we incoporate the
image edges in this constraint to compensate. As shown in
Fig. 1(d), with such a constraint, our recovered geometry is
comparably better. We did extensive experiments over the
public KITTI and NYUv2 datasets, and show our algorithm
can achieve relative 20% improvement over the state-of-the-
art method on depth estimation and 10% improvement on
predicted normals. More importantly, the training converges
around 3× faster. These demonstrate the efficiency and effec-
tiveness of our approach.

2 Related Work

Structure from motion and single view geometry. As
discussed in Sec. 1, geometry based methods, such as
SFM (Wu 2011), ORB-SLAM (Mur-Artal, Montiel, and
Tardos 2015), DTAM (Newcombe, Lovegrove, and Davi-
son 2011), rely on feature matching, which could be effec-
tive and efficient in many cases. However, they can fail at
where there is low texture, or drastic change of visual perspec-
tive etc.. More importantly, it cannot be extended to single
view reconstruction where humans are good at. Tradition-
ally, specific rules are developed for single view geometry.
Methods rely on either computing vanishing point (Hoiem,
Efros, and Hebert 2007), following rules of BRDF (Pra-
dos and Faugeras 2006), or extracting the scenes with ma-
jor plane and box representations (Schwing et al. 2013;
Srajer et al. 2014) etc.. Those methods can only obtain sparse
geometry representations, and some of them require certain
assumptions (e.g. Lambertian, Manhattan world).

Supervised single view geometry via CNN. With the
advance of deep neural networks and their strong feature
representation, dense geometry, i.e., pixel-wise depth and
normal maps, can be readily estimated from a single im-
age (Wang, Fouhey, and Gupta 2015; Eigen and Fergus 2015;

Laina et al. 2016). The learned CNN model shows signif-
icant improvement compared to other strategies based on
hand-crafted features (Karsch, Liu, and Kang 2014; Ladicky,
Shi, and Pollefeys 2014; L. Ladicky, Pollefeys, and others
2014). Others tried to improve the estimation further by ap-
pending a conditional random field (CRF) (Wang et al. 2015;
Liu, Shen, and Lin 2015; Li et al. 2015). However, most
works regard depth and normal predictions as independent
tasks. (Wang et al. 2016) point out their correlations over
large planar regions, and regularize the prediction using a
dense CRF (Kong and Black 2015), which improved the re-
sults on both depth and normal. However, all those methods
require densely labeled ground truths, which are expensive
to label in natural environments.

Unsupervised single view geometry. Videos are easy to
obtain at the present age, while holding richer 3D information
than single images. Thus, it attracts lots of interests if single
view geometry can be learned through feature matching from
videos. Recently, several deep learning methods have been
proposed based on such an intuition. Deep3D (Xie, Girshick,
and Farhadi 2016) learns to generate the right view from the
given left view by supervision of a stereo pair. In order to
do back-propagation to depth values, it quantizes the depth
space and learns to select the right one. Concurrently, (Garg,
G, and Reid 2016) applies the similar supervision from stereo
pairs, while the depth is kept continuous, They apply Taylor
expansion to approximate the gradient for depth. (Godard,
Mac Aodha, and Brostow 2017) extends Garg’s work by
including depth smoothness loss and left-right depth con-
sistency. Most recently, (Zhou et al. 2017) induces camera
pose estimation into the training pipeline, which makes depth
learning possible from monocular videos. And they come up
with an explainability mask to relieve the problem of moving
object in rigid scenes. At the same time, (Kuznietsov, Stuck-
ler, and Leibe 2017) proposes a network to include modeling
rigid object motion. Although vastly developed for depth esti-
mation from video, normal information, which is also highly
interesting for geometry prediction, has not been considered
inside the pipeline. This paper fills in the missing part, and
show that normal can serve as a natural regularization for
depth estimation, which significantly improves the state-of-
the-art performance. Finally, with our designed loss, we are
able to learn the indoor geometry where (Zhou et al. 2017)
usually fails to estimate.

3 Preliminaries
In order to make the paper self-contained, we first introduce
several preliminaries proposed in the unsupervised learning
pipelines (Zhou et al. 2017; Godard, Mac Aodha, and Bros-
tow 2017). The core idea behind, as discussed in Sec. 2, is
inverse warping from target view to source view with aware-
ness of 3D geometry, as illustrated in Fig. 3(a), which we
will elaborate in the following paragraphs.

Perspective projection between multiple views. Let
D(xt) be the depth value of the target view at image co-
ordinate xt, and K be the intrinsic parameter of the camera.
Suppose the relative pose from the target view to source
view is a rigid transformation Tt→s = [R|t] ∈ SE(3), and
h(x) is the homogeneous coordinate given x. The perspective
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Figure 2: Framework of our approach.
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Figure 3: Illustraion of (a) 3D inverse warping and (b) bilinear
interpolation.

warping to localize corresponding pixels can be formulated
as,

D(xs)h(xs) = KTt→sD(xt)K
−1h(xt), (1)

and the image coordinate xs can be obtained by dehomogeni-
sation of D(xs)h(xs). Thus, xs and xt is a pair of matching
coordinates, and we are able to compare the similarity be-
tween the two to validate the correctness of structure.

Photometric error from view synthesis. Given pixel
matching pairs between target and source views, i.e.It and
Is, we can synthesize a target view Îs from the given source
view through bilinear interpolation (Garg, G, and Reid 2016),
as illustrated in Fig. 3(b). Then, under the assumption of
Lambertian and a static rigid scene, the average photometric
error is often used to recover the depth map D for the target
view and the relative pose. However, as pointed out by (Zhou
et al. 2017), this assumption is not always true, due to the
fact of moving objects and occlusion. An explainability mask
M is induced to compensate for this. Formally, the masked

photometric error is,

Lvs(D, T ,M) =

S∑

s=1

∑

xt

Ms(xt)|It(xt)− Îs(xt)|,

s.t. ∀xt, s Ms(xt) ∈ [0, 1], D(xt) > 0 (2)

where {Îs}Ss=1 is the set of warped source views, and T is a
set of transformation from target view to each of the source
views. M = {Ms} is a set of explainability masks, and
Ms(xt) ∈ [0, 1] weights the error at xt from source view s.

Regularization. As mentioned in Sec. 1, supervision
based solely on photometric error is ambiguous. One pixel
could match to multiple candidates, especially in low-texture
regions. In addition, there is trivial solution for explainability
mask by setting all values to zero. Thus, to reduce depth
ambiguity and encourage non-zero masks, two regularization
terms are applied,

Ls(D, 2) =
∑

xt

∑

d∈x,y

|∇2
dD(xt)|e−α|∇dI(xt)|

Lm(M) = −
∑

s

∑

xt

logP (Ms(xt) = 1) (3)

Ls(D, 2) is a spatial smoothness term penalizes L1 norm of
second-order gradients of depth along both x and y directions,
encouraging depth values to align in planar surface when no
image gradient appears. Here, the number 2 represents the
2nd order for depth. Lm(M) is cross-entropy between the
masks and maps with value 1.

Finally, a multi-scale strategy is applied to the depth output,
and the total loss for depth estimation from videos is a joint
function from previous terms,

Lo({Dl}, T ,M) =
∑

l

{Lvs(Dl, T ,M) + λsLs(Dl)

+ λmLm(Ml)} (4)

7495



Dl and Ml represent the depth and mask under scale l.
Given the objective function, the photometric error can be

back-propagated to depth, pose and mask networks by apply-
ing the spatial transform operation as proposed by (Jaderberg
et al. 2015), which supervises the learning process.

4 Geometry estimation with edge-aware

depth-normal consistency

In our scenario, given a target image I , we aim at learning to
estimate both depths and normals simultaneously. Formally,
let N be the predicted normals from our model, we embed
it into the training pipeline and make it a regularization for
depths estimation D, which helps to train a more robust
model.

4.1 Framework

Fig. 2 illustrates an overview of our approach. For training,
we apply supervision from view synthesis following (Zhou et
al. 2017). Specifically, the depth network (middle) takes only
the target view as input, and outputs a per-pixel depth map Dt,
based on which a normal map Nt is generated by the depth-
to-normal layer. Then, given the Dt and Nt, a new depth map
Dn

t is estimated from the normal-to-depth layer using local
orthogonal compatibility between depth and normals. Both
of the layers takes in image gradient to avoid non-compatible
pixels involving in depth and normal conversion (detailed
in Sec. 4.2). Then, the new depth map Dn

t , combined with
poses and mask predicted from the motion network (left), are
then used to inversely warp the source views to reconstruct
the target view, and errors are back propagated through both
networks. Here the normal representation naturally serves as
a regularization for depth estimation. Finally, for training loss,
additional to the usually used photometric reconstruction
loss, we also add in smoothness over normals, which induces
higher order interaction between pixels (Sec. 4.3)

With the trained model, given a new image, we infer per-
pixel depth value and then compute the normal value, yielding
consistent results between the two predictions.

4.2 Depth and normal orthogonality.

In reconstruction, depth and normal are two strongly corre-
lated information, which follows locally linear orthogonality.
Formally, for each pixel xi, such a correlation can be written
as a quadratic minimization for a set of linear equations,

Lxi(D,N) = ||[· · · , ωji(φ(xj)− φ(xi)), · · · ]TN(xi)||2,
where φ(x) = D(x)K−1h(x), ‖N(xi)‖2 = 1,

ωji > 0 if xj ∈ N (xi) (5)

where N (xi) is a set of predefined neighborhood pixels of
xi, and N(xi) is a 3 × 1 vector. φ(x) is the back projected
3D point from 2D coordinate x. φ(xj)−φ(xi) is a difference
vector in 3D, and ωji is used to weight the equation for pixel
xj w.r.t. xi which we will elaborate later.

As discussed in Sec. 2, most previous works try to predict
the two information independently without considering such
a correlation, while only SURGE (Wang et al. 2016) proposes
to apply the consistency by a post CRF processing only over

�

� ��
�����	

�

�

�

�
���

�
�����
��	�

�
��

8 neighbors 8 neighbors in 3D

Figure 4: Illustration of computing normal base on a
pair of neighboring pixels. xi, xi1, xi2 are 2D points, and
φ(xi), φ(xi1), φ(xi2) are corresponding points projected to
3D space. The normal direction N(xi) is computed with
cross product between φ(xi1)− φ(xi) and φ(xi2)− φ(xi).

large planar regions. In our case, we enforce the consistency
over the full image, and directly apply it to regularize the
network learning. Specifically, to model their consistency, we
develop two layers by solving Eq. (5), i.e.a depth-to-normal
layer and a normal-to-depth layer.

Infer normals from depths. Given a depth map D, for
each point xi, in order to get N(xi). From Eq. (5), we need
to firstly define neighbors N (xi) and weights ωji, and then
solve the set of linear equations. To deal with the first is-
sue, we choose to use the 8-neighbor convention to com-
pute normal directions, which considerably more robust
than the 4-neighbor convention. However, it is not reason-
able to equally weight all pixels due to depth discontinuity
or dramatic normal changes. Thus, for computing ωji, we
weight more for pixels xj having similar color with xi, while
weight less otherwise. Formally, in our case, it is computed
as ωji = exp{−α|I(xj)− I(xi)|} and α = 0.1.

To minimize Eq. (5), one may apply a standard singular
value decomposition (SVD) to obtain the solution. How-
ever, in our case, we need to embed such an operation
in the network for training, and back-propagate the gradi-
ent to input depths. SVD is computationally non-efficient
for back-propagation. Thus, we choose to use mean cross-
product to approximate the minimization (Jia 2006), which
is simpler and more efficient. Specifically, from the 8 neigh-
bor pixels around xi = [m,n], we split them to 4 pairs,
where each pair of pixels is perpendicular at 2D coordi-
nate w.r.t. xi, and in a counter clock-wise order, i.e.P(xi) =
{([m−1, n], [m,n+1]), ·, ([m+1, n−1], [m−1, n−1])}.
Then, for each pair, cross product of their difference vector
w.r.t. xi is computed, and the mean direction of the computed
vectors is set as the normal direction of xi. Formally, the
solver for normals is written as,

n =
∑

p∈P
(ωp0,xi(φ(p0)− φ(xi))× ωp1,xi(φ(p1)− φ(xi))),

N(xi) = n/‖n‖2 (6)

The process of calculating the normal direction for xi using
one pair of pixels is in Fig. 4.

Compute depths from normals. Due to the fact that we
do not have ground truth normals for supervision, it is nec-
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essary to recover depths from normals to receive the super-
vision from photometric error as discussed in Sec. 3. To
recover depths, given normal map N , we still need to solve
Eq. (5). However, there is no unique solution. Thus, to make
it solvable, we provide an initial depth map Do as input,
which might lack normal smoothness, e.g.depth map from
network output. Then, given Do(xi), the depth solution for
each neighboring pixel of xi is unique and can be easily com-
puted. Formally, let De(xj |xi) = ψ(Do(xi), N(xi)) be the
solved depth value calculated for a neighbor pixel xj w.r.t. xi.
However, when computing over the full image, we still need
to solve 8 equations jointly for each pixel of the 8 neighbors.
Finally, by minimum square estimation (MSE), the solution
for depth of xi is,

Dn(xj) =
∑

i∈N
ω̂ijDe(xj |xi), ω̂ij = ωij/

∑

i

ωij (7)

4.3 Training losses

Given the consistency, in this section, we describe our train-
ing strategy. In order to supervise both the depth and normal
predictions, we can directly apply the loss in Eq. (4) by re-
placing the output from depth network Do with the output
after our normal-to-depth layer Dn to train the model. We
show in our experiments (Sec. 5), by doing this, we already
outperform the previous state-of-the-art by around 10% in
depth estimation using the same network architecture.

Additionally, with normal representation, we apply
smoothness over neighboring normal values, which provides
higher order interactive between pixels. Formally, the smooth-
ness for normal has the same form as Ls in Eq. (3) for depth,
while the first order gradient is applied, i.e. Ls(N, 1).

Last but not least, matching corresponding pixels between
frames is another central factor to find correct geometry.
Addition to the photometric error from matching pixel colors,
matching image gradient is more robust to lighting variations,
which was frequently applied in computing optical flow (Li
2017). In our case, we compute a gradient map of the target
image and synthesized target images, and include the gradient
matching error to our loss function. Formally, the loss is
represented as,

Lg(Dn, T ,M) =
S∑

s=1

∑

xt

Ms(xt)‖∇It(xt)−∇Îs(xt)‖1,

In summary, our final learning objective for multi-scale
learning is,

L(D,N , T ,M) = Lo({Dnl}, T ,M)+
∑

l

{λgLg(Dnl, T ,M) + λnLs(Nl, 1)} (8)

where D = {Dnl} and N = {Nl} are the set of depth maps
and normal maps for the target view.

Model training. For network architecture, similar to
(Zhou et al. 2017) and (Godard, Mac Aodha, and Brostow
2017), we adopt the DispNet (Mayer et al. 2016) architec-
ture with skip connections as in (Zhou et al. 2017). All conv
layers are followed by a ReLU activation except for the top

prediction layer. We train the network from scratch; since
too many losses at beginning could be hard to optimize, we
choose a two stage training strategy by first train the network
with Lo with 5 epochs and then fine-tune it with the full loss
for 1 epoch. We provide ablation study of each term in our
experiments.

5 Experiments

In this section, we introduce implementation details, datasets,
evaluation metrics. An ablation study of how much each
component of the framework contributes and a performance
comparison with other supervised or unsupervised methods
are also presented.

5.1 Implementation details.

Our framework is implemented with publicly available Ten-
sorfFlow (Abadi et al. 2016) platform and has 34 million
trainable variables in total. During training, Adam optimizer
is applied with parameters β1 = 0.9, β2 = 0.000, ε = 10−8.
Learning rate and batch size are set to be 2 × 10−3 and 4
respectively. Batch normalization (Ioffe and Szegedy 2015)
is not used as we didn’t observe a performance improvement
with it. Following (Zhou et al. 2017), we use the same loss
balancing for λs, λm, and correct the depth by a scale factor.
We set λn = 1 and λg = λs.

The length of input sequence is fixed to be 3 and the input
frames are resized to 128× 416. The middle frame is treated
as the target image and the other two are source images. Our
network starts to show meaningful results after 3 epochs, and
converges at the end of the 5th epoch. With a Nvidia Titan
X (Pascal), the training process takes around 6 hours. The
number of epochs and absolute time needed is much less
than (Godard, Mac Aodha, and Brostow 2017) (50 epochs,
25 hours) and (Zhou et al. 2017) (15 epochs).

5.2 Datasets and metrics

Training. Theorectically, our framework can be trained on
any frame sequences captured with a monocular camera. To
better compare with other methods, we evaluate on the pop-
ular KITTI 2015 (Geiger, Lenz, and Urtasun 2012) dataset.
It is a large dataset suite for multiple tasks, including optical
flow, 3D object detection, tracking, and road segmenations,
etc. The raw data contains RGB and gray-scale videos, which
are captured by stereo cameras from 61 scenes, with a typical
image size of 1242× 375.

In our experiments, videos captured by both left and right
cameras are used for training, but treated independently. We
follow the same training sequences as (Zhou et al. 2017;
Eigen, Puhrsch, and Fergus 2014), excluding frames from
test scenes and static sequences. This results in 40,109 trainig
sequences and 4431 validation sequences. Different from
(Godard, Mac Aodha, and Brostow 2017), no data augmenta-
tion has been performed.

Testing. There are two sets of KITTI 2015 test data: (1)
Eigen split contains 697 test images proposed by (Eigen,
Puhrsch, and Fergus 2014); (2) KITTI split contains 200 high-
quality disparity images provided as part of official KITTI
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Table 1: Depth performance of our framework variants on the KITTI split.

Methods Lower the better Higher the better
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Ours (no d-n) 0.208 2.286 7.462 0.297 0.693 0.875 0.948
Ours (smooth no gradient) 0.189 1.627 7.017 0.280 0.713 0.891 0.957
Ours (no img grad for d-n) 0.179 1.566 7.247 0.272 0.720 0.895 0.959
Ours (no normal smooth) 0.172 1.559 6.794 0.252 0.744 0.910 0.969

training set. To better compare with other unsupervised and
supervised methods, we present evaluations on both splits.

The depth ground truth of Eigen split is generated by pro-
jecting 3D points scanned from Velodyne laser to the camera
view. This produces depth values for less than 5% of all pix-
els in the RGB images. To be consistent when comparing
with other methods, the same crop as in (Eigen, Puhrsch, and
Fergus 2014) is performed when testing. The depth ground
truth of KITTI split contains sparse depth map with CAD
models in place of moving cars. It provides better quality
depth than projected Velodyne laser scanned points but has
ambiguous depth value on object boundaries where the CAD
model doesn’t align with the images. The predicted depth is
capped at 80 meters as in (Godard, Mac Aodha, and Brostow
2017) and (Zhou et al. 2017).

The normal ground truth for two splits is generated by ap-
plying our depth-to-normal layer on inpainted depth ground
truth, where the same inpainting algorithm as (Silberman
et al. 2012) is used. For both depth and normal, following
(Eigen, Puhrsch, and Fergus 2014), only the pixels with laser
ground truth are used.

Metrics. We apply the same depth evaluation and normal
evaluation metrics as in (Eigen and Fergus 2015). For depth
evaluation, we use the code provided by (Zhou et al. 2017)
and for normal, we implement ourselves and verified the
correctness through validating normal results of (Eigen and
Fergus 2015) over the NYUv2 dataset.

5.3 Ablation study

To investigate different components proposed in Sec. 4, we
perform an ablation study by removing each one from our
full model and evaluating on the KITTI split.

Depth-normal consistency. By removing normal-to-
depth layer (Eq. (7)), the inverse warping process (Sec. 3)
takes an image and directly predicted depth map from the
input. We show the performance at the row “Ours (no d-n)"
in Tab. 1. It is much worse than our full model on Kitti shown
in Tab. 2. Notice that with depth-normal consistency, the net-
work not only performs better but converges faster. In fact,
our full model converges after 5 epochs, while the network
without such consistency converges at 15th epoch.

Image gradient in smoothness term. To validate image
gradient for depth and normal smoothness in Eq. (3), we
setting α = 0. The results is shown as “Ours (smooth no
gradient)" in Tab. 1. It makes less impoact than depth-normal
consistency, but still helps the performance.

Image gradient in normal-depth consistency. We set
ω = 1 in Eq. (5), thus there is no edge awareness in depth-
normal consistency. As show at row “Ours (no img grad
for n-d)”, the results are again worse than our final results,

which demonstrates the effectiveness by only enforcing the
consistency between color similar pixels.

Normal smoothness. Finally, by removing normal
smoothness Ln in Eq. (8), we show the results at row “Ours
(no normal smooth)” in Tab. 1, where it makes less impact
for depth than other components, while still make reasonable
contributions. However, it makes relatively more contribu-
tions for normal performance as shown in Tab. 3.

5.4 Comparison with other methods

To compare with other state-of-the-arts, we show perfor-
mances on both KITTI and Eigen split. The depth evalu-
ation results are shown in Tab. 2. Our method outperforms
some supervised methods e.g.(Eigen, Puhrsch, and Fergus
2014), (Liu et al. 2016) and unsupervised methods (Zhou
et al. 2017), (Kuznietsov, Stuckler, and Leibe 2017), while
slightly worse than (Godard, Mac Aodha, and Brostow 2017)
and (Kuznietsov, Stuckler, and Leibe 2017). It is worth not-
ing that (Kuznietsov, Stuckler, and Leibe 2017) utilizes the
depth ground truth and (Godard, Mac Aodha, and Brostow
2017) takes stereo image pairs as input, which implies the
camera motion is known. On KITTI test split, our method
outperforms (Godard, Mac Aodha, and Brostow 2017) on
the “Sq Rel” metric. As “Sq Rel” penalizes large depth error,
due to regularization, our results has much less outlier depths.
Finally, we show some qualitative results in Fig. 5.

To the best of our knowledge, there is no work reporting
normal performance on the KITTI dataset. We thus compare
the our normal predictions with that computed from the depth
maps predicted by (Zhou et al. 2017). As shown in Tab. 3,
our method outperforms the baseline under all metrics. Addi-
tionally, to ensure the model is learned reasonably, we set up
two naive baselines. “Ground truth normal mean” is that we
set a mean normal direction for all pixels using ground truth
normals. “Pre-defined scene” is that we separate the image
to 4 parts using 4 lines connecting each image corder and
image center. We set the bottom part having up-directed nor-
mal, left part having right-directed normal, right part having
left-directed normal and top part with outward normals. Both
of the baselines are significantly worse than our predicted
model, demonstrating the correctness of the learned model.

Indoor scene exploration. Besides the outdoor dataset, we
also explore applying our framework on the indoor scenes:
NYUv2 dataset (Silberman et al. 2012). We use a subset for
some preliminary experiments. Specifically, “study room" is
picked and split for training and testing. We first try with our
baseline method (Zhou et al. 2017), and it fails to predict any
reasonable depth maps. One possible explanation is that as
there are many planes, with low texture and uniform colors in
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Table 2: Single view depth test results on Eigen split (upper part) and KITTI split(lower part). All methods in this table use
KITTI dataset for traning and the test result is capped in the range 0-80 meters. Test result on KITTI test split of Zhou et al. 2017
is generated by using their released code to train on KITTI dataset only.

Method Test data
Supervision Lower the better Higher the better
Depth Pose Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Train set mean

Eigen split

� 0.403 5.530 8.709 0.403 0.593 0.776 0.878
(Eigen, Puhrsch, and Fergus 2014) Coarse � 0.214 1.605 6.563 0.292 0.673 0.884 0.957
(Eigen, Puhrsch, and Fergus 2014) Fine � 0.203 1.548 6.307 0.282 0.702 0.890 0.958
(Kuznietsov, Stuckler, and Leibe 2017) supervised � 0.122 0.763 4.815 0.194 0.845 0.957 0.987
(Kuznietsov, Stuckler, and Leibe 2017) unsupervised � 0.308 9.367 8.700 0.367 0.752 0.904 0.952
(Godard, Mac Aodha, and Brostow 2017) � 0.148 1.344 5.927 0.247 0.803 0.922 0.964
(Zhou et al. 2017) 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Ours 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Train set mean � 0.398 5.519 8.632 0.405 0.587 0.764 0.880
(Godard, Mac Aodha, and Brostow 2017) � 0.124 1.388 6.125 0.217 0.841 0.936 0.975
(Vijayanarasimhan et al. 2017) KITTI split - - - 0.340 - - -
(Zhou et al. 2017) 0.216 2.255 7.422 0.299 0.686 0.873 0.951
Ours 0.1648 1.360 6.641 0.248 0.750 0.914 0.969
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Figure 5: Visual comparison between (Zhou et al. 2017) and ours. We use the interpolated ground truth depths and reshape the
image for better visualization. For both depths and normals, our results have less artifacts, reflect the scene layouts much better
(as circled in the 1st and 2nd row) and preserve more detailed structures such as cars (as circled in the 3rd and 4th row).

Input Depth results Depth GT Normal GTNormal results

Figure 6: Qualitative results of our framework on a subset of
NYU v2 dataset.

the indoor scenes, the color matching can fail. Besides color
matching, we also add image gradient matching in our loss
term, which helps match the plane boundary.

However, as shown in Fig. 6, our framework performs
reasonably good on scenes that have multiple intersecting
planes. Nevertheless, we still fail on scenes that have only
a clutter of object (bottom row of Fig. 6). In the future, we
plan to explore more on stronger feature matching rather than
just using color matching, which may facilitate the learning

Table 3: Normal performances of our method and some base-
line methods.

Method Mean Median 11.25◦ 22.5◦ 30◦

Ground truth normal mean 72.39 64.72 0.031 0.134 0.243
Pre-defined scene 63.52 58.93 0.067 0.196 0.302
(Zhou et al. 2017) 50.47 39.16 0.125 0.303 0.425
Ours w/o normal smoothness 49.30 36.83 0.138 0.343 0.436
Ours 47.52 33.98 0.149 0.369 0.473

under cluttered scenes.

6 Conclusion

In this paper, we propose an unsupervised learning framework
for both depth and normal estimation via edge-aware depth-
normal consistency. Our novel depth-normal regularization
enforces the geoemetry consistency between different pro-
jections of the 3D scene, improving evaluation performances
and also the training speed. We present ablation experiments
exploring each component of our framework and also on dif-
ferent scenes of images. Our results are even better than some
supervised methods, and achieve state-of-the-art performance
among methods using monocular videos for training.
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