
Learning Binary Residual Representations
for Domain-Specific Video Streaming

Yi-Hsuan Tsai,1 Ming-Yu Liu,2 Deqing Sun,2

Ming-Hsuan Yang,1,2 Jan Kautz2
1University of California, Merced

2NVIDIA

Abstract

We study domain-specific video streaming. Specifically, we
target a streaming setting where the videos to be streamed
from a server to a client are all in the same domain and
they have to be compressed to a small size for low-latency
transmission. Several popular video streaming services, such
as the video game streaming services of GeForce Now and
Twitch, fall in this category. While conventional video com-
pression standards such as H.264 are commonly used for this
task, we hypothesize that one can leverage the property that
the videos are all in the same domain to achieve better video
quality. Based on this hypothesis, we propose a novel video
compression pipeline. Specifically, we first apply H.264 to
compress domain-specific videos. We then train a novel
binary autoencoder to encode the leftover domain-specific
residual information frame-by-frame into binary representa-
tions. These binary representations are then compressed and
sent to the client together with the H.264 stream. In our ex-
periments, we show that our pipeline yields consistent gains
over standard H.264 compression across several benchmark
datasets while using the same channel bandwidth.

Introduction

Video streaming services, such as Netflix and YouTube, are
popular methods of viewing entertainment content nowa-
days. Due to large video sizes and limited network band-
width, video compression is required for streaming video
content from a server to a client. While video compression
can reduce the size of a video, it often comes with unde-
sired compression artifacts, such as image blocking effects
and blurry effects.

Decades of efforts were made towards delivering the best
possible video quality under bandwidth constraint. State-
of-the-art video compression methods such as MPEG-4 (Li
2001), H.264 (Wiegand et al. 2003), and HEVC (Sullivan
et al. 2012) combine various classical techniques including
image transform coding, predictive coding, source coding,
and motion estimation in a carefully-engineered framework.
These methods are general and can be applied to various
video domains for effectively compressing most of the infor-
mation in a video. However, the residual information, which
is the difference between the uncompressed and compressed

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

videos, is difficult to compress because it contains highly
non-linear patterns. Neither linear predictive coding nor lin-
ear transform coding can effectively compress the residual.

In this paper, we hypothesize that one can effectively
compress the residual information if one is willing to limit
the use of the video compression method to a specific do-
main. In other words, we no longer wish to have a video
compression method that works universally well on all
videos. We only wish to have a method that works partic-
ularly well in one specific domain. Although this setting
may appear inconvenient at a first glance as one needs to
have a video compressor for each domain, it does fit well
with several major video streaming applications, such as
video game streaming and sports streaming. For example,
for video game streaming services such as GeForce Now
and Twitch, the gamer chooses a game title to play, and
the video content is rendered on the server and delivered to
client’s mobile console. During the game playing period, all
the video content in the stream is in the same video game
domain and a domain-specific video compression method
is entirely appropriate. The setting also fits other user cases
such as streaming sports, which are often limited to a partic-
ular discipline, as well as things like compressing dash cam
videos, as all the videos are about street scenes.

To verify our hypothesis, we leverage deep learning mod-
els, which have been established as powerful non-linear
function approximators, to encode the highly nonlinear
residual information. In our video compression pipeline, we
first apply H.264 to compress videos in a specific domain
and train a novel binary autoencoder to encode the resulting
residual information frame-by-frame into a binary represen-
tation. We then apply Huffman coding (Cover and Thomas
2006) to compress the binary representations in a lossless
manner. The compressed binary representations can be sent
to the client in the meta data field in the H.264 streaming
packet. This way, our method can be integrated into the ex-
isting video streaming standard. We illustrate our method in
Figure 1. We show that with our proposed binary residual
representation, one can achieve a better video quality (at a
chosen bandwidth) by sending the video stream using H.264
at a smaller bandwidth and utilizing the saved bandwidth to
transmit the learned binary residual representation.

We conduct extensive experiments to verify our hypoth-
esis that we can improve state-of-the-art video compression

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

7363

methods by learning to encode the domain-specific residual
information in a binary form. We also compare various ways
of training the proposed binary autoencoder for encoding the
residual information. On the KITTI (Geiger, Lenz, and Urta-
sun 2012) and three games video datasets, we show that our
method consistently outperforms H.264 both quantitatively
and qualitatively. For example, our PSNR score is 1.7dB bet-
ter than H.264 on average under the bandwidth at 5Mbps.

Related Work

We review the related works by their categories.

Image/Video Compression

Transform coding using the discrete/integer cosine trans-
form (DCT/ICT) has been widely used in image and video
coding standards, such as JPEG (Wallace 1991), MPEG-4
(Li 2001), H.264 (Wiegand et al. 2003), and HEVC (Sulli-
van et al. 2012). The encoder divides an image/video frame
into non-overlapping blocks, applies DCT/ICT to each indi-
vidual block, and quantizes the coefficients. Because of the
energy concentration ability of DCT/ICT, the compressed
images are of good quality at moderate to high bit rates.
However, real-time video stream requires very low bit-rate
compression. As a result, the compressed images often suf-
fer from blocking artifacts due to the block-wise processing.
Another problem with existing coding standards is that they
have been designed to be universal coders and cannot be tai-
lored to specific domains.

Machine learning-based techniques have been devel-
oped to aid these compression standards. A colorization
model (Cheng and Vishwanathan 2007) is utilized to learn
the representative color pixels to store for better recon-
struction. Another work adopts a dictionary-based ap-
proach (Skretting and Engan 2011) to learn sparse represen-
tations for image compression. Our method is also based on
learning, in which we leverage state-of-the-art deep learn-
ing models to compress the residual information. Recently,
a reinforcement learning scheme is adopted to adaptively se-
lect the bit rate for video streaming for minimizing the la-
tency (Mao, Netravali, and Alizadeh 2017).

Deep Learning-based Image Compression

Instead of engineering every step in the coding system,
numerous learning-based approaches as discussed in Jiang
et al. (Jiang 1999) have been developed to compress the
data in the holistic manner. Recently, autoencoders (Hin-
ton and Salakhutdinov 2006) have been widely used in ex-
tracting abstract representations of images through learn-
ing to reconstruct the input signals (Vincent et al. 2008;
Pathak et al. 2016; Tsai et al. 2017). While these methods
use a bottleneck layer to learn a compact representation,
each dimension of the compact representation is continuous,
which needs to be further quantized for compression.

Various approaches are utilized in the bottleneck layer to
compress the data. Quantization methods (Ballé, Laparra,
and Simoncelli 2017; Theis et al. 2017) estimate the entropy
rate of the quantized data while optimizing used number of
bits. In addition, an adversarial training scheme (Rippel and

Bourdev 2017) is developed to produce sharper and visually
pleasing results. On the other hand, variants of the autoen-
coder architecture with recurrent networks show the abil-
ity to directly learn binary representations in the bottleneck
layer (Toderici et al. 2016; 2017).

While theses methods only focus on still image compres-
sion, our algorithm is designed to improve video quality
in streaming applications, especially in the domain-specific
scenarios such as game or street view videos. To this end,
we integrate existing video compression standards that can
effectively exploit temporal information and learning-based
methods that can efficiently transmit binary residual repre-
sentations. As a result of the integration, our system can be
adaptively applied to existing video compression platforms
and improve their performance.

Post-processing to Remove Compression Artifacts

Post-processing at the decoder end aims at reducing the
coding artifacts without introducing additional bit rates at
the encoder end. Earlier approaches (Reeve and Lim 1983;
Chen, Wu, and Qiu 2001) manually use smoothing fil-
ters to reduce blocking effects caused by DCT in the ex-
pense of more blurry image outputs. Recently, learning-
based methods (Chang, Ng, and Zeng 2014; Choi et al. 2015;
Liu et al. 2015; Mao, Shen, and Yang 2016) are developed
to model different compression artifacts. For example, the
ARCNN method (Dong et al. 2015) uses end-to-end train-
ing for removing various JPEG artifacts. Furthermore, the
D3 scheme (Wang et al. 2016) employs the JPEG priors to
improve the reconstruction results. Deeper models such as
DDCN (Guo and Chao 2016) are also developed to eliminate
artifacts, and a recent work (Guo and Chao 2017) combines
the perceptual loss to generate visually pleasing outputs.
We note that these post-processing methods require exten-
sive computation on the client side, which is not well-suited
for embedded devices. In contrast, our method encodes the
residual information in a binary form on the server side and
send it to the client. Utilizing the encoded residual informa-
tion, the client can better recover the original video using
much less computational power.

Domain-specific Video Compression with

Residual Autoencoder

Here, we first introduce our video compression pipeline for
streaming domain-specific videos. We then present the de-
tails of our autoencoder for encoding the residual informa-
tion into binary forms and the training methods.

Video Streaming Pipeline

The proposed pipeline consists of two modules: a video
compression module and a deep learning-based autoen-
coder, as shown in Figure 1. The video compression mod-
ule adopts the H.264 standard, which has demonstrated good
performance in compressing temporally smooth visual sig-
nals, while our residual autoencoder assists to recover the
lost information during compression on the client side by
leveraging the property that the videos to be compressed are
from the same domain. Using such a hybrid approach, not

7364

Figure 1: Overview of our proposed video streaming pipeline. It consists of two modules: a conventional H.264 module and our
proposed residual autoencoder. The input to our residual module is the difference between the original and compressed videos.
The difference is encoded and binarized to generate binary representations. We utilize Huffman coding to further compress the
binary representations into a bit stream in a lossless manner. On the client side, we reconstruct the output video by adding back
the decoded difference to the compressed video.

only can we improve the output quality by spending a small
amount of effort, but also the system can adapt to existing
compression platforms and train for specific domains by ex-
ploiting large-scale data. Note that, although we use H.264
in our pipeline, other video compression standards such as
MPEG4 and HEVC can be used as well.

Given an input video X, we obtain the compressed video
Y by applying H.264. The difference between the two
videos is called the residual information R = X −Y. The
larger the residual information, the poorer the compressed
video quality. We also note that R is not included in Y be-
cause it consists of highly non-linear patterns, which can not
be compressed effectively with conventional approaches.

We argue that by limiting the video domain, we could
leverage a novel autoencoder to effectively compress the
residual information. The autoencoder consists of a pair of
functions (E ,D), where the encoder E maps R to a binary
map and the decoder D recovers R from the binary map
on the client side. The recovered residual information is re-
ferred to as R̂ and the final output video Y+ R̂ has a better
visual quality than Y. We note that the binary map is further
mapped to a bit stream by using the Huffman coding algo-
rithm (Cover and Thomas 2006), which is asymptotically
optimal, to reduce its bandwidth usage.

Sending the bit stream of the residual information requires
additional bandwidth. However, we can train an autoencoder
that only requires a much smaller bandwidth to compress
the residual information than H.264. Therefore, we can run
the H.264 standard in a higher compression rate, which uses
a smaller bandwidth but results in a larger residual signal.
We then apply our autoencoder to compress the residual sig-
nal into a small bit stream. Considering a scenario where
the bandwidth for a video stream is 5Mbps, we can apply
the proposed pipeline to compress the video in 4Mbps us-
ing H.264 and utilize the remaining 1Mbps for sending the
residual signal. Because our autoencoder is more efficient

than H.264 in compressing the residual signal, our system
achieve better performance than a baseline system that allo-
cates all the 5Mbps for H.264.

One may wonder why not completely replacing the H.264
standard with the proposed residual autoencoder. We argue
that our residual autoencoder is only more efficient than
H.264 in compressing the residual signal. The carefully-
engineered H.264 is more efficient in compressing the core
video. By marrying the strength of H.264 and the proposed
autoencoder, our hybrid system achieves better performance.
Moreover, our pipeline can be easily integrated into the ex-
isting H.264 standard since the residual information can
be attached in the meta field of a H.264 streaming packet.
Hence we can enjoy the popularity of the H.264 standard
and various hardware accelerators implemented for H.264.

We note that in the proposed domain-specific video
streaming pipeline, one needs to send the parameters of D
and the Huffman decoder table to the client for the stream-
ing service, which requires an additional bandwidth. How-
ever, the parameters can be sent before the streaming starts.
Once the parameters are sent, the user can enjoy the low la-
tency and high video quality features of the proposed video
streaming pipeline.

Binary Residual Autoencoder

We design an autoencoder that consists of three components:
encoder E , binarizer B (introduced in the next section) and
decoder D. For the encoder, the goal is to learn to extract
compact feature representations for the following binarizer.
We use L convolutional layers in our encoder, in which each
layer has the same channel number C and a stride of two
that down-samples feature maps. The binarizer converts the
output from the last convolutional layer into a binary map.
For the decoder, we aim to up-sample the binary map back to
the original input. Our decoder has L convolutional layers.
At the end of each convolutional layer, a sub-pixel layer (Shi

7365

Figure 2: Architecture of the proposed binary residual autoencoder. It process the video frame by frame. The autoencoder
consists of an encoder, a binarizer and a decoder. The encoder/decoder, each has L convolutional layers and each layer contains
C/4C channels. For simplicity, Huffman coding modules are not illustrated here.

et al. 2016) is used for up-sampling. Since we aim for up-
sampling the resolution of the feature map by two on each
spatial dimension, the channel number of each convolutional
layer in the decoder is set to 4×C due to the use of the sub-
pixel layer. To facilitate the learning process, batch normal-
ization (Ioffe and Szegedy 2015) and ReLU layers are used.
The architecture of the autoencoder are given in Figure 2.

We encode and decode the residual signal R frame by
frame. Let {ri} be a set of residual frames computed by ap-
plying H.264 at a target bit rate. We train our autoencoder
by solving the following optimization problem:

min
D,E

∑
i

||ri −D(B(E(ri)))||22. (1)

We care a lot about the bandwidth required for transmitting
binary representations, which is determined by two factors:
1 the number of layers L in the encoder, and 2) the number
of channels C. Let W and H be the width and height of the
input image, the binary map size is given by C×W×H

22L
. A

large number of L and a smaller number of C would result
in a smaller size of the encoder output and hence a smaller
binary map. However, a smaller encoder output makes train-
ing of the autoencoder difficult. In our experiments we will
discuss the results with different numbers of L and C.

Training of the Binary Residual Autoencoder

Binarizing feature maps in neural networks have been stud-
ied in several earlier works (Rastegari et al. 2016; Cour-
bariaux et al. 2016; Tang, Hua, and Wang 2017) for the
purpose of reducing memory footprint in mobile devices. It
is also used for image compression (Toderici et al. 2016;
2017), while our work is different in that we binarize feature
maps for video streaming. We will discuss several binariza-
tion methods here and compare their advantages and draw-
backs when used in our pipeline in the experiment section.

Formulation. Let the output feature map of E be ei = E(ri).
Our binarizer B aims to produce the binary output {−1, 1}1.
To generate such binary outputs, the process B consists of

1We have found that our network requires negative responses to
achieve reasonable results. Instead of producing the binary output
{0, 1}, we aim to generate the discrete output {−1, 1}.

two parts: 1) map each element of the encoder output ei to
the interval [−1, 1], and 2) discretize it to {−1, 1} given by:

B(ei) = b(σ(ei)), (2)

where σ and b are the activation and discretization func-
tions, respectively. In the following, we discuss different
functions for activation (i.e., tanh, hardtanh, sigmoid) and
various methodologies for binarization (i.e., stochastic regu-
larization (Raiko et al. 2015) , Gumbel noise (Jang, Gu, and
Poole 2017; Maddison, Mnih, and Teh 2017)).
Tanh/Hardtanh Activation. tanh is a common activation
to project feature values to [−1, 1], so as the approxima-
tion version hardtanh function. Here, we define the bina-
rized output as:

b(z) =

{
1, if z ≥ 0

−1, if z < 0,
(3)

where z = σ(ei) and σ can be the tanh or hardtanh func-
tion. However, since binarization is not a differentiable func-
tion, we can not train the proposed autoencoder using back-
propagation. To avoid the issue, inspired by the recent bina-
rization work (Courbariaux et al. 2016), we adopt a piece-
wise function bbp during back-propagation:

bbp(z) =

⎧⎨
⎩
1, if z > 1

z, if −1 ≤ z ≤ 1

−1, if z < −1.
(4)

By using the straight-through estimator (Courbariaux et al.
2016), we can compute the gradient of bbp(z) and pass gra-
dients through b unchanged as:

b′bp(z) =
{
1, if −1 ≤ z ≤ 1

0, otherwise.
(5)

Sigmoid Activation. The sigmoid function outputs a value
in [0, 1]. We convert the output to [−1, 1] by applying z =
2(σ(ei) − 0.5). We can then use the approach discussed in
the previous paragraph for binarization and training.
Stochastic Regularization. Following Toderici et
al. (Toderici et al. 2016), we incorporate a stochastic
process into (3) using the tanh activation:

b(z) = z + ε,

7366

Table 1: Compression ratio versus number of bits in a group
computed from our KITTI dataset experiments.

of bits in a group 8 16 32 64
Compression ratio 1.05 1.47 3.03 6.67

where ε is a randomized quantization noise, resulting in:

b(z) =

{
1, with probability 1+z

2

−1, with probability 1−z
2 .

(6)

For back-propagation, similarly we can pass unchanged gra-
dients through b (Toderici et al. 2016).

Gumbel Noise. The Gumbel-Softmax distributions have
been utilized for learning categorical/discrete outputs (Jang,
Gu, and Poole 2017). We adopt a similar approach by adding
Gumbel noise in the sigmoid function, which we refer as
Gumbel-Sigmoid. Since sigmoid can be viewed as a special
2-class case (ei and 0 in our case) of softmax, we derive the
Gumbel-Sigmoid as:

σ(ei) =
exp((ei + gk)/τ)

exp((ei + gk)/τ) + exp(gl/τ)
, (7)

where g is the sample from the Gumbel noise and τ is the
temperature that controls how closely the Gumbel-Sigmoid
distribution approximates the binary distribution. From (7),
we can further simplify it as:

σ(ei) =
1

1 + exp(−(ei + gk − gl)/τ)

= sigm((ei + gk − gl)/τ), (8)

where sigm is the sigmoid function. Since σ(ei) is still in
the range of [0, 1], we adopt the same approach as introduced
before to shift the value via z = 2(σ(ei) − 0.5). Following
(Jang, Gu, and Poole 2017), we start with a high temperature
and gradually anneal it to a small but non-zero temperature.

Lossless Compression. Once we generate the binary feature
map, we further use Huffman coding (Cover and Thomas
2006) to reduce the size of the binary representation. These
coding schemes are asymptotically optimal, which means
that the more the number of bits we group together as a
symbol, the better the compression ratio. Such a behavior
is illustrated in Table 1 using the KITTI dataset. We note
that other source coding methods such as arithmetic coding
(Marpe, Schwarz, and Wiegand 2003) can be used as well.

Experimental Results

We evaluate our pipeline using the KITTI (Geiger, Lenz, and
Urtasun 2012) dataset, which consists of various driving se-
quences of street scenes, and three popular video games:
Assassins Creed, Skyrim and Borderlands. The details of
the datasets are shown in Table 2. We use the tracking
benchmark on the KITTI dataset that contains 50 street-view
videos. We randomly select 42 videos for training and 8
videos for testing. The images in the videos are resized to
360× 1200. The game video resolutions are 720× 1280.

Table 2: Number of videos and frames on the datasets.
KITTI Assassins Creed Skyrim Borderlands

Videos 50 50 9 19
Frames 19,057 34,448 9,337 8,752

Table 3: Impact of L and C on PSNR/SSIM.
Group Mbps (C, L) PSNR SSIM

1 ∼0.24 (8, 3) 29.28 0.8571
(32, 4) 29.39 0.8577

2 ∼0.48 (16, 3) 29.83 0.8681
(64, 4) 29.81 0.8652

3 ∼0.96 (8, 2) 30.35 0.8855
(32, 3) 30.67 0.8901

We report PSNR and SSIM scores at different bit rates
for quantitative comparisons. These two metrics are popular
performance metrics for benchmarking video compression
algorithms (Wang et al. 2004). We first conduct an ablation
study using the KITTI dataset where we discuss the impact
of layer and channel numbers in our design. We then com-
pare various methods for training the autoencoder. Finally,
we report the performance with comparisons to H.264 and a
deep learning baseline.

Implementation Details. Throughout the paper, we use
Adam (Kingma and Ba 2015) to train our binary residual
autoencoder. The learning rate is set to 10−3 and then de-
creased by half for every 5 epochs. The momentums are set
to 0.9 and 0.999. The batch size is 10, and we train the model
for 50 epochs. The implementation is based on PyTorch.

Runtime Analysis. On the server side, our encoder and the
binarizer takes about 0.001 seconds to compress the resid-
ual image with a resolution of 360 × 1200 using a Titan X
GPU. The decoder on the client side takes 0.001 seconds to
reconstruct the residual image.

Ablation Study

Depth and Breadth of the Model. We analyze the impact
of layer numbers L and channel numbers C on the video
compression performance of our pipeline. For this study, the
bandwidth of H.264 is set to 5Mbps for generating training
and testing videos. We then train the residual autoencoder
with different L and C utilizing the hardtanh activation for
binarization. These two parameters determine the size of the
binary map, which has impacts on the compression rate as
well as the training difficulty. Intuitively, the smaller the bi-
nary map, the easier the compression task but the harder the
training task. The results are shown in Table 3. Based on the
bit rate, we divide the settings into three groups. The ones
in the same group have a very similar bit rate after applying
the Huffman coding. We then use the best setting in each bit
rate group for the rest of the experiments.

Binarization. We compare various methods discussed ear-
lier for training the binary residual autoencoder. We fix
L = 3 and C = 32 and train our model with different

7367

(a) KITTI (b) Assassins Creed (c) Skyrim (d) Borderlands

Figure 3: PSNR comparisons on four datasets at different bandwidths. We compare our pipeline with H.264 and an artifact-
removal method based on (Kim, Lee, and Lee 2016; Zhang et al. 2017).

(a) KITTI (b) Assassins Creed (c) Skyrim (d) Borderlands

Figure 4: SSIM comparisons on four datasets at different bandwidths. We compare our pipeline with H.264 and an artifact-
removal method based on (Kim, Lee, and Lee 2016; Zhang et al. 2017).

Figure 5: Example results on the KITTI and video game datasets. We compare our pipeline with H.264 and an artifact-removal
method. The corresponding bit rate and PSNR are shown next to the images. Best viewed with enlarged images.

H.264 compression rates. The results are reported in Ta-
ble 4 and 5. We find that the models trained using hard-
tanh and tanh activations consistently outperform the others.
The model trained with the stochastic regularization does

not perform well possibly due to the training difficulty. It is
known that the stochastic noise increases the gradient vari-
ance. In addition, we empirically find that the model us-
ing Gumbel-Sigmoid performs much worse for the resid-

7368

Table 4: Comparisons of different binarization methods on
the KITTI dataset using PSNR.

H.264 @ Mbps 1M 2M 5M
Hardtanh 28.95 29.97 30.67

Tanh 28.95 29.97 30.67

Sigmoid 28.89 29.88 30.61
Stochastic 28.26 29.21 29.78

Gumbel-Sigmoid 26.66 27.82 28.66

ual signal compression task. (We note that (Jang, Gu, and
Poole 2017) uses the Gumbel noise for reconstructing dis-
crete/categorical signals but not continuous signals of im-
ages in our task.). Hence, we use hardtanh activations in the
rest of the experiments for its superior performance.

Video Compression Performance

We compare our video compression pipeline to the H.264
standard and an artifact removal network, which is a popular
approach to reduce distortions. Following recent deep learn-
ing works in image enhancement and denoising (Kim, Lee,
and Lee 2016; Zhang et al. 2017), we utilize a neural net-
work with 8 convolutional layers (no strides) to remove the
artifacts. The network takes the compressed H.264 images
as inputs in a frame-by-frame fashion and outputs enhanced
images. We then train an artifact removal network for each
video domain for fair comparisons.

We note that the proposed pipeline requires bandwidth for
both H.264 and the binary map. We account both in the bit
rate calculation for fair comparisons with the baseline meth-
ods. In other words, the bit rate of the proposed pipeline is
the sum of the bit rate from the H.264 stream and the Huff-
man code of the binary map. Again, we do not take transmit-
ting the network parameters into account since it can be sent
before the streaming starts. In the streaming services, the
main goal is to have high quality videos with low latency.

We report PSNR and SSIM scores on the KITTI bench-
mark and 3 video games in Figures 3 and 4. We find our
pipeline consistently outperforms the baseline methods at
all bit rates. Our pipeline achieves a PSNR of 33.26dB at
5Mbps averaged on four datasets, which is 1.71dB better
than H.264 and 0.84dB better than the artifact-removal net-
work. Similarly, our pipeline performs better in SSIM, e.g.,
5.3% and 4.1% improvements over H.264 and the artifact-
removal network at 2Mbps, respectively. In Figure 5, we
present some qualitative results, showing our method pre-
serves more details and textured contents (e.g., tree, rock and
water) in reconstructed images using a smaller bandwidth2.

To validate the importance of modeling the residual, we
also carry out experiments by directly compressing the raw
video using the same autoencoder architecture. However, it
results in a worse performance compared to H.264 (0.52dB
drop in PSNR) since this method does not leverage any mo-
tion information for video compression. Overall, our results

2The website link http://research.nvidia.com/publication/2018-
02 LearningBinaryResidual contains more visualization results.

Table 5: Comparisons of different binarization methods on
the KITTI dataset using SSIM.

H.264 @ Mbps 1M 2M 5M
Hardtanh 0.8575 0.8773 0.8901

Tanh 0.8577 0.8770 0.8882
Sigmoid 0.8538 0.8722 0.8861

Stochastic 0.8297 0.8470 0.8617
Gumbel-Sigmoid 0.7683 0.8128 0.8464

show that by propagating the extracted binary residual repre-
sentations from the server to the client, the quality of recon-
structed videos can be largely improved. It outperforms the
artifact removal network, which aims for solving a challeng-
ing inverse problem and does not leverage any prior knowl-
edge about the compression process. In addition, the runtime
of our binary residual autoencoder (decoding on the client
side) is two times faster than the artifact removal network.

Conclusions

In this paper, we propose a video streaming system that in-
tegrates H.264 and a binary residual autoencoder to encode
non-linear compression errors for domain-specific video
streaming. We analyze various network design choices and
methods for obtaining binary representations of the resid-
ual information. The binary representations are further com-
pressed and transmitted from the server to the client. On
the KITTI benchmark dataset and three popular video game
datasets, the proposed algorithm generates better recon-
structed videos than H.264 and artifact-removal methods
while using a smaller bandwidth.
Acknowledgment The authors would like to thank Sam H.
Azar and Zheng Yuan for their helpful discussions.

References

Ballé, J.; Laparra, V.; and Simoncelli, E. P. 2017. End-to-end
optimized image compression. In ICLR.
Chang, H.; Ng, M. K.; and Zeng, T. 2014. Reducing arti-
facts in jpeg decompression via a learned dictionary. IEEE
Transactions on Signal Processing 62(3):718–728.
Chen, T.; Wu, H. R.; and Qiu, B. 2001. Adaptive postfil-
tering of transform coefficients for the reduction of blocking
artifacts. IEEE Transactions on Circuits and Systems for
Video Technology 11(5):594602.
Cheng, L., and Vishwanathan, S. V. N. 2007. Learning to
compress images and videos. In ICML.
Choi, I.; Kim, S.; Brown, M. S.; and Tai, Y.-W. 2015. A
learning-based approach to reduce jpeg artifacts in image
matting. In ICCV.
Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarynet: Training deep neural networks
with weights and activations constrained to +1 or -1. CoRR
abs/1602.02830.
Cover, T. M., and Thomas, J. A. 2006. Elements of Infor-
mation Theory. Wiley-Interscience.

7369

Dong, C.; Deng, Y.; Loy, C. C.; and Tang, X. 2015. Com-
pression artifacts reduction by a deep convolutional net-
work. In ICCV.
Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready
for autonomous driving? the kitti vision benchmark suite. In
CVPR.
Guo, J., and Chao, H. 2016. Building dual-domain repre-
sentations for compression artifacts reduction. In ECCV.
Guo, J., and Chao, H. 2017. One-to-many network for visu-
ally pleasing compression artifacts reduction. In CVPR.
Hinton, G., and Salakhutdinov, R. 2006. Reducing the
dimensionality of data with neural networks. Science
313(5786):504–507.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In ICML.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical reparame-
terization with gumbel-softmax. In ICLR.
Jiang, J. 1999. Image compression with neural networks a
survey. In Signal Processing: Image Communication, 737–
760.
Kim, J.; Lee, J. K.; and Lee, K. M. 2016. Accurate image
super-resolution using very deep convolutional networks. In
CVPR.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In ICLR.
Li, W. 2001. Overview of fine granularity scalability in
mpeg-4 video standard. IEEE Transactions on Circuits and
Systems for Video Technology 11(3):301–317.
Liu, X.; Wu, X.; Zhou, J.; and Zhao, D. 2015. Data-
driven sparsity-based restoration of jpeg-compressed images
in dual transform-pixel domain. In CVPR.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2017. The con-
crete distribution: A continuous relaxation of discrete ran-
dom variables. In ICLR.
Mao, H.; Netravali, R.; and Alizadeh, M. 2017. Neural
adaptive video streaming with pensieve. In Proceedings of
the ACM SIGCOMM.
Mao, X.-J.; Shen, C.; and Yang, Y.-B. 2016. Image restora-
tion using very deep convolutional encoder-decoder net-
works with symmetric skip connections. In NIPS.
Marpe, D.; Schwarz, H.; and Wiegand, T. 2003. Context-
based adaptive binary arithmetic coding in the h.264/avc
video compression standard. IEEE Transactions on Circuits
and Systems for Video Technology 13(7):620–636.
Pathak, D.; Krähenbühl, P.; Donahue, J.; Darrell, T.; and
Efros, A. A. 2016. Context encoders : Feature learning by
inpainting. In CVPR.
Raiko, T.; Berglund, M.; Alain, G.; and Dinh, L. 2015. Tech-
niques for learning binary stochastic feedforward neural net-
works. In ICLR.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. Xnor-net: Imagenet classification using binary con-
volutional neural networks. In ECCV.

Reeve, H., and Lim, J. 1983. Reduction of blocking effect
in image coding. In ICASSP, volume 8, 1212–1215.
Rippel, O., and Bourdev, L. 2017. Real-time adaptive image
compression. In ICML.
Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A. P.;
Bishop, R.; Rueckert, D.; and Wang, Z. 2016. Real-time
single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In CVPR.
Skretting, K., and Engan, K. 2011. Image compression using
learned dictionaries by rls-dla and compared with k-svd. In
ICASSP.
Sullivan, G. J.; Ohm, J.; Han, W.-J.; and Wiegand, T. 2012.
Overview of the high efficiency video coding (hevc) stan-
dard. IEEE Transactions on Circuits and Systems for Video
Technology 22(12):1649–1668.
Tang, W.; Hua, G.; and Wang, L. 2017. How to train a com-
pact binary neural network with high accuracy? In AAAI.
Theis, L.; Shi, W.; Cunningham, A.; and Huszár, F. 2017.
Lossy image compression with compressive autoencoders.
In ICLR.
Toderici, G.; O’Malley, S. M.; Hwang, S. J.; Vincent, D.;
Minnen, D.; Baluja, S.; Covell, M.; and Sukthankar, R.
2016. Variable rate image compression with recurrent neural
networks. In ICLR.
Toderici, G.; Vincent, D.; Johnston, N.; Hwang, S. J.; Min-
nen, D.; Shor, J.; and Covell, M. 2017. Full resolution image
compression with recurrent neural networks. In CVPR.
Tsai, Y.-H.; Shen, X.; Lin, Z.; Sunkavalli, K.; Lu, X.; and
Yang, M.-H. 2017. Deep image harmonization. In CVPR.
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-
A. 2008. Extracting and composing robust features with
denoising autoencoders. In ICML.
Wallace, G. K. 1991. The jpeg still picture compression
standard. Communications of the ACM 30–44.
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P.
2004. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Process-
ing 13(4):600–612.
Wang, Z.; Liu, D.; Chang, S.; Ling, Q.; Yang, Y.; and Huang,
T. S. 2016. D3: Deep dual-domain based fast restoration of
jpeg-compressed images. In CVPR.
Wiegand, T.; Sullivan, G. J.; Bjontegaard, G.; and Luthra,
A. 2003. Overview of the h.264/avc video coding standard.
IEEE Transactions on Circuits and Systems for Video Tech-
nology 13(7):560–576.
Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; and Zhang, L.
2017. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE Transactions on Im-
age Processing 26(7):3142–3155.

7370

