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Abstract

Inspired by the free-energy brain theory (Friston, Kilner,
and Harrison 2006), which implies that human visual sys-
tem (HVS) tends to reduce uncertainty and restore percep-
tual details upon seeing a distorted image (Friston 2010),
we propose restorative adversarial net (RAN), a GAN-based
model for no-reference image quality assessment (NR-IQA).
RAN, which mimics the process of HVS, consists of three
components: a restorator, a discriminator and an evaluator.
The restorator restores and reconstructs input distorted im-
age patches, while the discriminator distinguishes the recon-
structed patches from the pristine distortion-free patches. Af-
ter restoration, we observe that the perceptual distance be-
tween the restored and the distorted patches is monotonic
with respect to the distortion level. We further define Gain
of Restoration (GoR) based on this phenomenon. The evalua-
tor predicts perceptual score by extracting feature representa-
tions from the distorted and restored patches to measure GoR.
Eventually, the quality score of an input image is estimated
by weighted sum of the patch scores. Experimental results
on Waterloo Exploration, LIVE and TID2013 show the effec-
tiveness and generalization ability of RAN compared to the
state-of-the-art NR-IQA models.

Introduction

With mobile devices ingrained in the very fabric of people’s
life, capture, transmission and storage of digital images are
ubiquitous nowadays. People are paying closer attention to
the perceptual quality of digital images. This quantitative
evaluation can either be subjective or objective. However,
with such a great load of images, assessing the perceptual
quality merely by the human is next to impossible. Objec-
tive image quality assessment (IQA), which measures visual
quality by mimicking human perception, has become an al-
ternative solution.

In cases where the distortion-free image is available, IQA
can be carried out by comparing the distorted image with
the reference image. Current full-reference image quality
assessment (FR-IQA) metrics such as FSIM (Zhang et al.
2011) and VSI (Zhang, Shen, and Li 2014) have achieved
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satisfying results that are concordant with the human vi-
sual system (HVS). However, reference images seldom ex-
ist in most situations, and thus no-reference image qual-
ity assessment (NR-IQA) which evaluates perceptual qual-
ity with no access to reference images is highly demanded.
Traditional learning-based IQA methods follow a routine
pipeline, namely extract features first then train a model to
estimate ground-truth perceptual score. However, none of
them take into consideration the detailed process in which
humans perceive and assess distorted images, which results
in inconsistency with subjective evaluation.

Recent research in brain and neuroscience has brought in-
sights into how HVS works when quantifying the quality
of an image. (Friston 2010) propose a unified brain theory
based on free-energy principle (Friston, Kilner, and Harrison
2006), which reveals that human brain resists a natural ten-
dency to disorder and HVS is inclined to restore and recon-
struct degraded contents when assessing a distorted image.
It shows that human brain will instinctively add textures and
details based on the perceived image in order to simply un-
veil the mask of distortion and figure out the pristine content.
After the restoration, human brain compares the distorted
image to the brain-restored image in order to assess percep-
tual quality. Meanwhile, we also observe the correlation be-
tween distortion level and summation of brain-restored de-
tails: when people are shown images with higher level dis-
tortion, they are able to restore more details, although not all
the complementary details are ground truth.

Inspired by how HVS works, we hereby define Gain of
Restoration (GoR) and assess perceptual quality using it.
Given a distorted image, GoR is the perceptual distance be-
tween the distorted image and its restored version. In this
paper, we propose restorative adversarial nets (RAN), an
NR-IQA model which composes of a restorator, a discrim-
inator and an evaluator. The proposed model is shown in
Fig. 1. Different from the original generative adversarial nets
(GAN) (Goodfellow et al. 2014), the restorator takes a dis-
torted image patch as input instead of Gaussian noise and
it is trained to restore the input. The discriminator aims to
discern whether the input belongs to a restored version or is
originally distortion-free. The evaluator takes restored and
distorted patches as input and outputs perceptually quanti-
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fied score by fitting and utilizing the monotonicity of GoR.
The proposed model adopts perceptual loss (Johnson, Alahi,
and Fei-Fei 2016; Ledig et al. 2016) to achieve perceptually
friendly results in restoration and Wasserstein distance (Ar-
jovsky, Chintala, and Bottou 2017) to stabilize adversarial
training.

The remainder of this paper is organized as follows. In
section II, we introduce related work in the field of NR-IQA
and GAN. We detail the structure of RAN in section III. Ex-
perimental results and related discussions are presented in
section IV. In section V, we conclude the paper.

Related Work

No-Reference Image Quality Assessment

Given a no-reference setting, (Moorthy and Bovik 2011)
propose DIVINE framework, which deploys summary
statistics and performs a regression after identification of
distortion type. BRISQUE (Saad, Bovik, and Charrier 2012)
and BLIINDS-II (Mittal, Moorthy, and Bovik 2012) utilize
natural scene statistics (NSS) to model perceptual quality.
CORNIA (Ye et al. 2012), on the other hand, constructs and
presents a small yet accurate codebook to look up. (Bosse
et al. 2016; Kang et al. 2015; 2014) adopt deep neural net-
work to extract features from the raw input and perform re-
gression to estimate perceptual scores. The above NR-IQA
methods can be summarized as feature extraction and regres-
sion only based on distorted images. However, according to
the free-energy theory (Friston, Kilner, and Harrison 2006;
Friston 2010), HVS tends to restore the distorted image first
before quality assessment. Despite building NR-IQA model
based on the free-energy theory, (Zhai et al. 2012) and (Gu et
al. 2015) restore the distorted image with a linear autoregres-
sive model, which is not capable of producing a satisfactory
result when the input suffers high-level distortion and there-
fore may not be consistent with HVS.

Generative Adversarial Nets

Proposed by (Goodfellow et al. 2014), generative adversar-
ial nets (GAN) have achieved impressive success in style
transfer (Zhu et al. 2017), image super resolution (Ledig et
al. 2016), and representation learning (Radford, Metz, and
Chintala 2015). The key idea of GAN is to train a genera-
tor and a discriminator simultaneously, in which the gener-
ator takes noise as input and tries to fool the discriminator
by generating indistinguishable samples. However, it suffers
vanishing gradient and mode collapse problems when the
discriminator is well-trained (Salimans et al. 2016). To ad-
dress the problems, (Arjovsky, Chintala, and Bottou 2017)
propose Wasserstein GAN (WGAN), which greatly reduces
instability of training. In this paper, stability is critical since
the inputs are images with various kinds and levels of distor-
tion, so we adopt WGAN framework to stabilize adversarial
training.

Proposed Model and Learning

In NR-IQA, given a distorted image Id, the aim is to learn
a mapping f : Id → s, in which s ∈ R

+ denotes the qual-
ity estimate of Id and should be consistent with the result

of human visual system (HVS). As shown in Fig. 1, the
proposed model consists of three parts: a restorator Rθ, a
discriminator Dφ and an evaluator Eω . They are realized
by neural networks parametrized by θ, φ, ω respectively. It
works as follows. We first sample non-overlapping patches
ψ = {P0, P1, . . . , Pn} from the given distorted image Id.
For each patch Pk ∈ ψ, Rθ takes it as input and tries to
restore Pk into corresponding distortion-free pristine patch
P 0
k ,Dφ distinguishes restoredRθ(Pk) from pristine P 0

k . Eω

takes both Pk and Rθ(Pk) as inputs and outputs sk and wk,
denoting a quality estimate and weight estimate of the patch
Pk. Eventually, the perceptual quality Q(Id) is estimated by
weighted sum of score predictions of all patches.

Q(Id) =

∑n
k=1 skwk∑n
k=1 wk

(1)

Gain of Restoration

We define Gain of Restoration (GoR) as the perceptual dis-
tance between restored image and distorted image in the pro-
posed NR-IQA model. We observe that GoR is monotone
with respect to distortion level given a determined restora-
tor. As shown in Fig. 2, we try several functions to measure
the perceptual distance, such as PSNR and SSIM (Wang et
al. 2004), after the restorator is trained. PSNR and SSIM are
two widely-used metrics to measure the difference between
two given images. We randomly picked 40 pristine images
and their corresponding distorted version from Waterloo Ex-
ploration (Ma et al. 2017), a large-scale IQA database. We
select all 4 distortion types: Gaussian Blur, White Noise,
JPEG Compression and JP2K Compression. Waterloo Ex-
ploration generates distortion of 5 levels for each type, how-
ever, to justify GoR monotonicity, we choose 3 distortion
levels: level 1, 3 and 5. After 480 distorted images are re-
stored, we calculate PSNR and SSIM between distorted im-
ages and their restored version. The four charts in the first
row show PSNR results, representing Gaussian Blur, White
Noise, JPEG Compression and JP2K Compression from left
to right. The four charts in the second row are SSIM results.
We observe that perceptual similarity, quantified by SSIM
and PSNR, between the restored image and the distorted
image is low when the image has severe distortion, which
means restoration is a huge improvement and GoR is high,
and vice versa.

Although restoration is a poorly-defined problem because
the restorator is trained to restore the inputs with various
types and levels of distortion to a single distortion-free im-
age, we aim to maximize GoR of every input, and assess
perceptual quality based on GoR, instead of focusing on how
close the restored image is to the pristine image.

Restorative Adversarial Nets

The restoratorRθ takes in distorted patch Pk and restores the
input Pk towards the pristine patch P 0

k . Motivated by (Gross
and Wilber 2016; Ledig et al. 2016), we adopt the layout of
a deep ResNet (He et al. 2016) for restorator Rθ. Residual
structure is critical in our proposed model. First, according
to (He et al. 2016), residual connections make the identity
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Figure 1: Overview of the detailed architecture of RAN. From up to down are the structures of restorator, discriminator and
evaluator. “Conv m-n” denotes a convolution layer with m feature maps and 3×3 filters with stride n. “L-ReLU” denotes the
Leaky ReLU.

function easier to train, which is crucial in NR-IQA setting,
because it is desired to restore images with low level of dis-
tortion as well as ones with high level of distortion. Sec-
ond, ResNet structure is similar to the way HVS restores:
adding details and textures onto distorted input chronologi-
cally. Gradually adding residual information simulates HVS
model and greatly reduces potential color shifting problems
in stacked convolution-ReLU networks. Specifically, each
residual block has identical layout which has two convolu-
tions with 3×3 filters and 64 feature maps. We also adopt
batch normalization (Ioffe and Szegedy 2015) to avoid un-
desired initialization, branches are added element-wisely to
accumulate residue. After 10 identical residual blocks, we
achieve the restored image with 3 channels by a convolu-
tion.

As for the discriminator Dφ, which aims to distinguish
restored image patch Rθ(Pk) from P 0

k , we propose a VGG-
based (Simonyan and Zisserman 2014) discriminator due to

its successful application in several computer vision tasks.
The discriminator has a similar layout of 13-layer VGG. In-
stead of pooling, we follow the advice of (Radford, Metz,
and Chintala 2015) and use strided convolution layers to
downsample. Furthermore, we also adopt batch normaliza-
tion (Ioffe and Szegedy 2015) after each Leaky ReLU acti-
vation layer. After extracting 512 feature maps, we use two
fully connected layers to approximate discriminator objec-
tives.

The loss function for RAN consists of a perceptual loss
(realized by a pretrained VGG network) and an adversar-
ial loss (realized by approximating Wasserstein distance),
which is shown in Eq. 2.

LRAN = min
θ

max
φ

(LPER
RAN + LADV

RAN ) (2)

Perceptual loss Previous computer vision research relies
on pixel-wise loss, such as mean squared error (MSE) to
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Figure 2: Monotonicity of GoR. We randomly select 40 pristine images in Waterloo Exploration (Ma et al. 2017) and their
distorted version with 4 types and 3 levels of distortions. The distorted images are restored and we measure the distance
between the distorted and restored images. The vertical axis denotes perceptual distance, measured by PSNR or SSIM (Wang
et al. 2004), between distorted image and restored version. The four charts on the first row are PSNR-measured, the four
below are SSIM-measured. From left to right, the distortion type is Gaussian Blur, White Noise, JPEG Compression and JP2K
Compression. Green, red, blue represent distortion level of 1, 3, 5 respectively. Severer distortion results in larger distance.

measure the distance between two given images. However,
according to (Wang and Bovik 2009), pixel-wise loss fails
to capture perceptual representations, such as texture de-
tails, as humans do. Lower MSE does not necessarily reflect
better perceptual similarity. In this regard, we adopt percep-
tual loss (Johnson, Alahi, and Fei-Fei 2016) as cost function
for the restorator. Perceptual loss is defined on a VGG19
network which is pretrained on IMAGENET (Deng et al.
2009). Instead of measuring pixel-by-pixel difference, per-
ceptual loss quantifies perceptual difference based on vari-
ous levels of feature representations extracted by the con-
volution layers in the pretrained network. The inputs are
mapped into the feature space by non-linear differentiable
functions, which in our setting, are the convolution layers
from the pretrained model. In detail, the pretrained VGG19
has five maxpool layers and we select the last convolution
layers before the corresponding five maxpool activations.
Perceptual loss function is defined as the Euclidean distance
of the five convolution layers, the ith convolution Ωi is of
size Wi ×Hi × Ci.

LPER
RAN =

∑

i

1

WiHiCi
‖ Ωi(P

0
k )− Ωi(Rθ(Pk)) ‖22 (3)

Wasserstein GAN While traditional GANs suffer van-
ishing gradient and mode corruption problems, (Arjovsky,
Chintala, and Bottou 2017) propose Wasserstein GAN
(WGAN), which claims to solve the problems with theoret-
ical analysis.

Instead of minimizing the Jensen-Shannon divergence,
which leads to vanishing gradient when the discriminator
reaches optima, a loss function which fits the Earth-Mover
distance is defined as the cost between generated distribu-
tion and real distribution. Unlike its traditional counterpart
which does 0-1 classification, the discriminator in WGAN

model solves a regression problem. According to (Arjovsky,
Chintala, and Bottou 2017), when the discriminator is K-
Lipschitz, the Earth-Mover distance suffers less gradient sat-
uration and mode corruption problems even when the sup-
port of the generated distribution and the real distribution
does not have a non-negligible intersection. In our model,
WGAN is crucial because the inputs of the restorator are
images with various types and levels of distortions, stability
is desired. As shown in Fig. 1, we remove the sigmoid layer
in the discriminator. Furthermore, to enforce K-Lipschitz on
discriminator, we clip weights between [-0.05, 0.05] after
each update. Lastly, we use RMSProp (Tieleman and Hin-
ton 2012) optimization to further avoid instability.

LADV
RAN = Dφ(P

0
k )−Dφ(Rθ(Pk)) (4)

Evaluator

After RAN restoration, we further train an evaluator Eω

to quantify visual score based on GoR monotonicity. As
shown in Fig. 1, still patch-wisely, evaluator takes the re-
stored patch and the distorted patch as input. Similar to the
discriminator’s function, we adopt the same layout to first
extract feature representations. Second, feature vectors ex-
tracted from distorted patch and restored patch are fused
and concatenated into a 1024-dimensional vector. Since the
distortion is not evenly distributed, an average of scores of
all patches does not necessarily reflect the global perceptual
quality of the full image. Thus, in the last stage, the fused
feature vector is fed into 2 branches which calculate the
perceptual score sk and weight wk respectively. The whole
model collects the weighted sum of all patches, which is the
final quality estimate of distorted image Id.

The loss function of evaluator is shown in Eq. 5 and Eq. 6.
The evaluator is trained for two steps, which will be detailed
in the experiments. When the score and weight labels for
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every image patch are available, we minimize the mean av-
erage error between the prediction and label for score and
weight.

LEva =
n∑

k=1

∣∣sk − s0k
∣∣+

n∑

k=1

∣∣wk − w0
k

∣∣ (5)

However, when we only have access to the score of the
whole image, the mean average error between ground truth
and weighted prediction is minimized by each update.

LEva =

∣∣∣∣

∑n
k=1 skwk∑

k wk
− s

∣∣∣∣ (6)

where sk and wk denote the score and weight prediction for
image patch Pk. s0k and w0

k denote the ground truth score
and weight for patch Pk. s represents the ground truth score
for the whole image Id.

Experimental Results

In this section, we conduct several experiments to test
the performance of RAN on several datasets. We pretrain
RAN on Waterloo Exploration (Ma et al. 2017), perform
cross validation on TID2013 (Ponomarenko et al. 2015) and
LIVE (Sheikh et al. 2005). Furthermore, we conduct abla-
tion experiments to test and quantify the performance gain
and the necessity of each component and technique.

Protocol

TID2013 TID2013 is an extended version of TID2008
(Ponomarenko et al. 2009), which consists of 25 distortion-
free reference images and 3000 distorted images created
from references at five levels. There are 24 different distor-
tion types, ranging from additive Gaussian noise to sparse
sampling reconstruction. Its wide range makes it one of the
most comprehensive IQA databases. Mean Opinion Scores
(MOS) are provided for every image, which is in the range
[0, 9] and higher MOS means higher perceptual quality.

LIVE LIVE comprises 29 reference images and 779 dis-
torted samples with 5 distortion types: JPEG Compression,
JP2K Compression, White Noise, Gaussian Blur and Fast
Fading. Every image is annotated with Differential Mean
Opinion Scores (DMOS), which is in the range [0, 100].
Lower DMOS means higher perceptual quality. DMOS
value of zero indicates the image is distortion-free.

Waterloo Exploration Waterloo Exploration is a large-
scale IQA database, which contains 4744 pristine natural
images and 94880 distorted images generated by MATLAB
scripts with four distortion types and five levels. Compared
to TID2013 and LIVE, Waterloo Exploration has a great di-
versity of image content. The four types: JPEG Compres-
sion, JP2K Compression, Gaussian Blur and White Noise,
are also considered the most common distortion types and
are covered both in TID2013 and LIVE. Instead of anno-
tating distorted data with subjective mean opinion score

(MOS), which is impractical for such a large database, Wa-
terloo Exploration claims to preset MATLAB parameters
which cover a wide range of subjective quality scale.

We adopt two measures to evaluate the performance of
RAN: Spearman rank order correlation coefficient (SROCC)
and Pearson linear correlation coefficient (PLCC). SROCC
measures the prediction monotonicity while PLCC takes rel-
ative distance into consideration and thus a non-linear re-
gression is performed.

Training Details

All the training is performed on an NVIDIA Tesla K40 GPU.
The training consists of two steps: (1) pretrain on the Water-
loo Exploration, (2) finetune on the TID2013 and LIVE. We
crop every image into 64×64 non-overlapping patches. The
implementation is on tensorflow (Abadi et al. 2016).

In the pretrain step, we first train the restorator based on
the labels (pristine patches) to avoid unwanted minima using
Adam optimizer (Kingma and Ba 2014) at a learning rate of
10−4 for 300, 000 iterations. Then we train the restorator and
the discriminator together using RMSProp (Tieleman and
Hinton 2012) at a learning rate of 10−4 for 300, 000 itera-
tions and a lower learning rate of 10−5 for another 300, 000
iterations. In each iteration, we train the discriminator 5
times and the restorator once. Then we freeze the weights of
restorator and discriminator, and pretrain the evaluator using
Adam at a learning rate of 10−4 for 300, 000 iterations. Note
that all the above training uses 4744 pristine images and
94, 880 distorted images from Waterloo Exploration. Con-
sidering that perceptual scores are not available in Waterloo
Exploration, we label a score and weight for every distorted
image patch by performing FSIM (Zhang et al. 2011), which
is one of the state-of-the-art FR-IQA metrics, on each patch
of Waterloo Exploration. These scores and weights serve as
the ground truth label in the pretrain of the evaluator. Note
that the generated FSIM labels are only used during the pre-
train of the evaluator.

In the finetune step, we also freeze the weights of the
restorator and discriminator, only train the evaluator using
the same optimizer and learning rate on different datasets,
which will be elucidated in the next section.

Cross Validation on TID2013 and LIVE

After pretrained on Waterloo Exploration, the evaluator is
finetuned on TID2013 and LIVE to perform cross valida-
tion respectively. Since Waterloo Exploration only contains
4 distortion types, we finetune and test RAN on them: Gaus-
sian Blur, White Noise, JPEG and JP2K.

On TID2013, we randomly pick 60% as the training set,
20% as the validation set and the left 20% as the test set.
We finetune the evaluator for 20, 000 iterations. The result is
displayed in Table 1. The best results of both NR-IQA met-
rics and FR-IQA metrics are in bold. The proposed model
achieves as good a result as FSIM, on which RAN relys
during pretrain. RAN outperforms state-of-the-art NR-IQA
metrics in SROCC and PLCC in TID2013.

We also perform two-sided t-test on average SROCC and
PLCC between the proposed model and all the other men-
tioned NR-IQA models. The null hypothesis is that the two
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IQA methods TID2013 LIVE
SROCC PLCC SROCC PLCC

FR-IQA

PSNR 0.889 0.847 0.880 0.805
SSIM (Wang et al. 2004) 0.856 0.867 0.918 0.780
FSIM (Zhang et al. 2011) 0.963 0.932 0.952 0.822
FSIMC (Zhang et al. 2011) 0.963 0.935 0.951 0.816
VSI (Zhang, Shen, and Li 2014) 0.947 0.939 0.936 0.853

NR-IQA

DIIVINE (Moorthy and Bovik 2011) 0.855 0.851 0.885 0.853
BLIINDS-II (Mittal, Moorthy, and Bovik 2012) 0.877 0.841 0.931 0.930
BRISQUE (Saad, Bovik, and Charrier 2012) 0.922 0.917 0.940 0.911
CNN (Kang et al. 2014) 0.903 0.917 0.913 0.888
CNN++ (Kang et al. 2015) 0.843 0.804 0.928 0.897
DNN (Bosse et al. 2016) 0.933 0.909 0.960 0.972
RAN (proposed) 0.948 0.937 0.972 0.968

Table 1: Cross Validation on TID2013 and LIVE

models have equal SROCC at the 95% confidence level.
An alternative hypothesis is that our model has higher/less
correlation results. We also make a similar hypothesis on
PLCC. We randomly split the TID2013, train, test for 15
times and achieve the results for all the models. Our model
is statistically significant than all the other NR-IQA models
on both SROCC and PLCC.

To further test the robustness and generalization of RAN,
we test our model on LIVE, where we split the dataset into
6:2:2 for train, validation and test respectively. LIVE has
fewer images compared to TID2013, we finetune the evalua-
tor for 15, 000 iterations. As shown in Table 1, RAN outper-
forms the state-of-the-art metrics, which shows its robust-
ness and generalization across datasets.

Ablation Experiments

To demonstrate that the adopted techniques are critical for
the performance, we conduct several ablation experiments
on TID2013, in which we remove perceptual loss, Wasser-
stein distance, discriminator, weighted strategy and test the
performance of the remaining framework. When we remove
perceptual loss (RAN\PER), we use L2 loss instead dur-
ing the training of restorator. When we remove Wasserstein
(RAN\WAS), we adopt the original logarithm-based ad-
versarial loss function. When we remove the discriminator
(RAN\DIS), the only component left is the restorator, which
is trained only based on the perceptual loss objective. With-
out weighted strategy (RAN\WEI), we simply estimate the
quality of an image as the average of patch scores. As shown
in Table 2, removal of the discriminator causes significant
performance decline because restorator is not propelled by
discriminator. The weighted strategy is also critical for the
evaluator since distortion is not evenly distributed on test im-
ages, a naive average strategy will not give reasonable result
when the image has severe distortion in a small area. Not
using perceptual loss affects performance because without
an HVS-consistent restorator, GoR monotonicity will not be
notable and it is hard for the evaluator to assess perceptual
quality. RAN without Wasserstein distance performs slightly
worse than the proposed model.

Ablation TID2013
SROCC PLCC

RAN (proposed) 0.948 0.937
RAN\PER 0.893 0.879
RAN\WAS 0.936 0.906
RAN\DIS 0.854 0.856
RAN\WEI 0.857 0.884

Table 2: Ablation Experiment on TID2013

Conclusion

This paper presents RAN, a GAN-based no-reference image
quality assessment model. Consistent with the human visual
system, RAN restores input distorted image, extracts fea-
tures both from distorted image and restored image based on
GoR and evaluates perceptual quality by comparing them.
Experimental results on standard IQA database have shown
its superiority over state-of-the-art IQA methods and its gen-
eralization capacity.
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