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Abstract

The number of social images has exploded by the wide adop-
tion of social networks, and people like to share their com-
ments about them. These comments can be a description of
the image, or some objects, attributes, scenes in it, which
are normally used as the user-provided tags. However, it is
well-known that user-provided tags are incomplete and im-
precise to some extent. Directly using them can damage the
performance of related applications, such as the image an-
notation and retrieval. In this paper, we propose to learn an
image annotation model and refine the user-provided tags si-
multaneously in a weakly-supervised manner. The deep neu-
ral network is utilized as the image feature learning and back-
bone annotation model, while visual consistency, semantic
dependency, and user-error sparsity are introduced as the con-
straints at the batch level to alleviate the tag noise. Therefore,
our model is highly flexible and stable to handle large-scale
image sets. Experimental results on two benchmark datasets
indicate that our proposed model achieves the best perfor-
mance compared to the state-of-the-art methods.

Introduction

As the imaging technology tends to be perfect and the
wide usage of social networks, a large number of images
are shared through the Internet every day, including the
landscape photos, selfies, snapshots and so on. However,
a significant amount of them is unlabeled or weakly la-
beled. To better understand and efficiently retrieval these
images, it is essential to develop an automatic annotation
method. Traditional methods on the image annotation fo-
cus on using human-labeled images as training data to un-
cover the relationships between image visual content and
tags (Guillaumin et al. 2009; Makadia, Pavlovic, and Kumar
2010). In recent years, the deep neural network (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2014)
has achieved superior performance on image feature learn-
ing and been widely used in the image classification and
related vision tasks (Wei et al. 2016; Wang et al. 2016).
However, these deep models are purely based on the su-
pervised learning and require a significant amount of well-
labeled training samples to obtain satisfactory results. The
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User-Provided Tags:
pink gerber gerbera daisies
green gift athankyou project365
nikond70s 365days

Our model:
color daisy flower petal green pink

Figure 1: An example image from the Mirflickr dataset.
Compare to our model’s predictions, the user-provided tags
are inaccurate, incomplete and some are meaningless for
visual understanding, such as ‘gerber,’ ‘project365’, and
‘nikond70s’.

labeling process can be intensive and expensive. It is unre-
alistic for the human to continuously label the large-scale
images that pop into the social networks every day, to obtain
high-quality training samples.

Sometimes, people spontaneously assign tags to some
images when uploading them, and more tags are attached
along with the spread. Despite the fact that these tags pro-
vide semantic illustrations of the images to some extent,
they are always incomplete, imprecise, and biased toward
the individual perspectives (Li et al. 2016). See Fig.1 as
an example. To alleviate the existing tag noise for fur-
ther retrieval and training annotation model, some previ-
ous works are (Zhu, Ngo, and Jiang 2012; Liu et al. 2009;
Li, Snoek, and Worring 2009; Li and Snoek 2013; Zhu, Yan,
and Ma 2010) conducted on the tag relevance analysis and
refinement. These works explore the tag relevance from dif-
ferent perspectives including the semantic similarities be-
tween tags, the visual similarities among image neighbors
and the properties of the tagging matrix. The user-provided
tag is further refined based on its relevance. The most rel-
evant works are conducted in (Zhu, Yan, and Ma 2010;
Li and Tang 2017b; 2017a). However, they intend to focus
on the low-rank property of the tagging matrix, which nei-
ther can connect the image feature to the refined results nor
enable the image feature learning. Therefore, these methods
are less flexible and stable when facing the large-scale image
sets.

To address the above issues, in this paper, we propose
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Figure 2: Our proposed weakly-supervised model. We adopt Deep Convolutional Neural Network as the backbone annotation
model. The network ϕ0 is initialized by training on the user-provided tags, and further transferred by training with the proposed
constraints (Lvis, Lsem and Lerr). We dynamically choose the image neighbors from the neighborhood candidates and combine
them as the input batch Bn+1 for network ϕn+1. The tag refinement is conducted during training, while the new image can
obtain annotations by passing through the trained network.

to learn an image annotation model and refine the user-
provided tags simultaneously in a weakly-supervised man-
ner. The whole framework is shown in Fig.2. Deep Convo-
lutional Neural Network (DCNN) is adopted as the feature
learning and backbone annotation model. Different from
the regular DCNN that is trained on the supervised infor-
mation, which is usually professionally annotated and dou-
ble checked, we consider the user-provided tags as weakly-
supervised information to assist the training. We propose to
learn the image visual representation and the relationship be-
tween visual content and tags by exploring the visual consis-
tency among the image neighbors and the semantic depen-
dencies between the tag pairs. That is, images with similar
visual appearance are usually annotated with the same tags,
and semantic dependent tags intend to appear in the same
images jointly. To efficiently utilize these constraints and en-
able the feature learning, we propose to dynamically gener-
ate the neighbors for each image and form them as the input
batches. Given the input batches, we apply these two con-
straints on the tag probability distributions generated by the
neural network. Moreover, although the user-provided tags
are noisy and biased, people share the general knowledge

about the semantic annotation. The user-provided tags are
still accurate at a reasonable level, and each image usually
is assigned with very few tags compare to the entire tag set.
Therefore, the error of a batch user-provided tags is sparse.
By setting these constraints at the batch level, we can train
the neural network to conduct tag refinement and learn the
annotation model at the same time. In summary, the main
contributions of our model are as follows:

1) We propose to obtain the deep neural network based
image annotation model and conduct the tag refinement si-
multaneously in a weakly-supervised manner. During the
training, the user-provided tags are spontaneously refined to
probability distributions, while the trained annotation model
can be applied to assign tags to new images.

2) We set the constraints of the neural network at the batch
level, which not only enable the image feature learning but
also make the model flexible and stable when handle the
large scale user-annotated training samples at a low com-
putation cost.

3) Our proposed model achieves the state-of-the-art per-
formance for both image annotation and tag refinement ex-
periments on two benchmark datasets.
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Related Works

High-quality tags of images are necessary for the image
understanding and retrieval. Various works have been con-
ducted on analyzing the tag relevance, improving the tag
quality and automatically annotating images. Early works
intend to estimate the tag relevance based on the semantic
information only. In (Zhu, Ngo, and Jiang 2012), tag rele-
vance is evaluated by averaging the WordNet (Miller 1995)
similarities between the assigned tags for each image, while
latent Dirichlet allocation model (Blei, Ng, and Jordan 2003)
and collective knowledge are used in (Xu et al. 2009) and
(Sigurbjörnsson and Van Zwol 2008) respectively. However,
these methods overlook the image visual information and
highly rely on the initial tags of images, which are limited to
annotating new images.

Many approaches have been proposed by leveraging the
visual information along with the associated tags. In (Liu et
al. 2009), the initial probabilistic tag relevance is estimated
by kernel density estimation; the random walk is performed
based on both visual and semantic similarities to rank the
tags in favor of the retrieval. In (Makadia, Pavlovic, and Ku-
mar 2010), the nearest neighbor voting mechanism is em-
ployed to assign the tags to new images based on the vi-
sual similarity, while in (Guillaumin et al. 2009), instead of
treating neighbors equally, distance metric learning is used
to reweight them. Li et al. (Li and Snoek 2013) propose to
select relevant positive training samples and negative sam-
ples from the noisy tags to train the classifier for annotation.
Positive samples are selected based on the aforementioned
voting methods, while the negative ones are collected by
bootstrap.

There are also some works that focus on the modality de-
sign. For example, in (Chen et al. 2012), the image feature
is enriched by adding additional tag feature, which is ob-
tained by the SVM prediction, while in (Pereira et al. 2014)
and (Ballan et al. 2014), authors design a latent multi-modal
space to tackle the annotation problem by canonical correla-
tion analysis and kernel canonical correlation analysis. Be-
sides, matrix-based methods are also widely used for the tag
refinement. Image tag as one type of semantic information
is subject to the low-rank property. Therefore, the initial tag-
ging matrix can be decomposed into the ideal tagging ma-
trix with a sparse user-error matrix (Zhu, Yan, and Ma 2010;
Li and Tang 2017a). In (Zhu, Yan, and Ma 2010), they use
the predefined visual and semantic similarity to assist the
process. However, these methods fail to connect the visual
features with the tagging results, which makes it unable to
perform the annotation. In (Li and Tang 2017b), a three-
layer network architecture is proposed to bridge the seman-
tic gap. However, since it cannot perform feature learning
and use the matrix as the input, it is less flexible and stable
when dealing with the large-scale image sets.

Inspired by the advanced abilities of the deep neural net-
work, various models have been proposed for vision and
multimedia tasks, especially for image annotation and re-
trieval, such as (Gong et al. 2013) and (Wan et al. 2014).
However, these deep models rely on the high-quality tags
as supervised information, which is hard and expensive to
obtain. Different from the above methods, in our work, we

use the deep neural network as the feature learning and back-
bone annotation model, while dynamically constrain the net-
work at the batch level in a weakly-supervised manner.

Proposed Model

Overview

The key characteristic of our model is that we formulate con-
straints of the deep neural network from two aspects. One is
the internal relationships of the image set, which is reflected
as the visual consistency among image neighbors and the
semantic dependencies between tag pairs. The other is the
general knowledge that error of the user-provided tags is
sparse. To appropriately introduce these constraints into the
neural network, we choose the input batches dynamically to
enable the image feature learning. The entire model is shown
in Fig.2.

Initialization of the Network

We first train the network as a regular multi-label neural net-
work on the user-provided tags. The motivations for doing
this are twofold. First, we want to give a relatively good ini-
tialization of the network parameters, since the deep neural
network can achieve superior performance on feature learn-
ing and annotation owe to it is composed of multiple nonlin-
ear transformations with a huge number of parameters. Sec-
ond, we want to find the neighborhood candidates for each
image using obtained visual features, which is a necessary
step in the visual consistency part.

Let I be the image set, T be the set of possible initial tags
provided by the users, and D = {(i,t)|i ∈ I, t ∈ T} be
the image dataset associated with these user-provided tags,
where |I| = N and |T | = C, corresponding to the im-
age and tag set size respectively. For each image i with the
user-provided ground-truth vector yi = [yi1, yi2, . . . , yiC ]
(yij = 1 if image is annotated by the jth tag, otherwise it is
0), we use CNN (ϕ) to extract image visual feature followed
by a fully-connected layer with a sigmoid transformation to
generate a C-dimensional vector to represent the tag proba-
bility distribution. The logistic loss is employed to train the
network. We note this initial model as ϕ0.

After the initialization is finished, we start to train the neu-
ral network by considering the visual consistency Lvis with
semantic dependency Lsem and user-error sparsity Lerr al-
together; we give the final form of our network constraints:

Lfinal = Lvis + λ1Lsem + λ2Lerr (1)
where λ1 and λ2 are set to balance the different constraints.
In the following subsections, we first introduce the dynamic
selection of neighbors and the visual consistency. The se-
mantic dependency is presented next, and followed by the
user-error sparsity constraint. Finally, we summarize how
the proposed model performs the tag refinement and pre-
dict tags for new images. Implementation details will also
be given in this section.

Dynamic Neighbors and Visual Consistency

Dynamic Neighbors We generate image visual neighbors
and input batches by dynamically using the nearest neigh-
bors approach. Given the initialized neural network ϕ0, we
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Algorithm 1 Generate Input Batch for Network Training
Input:

ϕn : Neural network after nth iteration;
s : Batch size;
m : Size of the final neighbors, m < M ;
i1, i2, . . . , i s

m
: Next input images;

Zij : Neighborhood candidates of jth image, j ∈ [1, s
m ];

Output: Bn+1 : Next input batch for n+ 1th iteration;

for Each j ∈ [1, s
m ] do

1: Forward candidates Zij to update image features as
V ′
j = {v′ij |v′ij = ϕn(ij)};

2: Nearest neighbors approach in V ′
j to update Zij ;

3: Select top m images as mini-batch Bn+1,j ;
end for
Concatenate all the mini-batches as input batch Bn+1.

first extract d-dimensional visual features of the whole im-
age set I as V = {vi|vi = ϕ0(i), i ∈ I}. We use the Eu-
clidean distance between each feature pair to rank the initial
neighborhood candidates.

Let Zi be the initial candidate set of image i. Since the
neural network learns to extract image visual features in our
model, the parameters of the network are updated after each
iteration, which means the visual feature of each image is
also changed, so as the neighbors. Because we intend to
constrain the network among neighbors, it would be time-
consuming to forward the whole training set and perform
the nearest neighbors approach after each iteration. To ef-
ficiently apply the training process, after each iteration, we
forward the initial candidate set Zi of next input image i to
update the neighbors; we set |Zi| = M(M < N); then we
form the next input batch. The input generation process is
described in Algorithm.1.

Visual Consistency After generating the input batches of
the neural network, now we introduce the first constraint of
our model. Based on the observation that visual similar im-
ages intend to be annotated with the similar tags (i.e., tag
distributions should be close), we define the visual consis-
tency constraint as follows.

Each mini-batch Bn+1,j is composed of the image ij with
its neighbors Zij = {ze|e ∈ [1, s

m ]}, where s is the batch
size, and m is the number of the image ij plus its selected
neighbors. The visual similarity between image ij and ze is

defined as γij ,e = exp(−‖ϕ(ij)−ϕ(ze)‖2

σ ), σ is the medium
value of γ. Then the visual consistency constraint can be
carried out as:

Lvis = min
P

m

s(m− 1)

s/m∑

j=1

m−1∑

e=1

γij ,e‖pij − pze‖2 (2)

where pij stands for the tag probability prediction of the im-
age ij , |pij | = C. P is the tag probability prediction of the
whole batch, |P | = s ∗ C.

Semantic Dependency

Besides the visual consistency among images, we also con-
sider the semantic dependencies of the tag pairs. It is nat-
ural that social tags are not assigned separately, semanti-
cally similar tags often appear together in the similar im-
ages. Based on this knowledge, we first estimate the tag-pair
similarity.

We consider the tag-pair similarity from two aspects: con-
text and knowledge base. Given two tags ti and tj , con-
text (distctx) is defined as the Google distance (Cilibrasi
and Vitányi 2007) of two tags in the given set (we use the
image instead of the web page), while the knowledge base
(distKB) is the WordNet similarity (Miller 1995) based on
the information content of the least common subsumer and
input synsets. The reason we use two similarity metrics is to
transfer the general measurement to the collected set. That
is:

distctx(ti, tj) =
max(logf(ti),logf(tj))− logf(ti,tj)

logN −min(logf(ti),logf(tj))
(3)

dist(ti, tj) = distctx(ti, tj) + αdistKB(ti, tj) (4)

ξtij = exp(−dist(ti, tj)
2/σ) (5)

where f(ti) is the frequence of tag ti in dataset D,
f(ti,tj) is the co-occurrence of tag pair (ti, tj), α is set to
balance two metrics, σ is the medium value of ξ. It is worth
noting that ξ is a symmetrical matrix, which is pre-computed
as a look-up table for training. Then the semantic depen-
dency constraint on the input batch is carried out as:

Lsem = min
P

1

C2

C∑

i=1

C∑

j=1

ξtij‖p′ti − p′tj‖2 (6)

where p′ti stands for the probabilities of the image batch
annotated by ti, |p′ti | = s. To speed up the training process,
by referring to (Zhu, Yan, and Ma 2010), we use the matrix
form of this constraint, let Q be the diagonal matrix, then the
semantic dependency constraint can be written as:

Qii =
∑

i �=j

ξtij i,j ∈ [1, C] (7)

Lsem = min
P

1

C2
Tr[PT (Q− ξ)P ] (8)

User-Error Sparsity

Although the user-provided tags are relatively noisy and bi-
ased, people share the general knowledge about semantic
annotation. The user-provided tags are still accurate at a rea-
sonable level. Moreover, each image is usually assigned with
few tags compare to the entire tag set. Therefore, the error
of a batch user-provided tags is sparse. Let G(|G| = s ∗ C)
be the user-provided annotation matrix of the input batch,
which has the same dimensions as the network probability
output P . Each row vector in G represents the user annota-
tion for each image. The difference matrix between G and
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P is the user-error matrix. Thus, the sparsity constraint is
defined as follows:

Lerr = min
P

‖G− P‖1 (9)

Training and Prediction

We use VGG-16 as our backbone neural network ϕ to con-
duct image feature learning. The training process is two-
staged: first, we obtain ϕ0, the output of last fully-connected
layer (4096 − d) is used as image feature to perform the
nearest neighbor approach to find the neighborhood candi-
dates, ϕ0 is also used to initialize the network for weakly-
supervised training. Then we train ϕ with the proposed con-
straints and dynamically generate the input batches. The
whole training process is shown in Algorithm.2.

Algorithm 2 Network Training Process
1: Train ϕ0 with the multi-label logistic loss;
2: Compute the initial neighborhood candidates Zij for

each image ij ;
3: Initialize ϕ with ϕ0;
4: Dynamically generate input batch Bn+1 as

Algorithm.1;
5: Train ϕn+1 with Lfinal;

We train all the models for thirty epochs, with learning
rate 0.001 from the start and decrease it to one-tenth ev-
ery ten epochs. Stochastic gradient descent (Bottou 2010)
is used to optimize the models. The grid-search strategy is
adopted to tune the hyperparameters including λ1, λ2 and α
by referring to the previous works (Zhu, Yan, and Ma 2010;
Li and Tang 2017b). Tag refinement proceeds naturally dur-
ing the ϕ training. For the image annotation, new images
are sent into the trained network to obtain the tag probabil-
ity distributions. Moreover, we visualize the proposed con-
straints based on the experimental results. The details are
introduced in the supplementary materials.

Experiments

In this section, we present our experimental results and an-
alyze the effectiveness of our proposed model. Our model
is evaluated on two benchmark datasets: Mirflickr (Huiskes
and Lew 2008) and NUS-WIDE (Chua et al. 2009). By com-
paring with the baselines and the state-of-the-art models, we
show that proposed model achieves the best performance.

Data Preprocessing

Images and social tags of the Mirflickr and NUS-WIDE
dataset are obtained from the Flickr website. The tags are
free-form and need to be unified to conduct adequate re-
search. Besides, for a tag to be meaningful, it needs to be
assigned to a certain number of images. Therefore, we carry
out the preprocessing as follows to obtain training set: first,
we lemmatize all the tags to their dictionary forms and re-
move the ones that do not appear in the WordNet, then we
exclude the tags that do not meet the occurrence threshold
(0.1% of total image number). We evaluate all the models

Img number N Tag set size C Label number Tags per img

Mirflickr 25,000 444 14 2.7

NUS-WIDE 201,302 3010 81 6.8

Table 1: The statistics of the Mirflcikr and NUS-WIDE after
preprocessing, including the total image amount, the size of
tag set and labels, and the number of tags per image.

on tags which are manually corrected (note as the label in
this section). We choose one-fifth data for training and the
rest for test. That is 5000 and 50,000 training images for
Mirflickr and NUS-WIDE respectively. The experiments are
repeated five times, and average results are reported. The
statistics of two datasets are shown in Tab.1:

Evaluation Metrics

Several metrics are employed to evaluate the performance
of the proposed model and the state-of-the-art methods. Re-
sults of the image annotation and the tag refinement are both
reported. We refer to the previous works (Li et al. 2016;
Li and Tang 2017b) to compute the average precision (AP)
and the area under the receiver operating characteristic curve
(AUC). For each image, a good model should rank rele-
vant tags before the irrelevant ones. Moreover, for a given
tag query, relevant images should be returned first before
the irrelevant ones. Therefore, we use the mean image aver-
age precision (miAP) and mean average precision (mAP) to
measure the model performance. miAP is computed by aver-
aging the APs on all the images, while mAP is computed by
averaging the APs on all the given tags. Similar to AP, global
and average performance of AUC is measured. MicroAUC
is computed by concatenating all the tag probability vectors
together and average the AUC, while MacroAUC is calcu-
lated by averaging the mean AUC of each given tag.

Baselines and Compared Methods

We give the descriptions of the baselines first and then list
all the compared state-of-the-art methods of the image an-
notation and tag refinement:

RandomGuess: (Li et al. 2016) This is a baseline for the
image annotation. Given a new image, RandomGuess as-
signs tags by randomly selecting from the tag set. We run
RandomGuess eighty times, and evaluate it by averaging the
predicted scores.

UserTags: (Li et al. 2016) This is a baseline for the tag
refinement. All the user-provided tags are reserved, and the
performance is evaluated based on them.

KNN: (Makadia, Pavlovic, and Kumar 2010) This is a
baseline for the image annotation. KNN model measures the
tag relevance respect to the given image by retrieving the k
nearest neighbors from the image set. Then the tags are as-
signed based on their occurrence rates among the neighbors.
The image feature used in this model is the 4096-d vector
extracted by VGG-16.

Multi-CNN: This baseline has the same configurations as
our initialized model ϕ0. For the image annotation, we train
the neural network using one-fifth data with logistic loss and
test it on the rest of set. For the tag refinement, the model is
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trained on the whole dataset to better evaluate the refinement
performance for large-scale datasets.

Compared Methods: For the image annotation, we com-
pare with several state-of-the-art methods, including Tag-
Prop (Guillaumin et al. 2009), CCA (Murthy, Maji, and
Manmatha 2015), TagFeature (Chen et al. 2012), TagExam-
ple (Li and Snoek 2013) and WDNL (Li and Tang 2017b).
For the tag refinement, we compare with TagCooccur (Sig-
urbjörnsson and Van Zwol 2008), TagVote (Li, Snoek, and
Worring 2009), and RPCA (Zhu, Yan, and Ma 2010). For
a fair comparison, the compared models and baselines are
using the pre-trained VGG-16. We implement an equivalent
model of WDNL on NUS-WIDE dataset named NMF by
using fixed VGG-16 feature matrix as input with low rank
matrix decomposition.

Results on Image Annotation

For the image annotation, we train our model on one-fifth
data as described in the last section. We set the batch size
s = 64, the initial neighborhood candidates size M = 512
and the final neighbor size m = 8.

Method imAP mAP MicroAUC MacroAUC

RandomGuess 0.072 0.072 0.501 0.498
KNN 0.243 0.499 0.785 0.926

Multi-CNN 0.404 0.556 0.865 0.925
CCA - 0.293 0.642 0.627

WDNL - 0.382 0.665 0.652
TagProp 0.386 0.518 0.822 0.907

TagFeature 0.313 0.414 0.786 0.892
TagExample 0.324 0.537 0.728 0.915
Our model 0.449 0.591 0.893 0.941

Table 2: Image annotation results on the Mirflickr.

Method imAP mAP MicroAUC MacroAUC

RandomGuess 0.023 0.023 0.500 0.504
KNN 0.388 0.357 0.916 0.941

Multi-CNN 0.405 0.369 0.922 0.934
CCA 0.363 0.364 0.865 0.928
NMF 0.383 0.369 0.910 0.923

TagProp 0.359 0.373 0.921 0.930
TagFeature 0.240 0.302 0.831 0.906

TagExample 0.356 0.335 0.919 0.924
Our model 0.412 0.398 0.922 0.942

Table 3: Image annotation results on the NUS-WIDE.

Tab. 2 and 3 show that the proposed model achieves
the best performance on all the evaluation metrics of both
datasets. As we can see, all methods outperform the base-
line RandomGuess, which proves that learning from the
user-provided tags is useful for the image annotation. KNN
model only uses the visual similarities among images, while
Multi-CNN learns the classifier for each tag independently.
Therefore, our model surpasses the KNN and Multi-CNN,
which indicates that it is significant to explore the visual and
semantic relationships inside the image set at the same time.

Method imAP mAP MicroAUC MacroAUC

UserTags 0.100 0.263 0.544 0.642
Multi-CNN 0.426 0.597 0.872 0.937
TagCooccur 0.159 0.260 0.587 0.699

TagVote 0.201 0.323 0.594 0.708
RPCA 0.384 0.541 0.840 0.914

Our model 0.476 0.633 0.907 0.952

Table 4: Tag refinement results on the Mirflickr.

Method imAP mAP MicroAUC MacroAUC

UserTags 0.187 0.338 0.656 0.783
Multi-CNN 0.424 0.416 0.921 0.935
TagCooccur 0.277 0.298 0.650 0.818

TagVote 0.311 0.368 0.905 0.864
RPCA 0.404 0.426 0.918 0.872

Our model 0.431 0.446 0.927 0.950

Table 5: Tag refinement results on the NUS-WIDE.

Results against CCA shows that eliminate the tag noise is
necessary for social image annotation. Prior works including
the TagProp, TagFeature, and TagExample are proposed to
perform annotation using the user-provided tags. However,
our model outperforms these methods since we combine the
deep network architecture with the weakly-supervised con-
straints. Different from the WDNL and NMF, which uses
low-rank matrix decomposition with a three-layer neural
network for the tag prediction, our model enables the neural
network for image feature learning in an end-to-end fash-
ion by formulating the constraints at the batch level, which
achieves the significant better results.

Results on Tag Refinement

For the tag refinement, we train our model on the entire
dataset to show the effectiveness of our model when refin-
ing the large-scale datasets. We set parameters same as the
annotation experiment.

Tab. 4 and Tab. 5 indicate that the proposed model out-
performs the baselines and state-of-the-art models on both
datasets. As we can see from two tables, the baseline
UserTags directly uses user-provided tags without any re-
finement, while different refinement methods have shown
different degrees of improvements against it. The TagCoocur
only uses the tag co-occurrence rate and frequency to rank
the tags respective to the image, no visual information in-
volved, while the TagVote also considers the visual similari-
ties among images to refine the ranking results. However, by
dynamically choose the input neighbors, our model can per-
form the feature learning during the refinement, which out-
performs these methods. The better results against the Multi-
CNN proves the effectiveness of the proposed constraints.
Moreover, we achieve better results compared to the most
relevant refinement method RPCA. As illustrated in (Li et al.
2016), since the RPCA optimizes the whole tagging matrix,
it could not be easily applied to the large-scale datasets due
to its high demand in both CPU time and memory. On the
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Ground Truth:
RandomGuess:

KNN:
Multi-CNN:
Our Model:

flower, tree
baby, cloud, man, river, sea
flower
flower
flower, tree

cloud, river
baby, girl, dog, bird, river, sea
cloud, night, tree
cloud
cloud, river, tree

cloud, sea
bird, car, man, night, sea
cloud, night
cloud
cloud, tree

bird, flower
girl, man, night, sea, tree
zebra, car
flower
bird, flower

Ground Truth:
RPCA:

Multi-CNN:
Our Model:

Ocean, sunset
sunset
beach, cloud, sea, sky, water
beach, cloud, landscape, ocean, 
sea, sunset, water, wave

mountain
mountain
beach, cloud, sea, sky, water
blue, cloud, landscape, sunset, 
sky

night, night time
night
bridge, night, light
architecture, bridge, cityscape, 
light, reflection, river, building

River, sunshine
graffiti
graffiti
graffiti, art, building

Figure 3: (a) First row: image annotation examples from the Mirflickr 14 labels. (b) Second row: tag refinement examples.

contrary, we formulate three constraints at the batch level,
which actives the feature learning and also make our model
flexible and stable to deal with the large-scale datasets. We
give some examples in Fig. 3 to show the refinement results.
As we can see, our proposed model removes the inaccurate
user-provided tags and adds relevant tags to images.

Ablation Analysis

We also conduct the ablation analysis to investigate the in-
dividual contribution of each constraint. We use each con-
straint separately to train the network. The visual consis-
tency, semantic dependency, and user-error sparsity achieve
0.572, 0.564 and 0.560 mAP respectively on Mirflickr
dataset for the image annotation experiment, while achiev-
ing 0.623, 0.615 and 0.601 mAP respectively for the tag re-
finement experiment. Meanwhile, they achieve 0.386, 0.380
and 0.375 mAP respectively on the NUS-WIDE dataset for
the image annotation experiment, while achieving 0.428,
0.425 and 0.421 mAP respectively for the tag refinement
experiment. As we can see, each constraint outperforms all
the baseline models, and the most improvement comes from
the visual consistency. Since the different constraints are de-
signed from the different aspects, combining them can mu-
tually remedy each other, which further improves the overall
performance.

Visualize the Dynamic Neighbors

To better demonstrate the effectiveness of our dynamic
neighbor selection, given a query image, we show the im-
age neighbors from different iterations in Fig.4. As we can
see, with the number of iterations increases, the irrelevant
neighbors (red boxes) are gradually replaced by the relevant

Increasing iteration num
ber

Increasing iteration num
ber

Figure 4: The visualization of the dynamic neighbor selec-
tion. The most left image is the query image. Better viewed
in color.

images (green boxes), which proves the effectiveness of our
feature learning and dynamic neighbor selection process.

Conclusion

The social image annotation and tag refinement have been
the research focus since the image sharing networks become
popular. In this paper, we propose to solve these problems in
a weakly-supervised manner. By dynamically choosing the
image neighbors to generate input batches, and formulating
the visual consistency, semantic dependency and user-error
sparsity as the constraints of the neural network, we can train
the proposed model in an end-to-end fashion. Experimen-
tal results on two benchmark datasets show that our model
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outperforms the most methods. Moreover, since the training
procedure is similar to a regular CNN, our model is flexible
and stable to apply to the large-scale datasets.
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Cilibrasi, R., and Vitányi, P. M. B. 2007. The google similar-
ity distance. IEEE Trans. Knowl. Data Eng. 19(3):370–383.
Gong, Y.; Jia, Y.; Leung, T.; Toshev, A.; and Ioffe, S. 2013.
Deep convolutional ranking for multilabel image annotation.
CoRR abs/1312.4894.
Guillaumin, M.; Mensink, T.; Verbeek, J.; and Schmid, C.
2009. Tagprop: Discriminative metric learning in nearest
neighbor models for image auto-annotation. In Proc. IEEE
Int. Conf. Comp. Vis., 309–316. IEEE.
Huiskes, M. J., and Lew, M. S. 2008. The mir flickr re-
trieval evaluation. In Pro. ACM Int. Conf. Multimedia Info.
Retrieval, 39–43. ACM.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Proc. Advances in Neural Inf. Process. Syst.,
1097–1105.
Li, X., and Snoek, C. G. 2013. Classifying tag relevance
with relevant positive and negative examples. In Proc. ACM
Int. Conf. Multimedia., 485–488. ACM.
Li, Z., and Tang, J. 2017a. Weakly supervised deep matrix
factorization for social image understanding. IEEE Trans.
Image Process. 26(1):276–288.
Li, Z., and Tang, J. 2017b. Weakly-supervised deep non-
negative low-rank model for social image tag refinement and
assignment. In Proc. Conf. AAAI, 4154–4160.
Li, X.; Uricchio, T.; Ballan, L.; Bertini, M.; Snoek, C. G.;
and Bimbo, A. D. 2016. Socializing the semantic gap: A
comparative survey on image tag assignment, refinement,
and retrieval. ACM Computing Surveys 49(1):14.
Li, X.; Snoek, C. G.; and Worring, M. 2009. Learning social
tag relevance by neighbor voting. IEEE Trans. Multimedia
11(7):1310–1322.

Liu, D.; Hua, X.-S.; Yang, L.; Wang, M.; and Zhang, H.-J.
2009. Tag ranking. In Proc. Int. Conf. World Wide Web.,
351–360. ACM.
Makadia, A.; Pavlovic, V.; and Kumar, S. 2010. Baselines
for image annotation. Int. J. Comput. Vision 90(1):88–105.
Miller, G. A. 1995. Wordnet: a lexical database for english.
Communications of the ACM 38(11):39–41.
Murthy, V. N.; Maji, S.; and Manmatha, R. 2015. Auto-
matic image annotation using deep learning representations.
In Proc. ACM Int. Conf. Multimedia Retrieval., 603–606.
ACM.
Pereira, J. C.; Coviello, E.; Doyle, G.; Rasiwasia, N.; Lanck-
riet, G. R.; Levy, R.; and Vasconcelos, N. 2014. On the role
of correlation and abstraction in cross-modal multimedia re-
trieval. IEEE Trans. Pattern Anal. Mach. Intell. 36(3):521–
535.
Sigurbjörnsson, B., and Van Zwol, R. 2008. Flickr tag rec-
ommendation based on collective knowledge. In Proc. Int.
Conf. World Wide Web., 327–336. ACM.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. CoRR
abs/1409.1556.
Wan, J.; Wang, D.; Hoi, S. C. H.; Wu, P.; Zhu, J.; Zhang,
Y.; and Li, J. 2014. Deep learning for content-based image
retrieval: A comprehensive study. In Proc. ACM Int. Conf.
Multimedia., 157–166. ACM.
Wang, J.; Yang, Y.; Mao, J.; Huang, Z.; Huang, C.; and Xu,
W. 2016. CNN-RNN: A unified framework for multi-label
image classification. Proc. IEEE Conf. Comp. Vis. Patt.
Recogn. 2285–2294.
Wei, Y.; Xia, W.; Lin, M.; Huang, J.; Ni, B.; Dong, J.; Zhao,
Y.; and Yan, S. 2016. Hcp: A flexible cnn framework for
multi-label image classification. IEEE Trans. Pattern Anal.
Mach. Intell. 38(9):1901–1907.
Xu, H.; Wang, J.; Hua, X.-S.; and Li, S. 2009. Tag refine-
ment by regularized lda. In Proc. ACM Int. Conf. Multime-
dia., 573–576. ACM.
Zhu, S.; Ngo, C.-W.; and Jiang, Y.-G. 2012. Sampling and
ontologically pooling web images for visual concept learn-
ing. IEEE Trans. Multimedia 14(4):1068–1078.
Zhu, G.; Yan, S.; and Ma, Y. 2010. Image tag refinement
towards low-rank, content-tag prior and error sparsity. In
Proc. ACM Int. Conf. Multimedia., 461–470. ACM.

7557


